Плазматическая мембрана: строение и функции. Строение и функции плазматических мембран

Основу структурной организации клетки составляют биологические мембраны. Плазматическая мембрана (плазмалемма) — это мембрана, окружающая цитоплазму живой клетки. Мембраны состоят из липидов и белков. Липиды (в основном фосфолипиды) образуют двойной слой, в котором гидрофобные «хвосты» молекул обращены внутрь мембраны, а гидрофильные — к её поверхностям. Молекулы белков могут располагаться на внешней и внут-ренней поверхности мембраны, могут частично погружать-ся в слой липидов или пронизывать её насквозь. Большая часть погруженных белков мембран — ферменты. Это жид-костно-мозаичная модель строения плазматической мем-браны. Молекулы белка и липидов подвижны, что обеспе-чивает динамичность мембраны. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов (гликокаликс), располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мем-браны каждой клетки специфичен и является своеобраз-ным указателем типа клеток.

Функции мембраны:

  1. Разделительная. Она заключается в образовании барьера между внутренним содержимым клетки и внешней средой.
  2. Обеспечение обмена веществ между цитоплазмой и внешней средой. В клетку поступают вода, ионы, неорганические и органические молекулы (транспортная функ-ция). Во внешнюю среду выводятся продукты, образован-ные в клетке (секреторная функция).
  3. Транспортная. Транспорт через мембрану может проходить разными путями. Пассивный транспорт осуществляется без затрат энергии, путем простой диффузии, осмоса или облегченной диффузии с помощью белков- переносчиков. Активный транспорт — с помощью белков-переносчиков, и он требует затрат энергии (например, натрий-калиевый насос). Материал с сайта

Крупные молекулы биополимеров попадают внутрь клетки в результате эндоцитоза. Его разделяют на фагоци-тоз и пиноцитоз. Фагоцитоз — захват и поглощение клет-кой крупных частиц. Явление впервые было описано И.И. Мечниковым. Сначала вещества прилипают к плаз-матической мембране, к специфическим белкам-рецеп-торам, затем мембрана прогибается, образуя углубление.

Образуется пищеварительная вакуоль. В ней переварива-ются поступившие в клетку вещества. У человека и живот-ных к фагоцитозу способны лейкоциты. Лейкоциты по-глощают бактерии и другие твердые частицы.

Пиноцитоз — процесс захвата и поглощения капель жидкости с растворенными в ней веществами. Вещества прилипают к белкам мембраны (рецепторам), и капля рас-твора окружается мембраной, формируя вакуоль. Пиноци-тоз и фагоцитоз происходят с затратой энергии АТФ.

  1. Секреторная. Секреция — выделение клеткой ве-ществ, синтезированных в клетке, во внешнюю среду. Гормоны, полисахариды, белки, жировые капли, заключа-ются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Мембраны сливаются, и содержимое пу-зырька выводится в среду, окружающую клетку.
  2. Соединение клеток в ткани (за счет складчатых вы-ростов).
  3. Рецепторная. В мембранах имеется большое число рецепторов — специальных белков, роль которых заключа-ется в передаче сигналов извне внутрь клетки.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • строение биологической мембраны кратко
  • строение и функции плазматический мембраны
  • плазматическая мембрана строение и функции
  • плазматическая мембрана кратко
  • плазматическая мембрана строение и функции кратко

Строение клеток живых организмов во многом зависит от того, какие функции они выполняют. Однако существует ряд общих для всех клеток принципов архитектуры. В частности, любая клетка имеет снаружи оболочку, которая называется цитоплазматической или плазматической мембраной. Существует и еще одно название - плазмолемма.

Строение

Плазматическая мембрана состоит из молекул трех основных видов - протеинов, углеводов и липидов. У разных типов клеток соотношение этих компонентов может различаться.

В 1972 году учеными Николсоном и Сингером был предложена жидкостно-мозаичная модель строения цитоплазматической мембраны. Эта модель послужила ответом на вопрос о строении клеточной мембраны и не утратила своей актуальности и по сей день. Суть жидкостно-мозаичной модели заключается в следующем:

  1. Липиды располагаются в два слоя, составляя основу клеточной стенки;
  2. Гидрофильные концы липидных молекул расположены внутрь, а гидрофобные - наружу;
  3. Внутри эта структура имеет слой протеинов, которые пронизывают липиды подобно мозаике;
  4. Кроме белков здесь имеется небольшое количество углеводов - гексоз;

Эта биологическая система отличается большой подвижностью. Белковые молекулы могут выстраиваться, ориентируясь к одной из сторон липидного слоя, или же свободно перемещаются и меняют свое положение.

Функции

Несмотря на некоторые различия в строении, плазмолеммы всех клеток обладают набором общих функций. Кроме того, они могут обладать характеристиками, сугубо специфичными для данного вида клеток. Рассмотрим кратко общие основные функции всех клеточных мембран:

Избирательная проницаемость

Основным свойством плазматической мембраны является избирательная проницаемость. Через нее проходят ионы, аминокислоты, глицерол и жирные кислоты, глюкоза. При этом клеточная мембрана пропускает одни вещества и задерживает другие.

Существует несколько видов механизмов транспорта веществ через клеточную мембрану:

  1. Диффузия;
  2. Осмос;
  3. Экзоцитоз;
  4. Эндоцитоз;

Диффузия и осмос не требуют энергетических затрат и осуществляются пассивно, остальные виды транспорта - это активные процессы, протекающие с потреблением энергии.

Такое свойство клеточной оболочки во время пассивного транспорта обусловлено наличием специальных интегральных белков. Такие белки-каналы пронизывают плазмолемму и образуют в ней проходы. Ионы кальция, калия и лора передвигаются по таким каналам относительно градиента концентрации.

Транспорт веществ

К основным свойствам плазматической мембраны относят также ее способность транспортировать молекулы разнообразных веществ.

Описаны следующие механизмы переноса веществ через плазмолемму:

  1. Пассивный - диффузия и осмос;
  2. Активный;
  3. Транспорт в мембранной упаковке;

Рассмотрим эти механизмы более подробно.

Пассивный

К пассивным видам транспорта относятся осмос и диффузия. Диффузией называется движение частиц по градиенту концентрации. В этом случае клеточная оболочка выполняет функции осмотического барьера. Скорость диффузии зависит от величины молекул и их растворимости в липидах. Диффузия, в свою очередь, может быть нейтральной (с переносом незаряженных частиц) или облегченной, когда задействуются специальные транспортные белки.

Осмосом называется диффузия через клеточную стенку молекул воды .

Полярные молекулы с большой массой транспортируются с помощью специальных белков - этот процесс получил название облегченной диффузии. Транспортные белки пронизывают клеточную мембрану насквозь и образуют каналы. Все транспортные белки подразделяются на каналообразующие и транспортеры. Проникновение заряженных частиц облегчается благодаря существованию мембранного потенциала.

Активный

Перенос веществ через клеточную оболочку против электрохимического градиента называется активным транспортом. Такой транспорт всегда происходит с участием специальных белков и требует энергии. Транспортные белки имеют специальные участки, которые связываются с переносимым веществом. Чем больше таких участков, тем быстрее и интенсивнее происходит перенос. В процессе переноса белок транспортер претерпевает обратимые структурные изменения, что и позволяет ему выполнять свои функции.

В мембранной упаковке

Молекулы органически веществ с большой массой переносятся через мембрану с образованием замкнутых пузырьков - везикул, которые образует мембрана.

Отличительной чертой везикулярного транспорта является то, что переносимые макрочастицы не смешиваются с другим молекулами клетки или ее органеллами.

Перенос крупных молекул внутрь клетки получил название эндоцитоза. В свою очередь, эндоцитоз подразделяется на два вида - пиноцитоз и фагоцитоз. При этом часть плазматической мембраны клетки образует вокруг переносимых частиц пузырек, называемый вакуолью . Размеры вакуолей при пиноцитозе и фагоцитозе имеют существенные различия.

В процессе пиноцитоза происходит поглощение клеткой жидкостей. Фагоцитоз обеспечивает поглощение крупных частиц, обломков клеточных органелл и даже микроорганизмов.

Экзоцитоз

Экзоцитозом принято называть выведение из клетки веществ. В таком случае вакуоли перемещаются к плазмолемме. Далее стенка вакуоли и плазмолемма начинают слипаться, а затем сливаться. Вещества, которые содержатся в вакуоли, перемещаются в окружающую среду.

Клетки некоторых простейших организмов имеют строго определенные участки для обеспечения такого процесса.

Как эндоцитоз, так и экзоцитоз протекают в клетке при участии фибриллярных компонентов цитоплазмы, которые имеют тесную непосредственную связь с плазмолеммой.

Подавляющее большинство организмов, обитающих на Земле, состоит из клеток, во многом сходных по своему химическому составу, строению и жизнедеятельности. В каждой клетке происходит обмен веществ и превращение энергии. Деление клеток лежит в основе процессов роста и размножения организмов. Таким образом, клетка представляет собой единицу строения, развития и размножения организмов.

Клетка может существовать только как целостная система, неделимая на части. Целостность клетки обеспечивают биологические мембраны. Клетка - элемент системы более высокого ранга - организма. Части и органоиды клетки, состоящие из сложных молекул, представляют собой целостные системы более низкого ранга.

Клетка - открытая система, связанная с окружающей средой обменом веществ и энергии. Это функциональная система, в которой каждая молекула выполняет определенные функции. Клетка обладает устойчивостью, способностью к саморегуляции и самовоспроизводству.

Клетка - самоуправляемая система. Управляющая генетическая система клетки представлена сложны ми макромолекулами - нуклеиновыми кислотами (ДНК и РНК).

В 1838-1839 гг. немецкие биологи М. Шлейден и Т. Шванн обобщили знания о клетке и сформулировали основное положение клеточной теории, сущность которой заключается в том, что все организмы, как растительные, так и живот ные, состоят из клеток.

В 1859 г. Р. Вирхов описал процесс деления клетки и сформулировал одно из важнейших положений клеточной теории: "Всякая клетка происходит из другой клетки". Новые клетки образуются в результате деления материнской клетки, а не из неклеточного вещества, как это считалось ранее.

Открытие российским ученым К. Бэром в 1826 г. яйцеклеток млекопитающих привело к выводу, что клетка лежит в основе развития многоклеточных организмов.

Современная клеточная теория включает следующие положения:

1) клетка - единица строения и развития всех организмов;

2) клетки организмов разных царств живой природы сходны по строению, химическому составу, обмену веществ, основным проявлениям жизнедеятельности;

3) новые клетки образуются в результате деления материнской клетки;

4) в многоклеточном организме клетки образуют ткани;

5) из тканей состоят органы.

С введением в биологию современных биологических, физических и химических методов исследования стало возможным изучить структуру и функционирование различных компонентов клетки. Один из методов изучения клетки - микроскопирование . Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки.

Изобретенный в 40-е гг. XX в. электронный микроскоп дает увеличение в десятки и сотни тысяч раз. В электронном микроскопе вместо света используется поток электронов, а вместо линз - электромагнитные поля. Поэтому электронный микроскоп дает четкое изображение при значительно больших увеличениях. При помощи такого микроскопа удалось изучить строение органоидов клетки.

Строение и состав органоидов клетки изучают с помощью метода центрифугирования . Измельченные ткани с разрушенными клеточными оболочками помещают в пробирки и вращают в центрифуге с большой скоростью. Метод основан на том, что различные клеточные ор ганоиды имеют разную массу и плотность. Более плотные органоиды осаждаются в пробирке при низких скоростях центрифугирования, менее плотные - при высоких. Эти слои изучают отдельно.

Широко используют метод культуры клеток и тканей , который состоит в том, что из одной или нескольких клеток на специальной питательной среде можно получить группу однотипных животных или растительных клеток и даже вырас тить целое растение. С помощью это го метода можно получить ответ на вопрос, как из одной клетки образуются разнообразные ткани и органы организма.

Основные положения клеточной теории были впервые сформулированы М. Шлейденом и Т. Шванном. Клетка - единица строения, жизнедеятельности, размножения и развития всех живых организмов. Для изучения клетки используют методы микроскопирования, центрифугирования, культуры клеток и тканей и др.

Клетки грибов, растений и животных имеют много общего не только в химическом составе, но и в строении. При рассматривании клетки под микроскопом в ней видны различные структуры - органоиды . Каждый органоид выполняет определенные функции. В клетке различают три основные части: плазматическую мембрану, ядро и цитоплазму (рис 1).

Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. На рисунке 2 вы видите: мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны.

Основная функция плазматической мембраны транспортная . Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена.

Важное свойство мембраны - избирательная проницаемость , или полупроницаемость, позволяет клетке взаимодействовать с окружающей средой: в нее поступают и вы водятся из нее лишь определенные вещества. Мелкие молекулы воды и некоторых других веществ проникают в клетку путем диффузии, частично через поры в мембране.

В цитоплазме, клеточном соке вакуолей растительной клетки, растворены сахара, органические кислоты, соли. Причем их концентрация в клетке значительно выше, чем в окружающей среде. Чем больше концентрация этих веществ в клетке, тем больше она поглощает воды. Известно, что вода постоянно расходуется клеткой, благодаря чему концентрация клеточного сока увеличивается и вода снова поступает в клетку.

Поступление более крупных молекул (глюкозы, аминокислот) в клетку обеспечивают транспортные белки мембраны, которые, соединяясь с молекулами транспортируемых веществ, переносят их через мембрану. В этом процессе участвуют ферменты расщепляющие АТФ.

Рисунок 1. Обобщённая схема строения эукариотической клетки.
(для увеличения изображения нажмите на рисунок)

Рисунок 2. Строение плазматической мембраны.
1 - пронзающие белки, 2 - погруженные белки, 3 - внешние белки

Рисунок 3. Схема пиноцитоза и фагоцитоза.

Еще более крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос ) (рис 3).

Клетки животных, в отличие от клеток растений, окружены мягкой и гибкой "шубой", образованной преимущественно молекулами полисахаридов, которые, присоединяясь к некоторым белкам и липидам мембраны, окружают клетку снаружи. Состав полисахаридов специфичен для разных тканей, благодаря чему клетки "узнают" друг друга и соединяются между собой.

У клеток растений такой "шубы" нет. У них над плазматической мембраной находится пронизанная порами клеточная оболочка , состоящая преимущественно из целлюлозы. Через поры из клетки в клетку тянутся нити цитоплазмы, соединяющие клетки между собой. Так осуществляется связь между клетками и достигается целостность организма.

Клеточная оболочка у растений играет роль прочного скелета и защищает клетку от повреждения.

Клеточная оболочка есть у большинства бактерий и у всех грибов, только химический состав ее другой. У грибов она состоит из хитиноподобного вещества.

Клетки грибов, растений и животных имеют сходное строение. В клетке различают три основные части: ядро, цитоплазму и плазматическую мембрану. Плазматическая мембрана состоит из липидов и белков. Она обеспечивает поступление веществ в клетку и выделение их из клетки. В клетках растений, грибов и большинства бактерий над плазматической мембраной имеется клеточная оболочка. Она выполняет защитную функцию и играет роль скелета. У растений клеточная оболочка состоит из целлюлозы, а у грибов из хитиноподобного вещества. Клетки животных покрыты полисахаридами, обеспечивающими контакты между клетками одной ткани.

Вам известно, что основную часть клетки составляет цитоплазма . В ее состав входят вода, аминокислоты, белки, углеводы, АТФ, ионы не органических веществ. В цитоплазме расположены ядро и органоиды клетки. В ней вещества перемещаются из одной части клетки в другую. Цитоплазма обеспечивает взаимодействие всех органоидов. Здесь протекают химические реакции.

Вся цитоплазма пронизана тонкими белковыми микротрубочками, образующими цитоскелет клетки , благодаря которому она сохраняет постоянную форму. Цитоскелет клетки гибкий, так как микротрубочки способны изменять свое положение, перемещаться, с одного конца и укорачиваться с другого. В клетку поступают разные вещества. Что же происходит с ними в клетке?

В лизосомах - мелких округлых мембранных пузырьках (см. рис. 1) молекулы сложных органических веществ с помощью гидролитических ферментов расщепляются на более простые молекулы. Например, белки расщепляются на аминокислоты, полисахариды - на моносахариды, жиры - на глицирин и жирные кислоты. За эту функцию лизосомы часто называют "пищеварительными станциями" клетки.

Если разрушить мембрану лизосом, то содержащиеся в них ферменты могут переварить и саму клетку. Поэтому иногда лизосомыназывают "орудиями убийства клетки".

Ферментативное окисление образовавшихся в лизосомах мелких молекул аминокислот, моносахаридов, жирных кислот и спиртов до угле кислого газа и воды начинается в цитоплазме и заканчивается в других органоидах - митохондриях . Митохондрии - палочковидные, нитевидные или шаровидные органоиды, отграниченные от цитоплазмы двумя мембранами (рис. 4). Внешняя мембрана гладкая, а внутренняя образует складки - кристы , которые увеличивают ее поверхность. На внутренней мембране и размещаются ферменты, участвующие в реакциях окисления органических веществ до углекислого газа и воды. При этом освобождается энергия, которая запасается клеткой в молекулах АТФ. Поэтому митохондрии называют "силовыми станциями" клетки.

В клетке органические вещества не только окисляются, но и синтезируются. Синтез липидов и углеводов осуществляется на эндоплазматической сети - ЭПС (рис. 5), а белков - на рибосомах. Что представляет собой ЭПС? Это система канальцев и цистерн, стенки которых образованы мембраной. Они пронизывают всю цитоплазму. По каналам ЭПС вещества перемещаются в разные части клетки.

Существует гладкая и шероховатая ЭПС. На поверхности гладкой ЭПС при участии ферментов синтезируются углеводы и липиды. Шероховатость ЭПС придают расположенные на ней мелкие округлые тельца - рибосомы (см. рис. 1), которые участвуют в синтезе белков.

Синтез органических веществ происходит и в пластидах , которые содержатся только в клетках растений.

Рис. 4. Схема строения митохондрии.
1.- внешняя мембрана; 2.- внутренняя мембрана; 3.- складки внутренней мембраны - кристы.

Рис. 5. Схема строения шероховатой ЭПС.

Рис. 6. Схема строения хлоропласта.
1.- наружная мембрана; 2.- внутрення мембрана; 3.- внутреннее содержимое хлоропласта; 4.- складки внутренней мембраны, собранные в "стопки" и образующие граны.

В бесцветных пластидах - лейкопластах (от греч. леукос - белый и пластос - созданный) накапливается крахмал. Очень богаты лейкопластами клубни картофеля. Желтую, оранжевую, красную окраску плодам и цветкам придают хромопласты (от греч. хрома - цвет и пластос ). В них синтезируются пигменты, участвующие в фотосинтезе, - каротиноиды . В жизни растений особенно велико значение хлоропластов (от греч. хлорос - зеленоватый и пластос ) - зеленых пластид. На рисунке 6 вы видите, что хлоропласты покрыты двумя мембранами: наружной и внутренней. Внутренняя мембрана образует складки; между складками находятся пузырьки, уложенные в стопки, - граны . В гранах имеются молекулы хлорофилла, которые участвуют в фотосинтезе. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны.

В цитоплазме белки, липиды, углеводы могут накапливаться в виде зерен, кристаллов, капелек. Эти включения - запасные питательные вещества, которые расходуются клеткой по мере необходимости.

В клетках растений часть запасных питательных веществ, а также продукты распада накапливаются в клеточном соке вакуолей (см. рис. 1). На их долю может приходиться до 90% объема растительной клетки. Животные клетки имеют временные вакуоли, занимающие не более 5% их объема.

Рис. 7. Схема строения комплекса Гольджи.

На рисунке 7 вы видите систему полостей, окруженных мембраной. Это комплекс Гольджи , который выполняет в клетке разнообразные функции: участвует в накоплении и транспортировке веществ, выведении их из клетки, формировании лизосом, клеточной оболочки. Например, в полости комплекса Гольджи поступают молекулы целлюлозы, которые при помощи пузырьков перемещаются на поверхность клетки и включаются в клеточную оболочку.

Большинство клеток размножается путем деления. В этом процессе участвует клеточный центр . Он состоит из двух центриолей, окруженных уплотненной цитоплазмой (см. рис. 1). В начале деления центриоли расходятся к полюсам клетки. От них расходятся белковые нити, которые соединяются с хромосомами и обеспечивают их равно мерное распределение между двумя дочерними клетками.

Все органоиды клетки тесно связаны между собой. Например, в рибосомах синтезируются молекулы белков, по каналам ЭПС они транспортируются к разным частям клетки, а в лизосомах белки разрушаются. Вновь синтезируемые молекулы используются на построение структур клетки или накапливаются в цитоплазме и вакуолях как запасные питательные вещества.

Клетка заполнена цитоплазмой. В цитоплазме располагаются ядро и разнообразные органоиды: лизосомы, митохондрии, пластиды, вакуоли, ЭПС, клеточный центр, комплекс Гольджи. Они различаются по своему строению и функциям. Все органоиды цитоплазмы взаимодействуют между собой, обеспечивая нормальное функционирование клетки.

Таблица 1. СТРОЕНИЕ КЛЕТКИ

ОРГАНЕЛЛЫ СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Оболочка Состоит из целлюлозы. Окружает растительные клетки. Имеет поры Придает клетке прочность, поддерживает определенную форму, защищает. Является скелетом растений
Наружная клеточная мембрана Двумембранная клеточная структура. Состоит из билипидного слоя и мозаично вкрапленных белков, снаружи располагаются углеводы. Обладает полупроницаемостью Ограничивает живое содержимое клеток всех организмов. Обеспечивает избирательную проницаемость, защищает, регулирует водно-солевой баланс, обмен с внешней средой.
Эндоплазматическая сеть (ЭПС) Одномембранная структура. Система канальцев, трубочек, цистерн. Пронизывает всю цитоплазму клетки. Гладкая ЭПС и гранулярная ЭПС с рибосомами Делит клетку на отдельные отсеки, где происходят химические процессы. Обеспечивает сообщение и транспорт вещества в клетке. На гранулярной ЭПС идет синтез белка. На гладкой - синтез липидов
Аппарат Гольджи Одномембранная структура. Система пузырьков, цистерн, в которой находятся продукты синтеза и распада Обеспечивает упаковку и вынос веществ из клетки, образует первичные лизосомы
Лизосомы Одномембранные шарообразные структуры клетки. Содержат гидролитические ферменты Обеспечивают расщепление высокомолекулярных веществ, внутриклеточное переваривание
Рибосомы Немембранные структуры грибовидной формы. Состоят из малой и большой субъединиц Содержатся в ядре, цитоплазме и на гранулярной ЭПС. Участвует в биосинтезе белка.
Митохондрии Двумембранные органеллы продолговатой формы. Наружная мембрана гладкая, внутренняя образует кристы. Заполнена матриксом. Имеются митохондриальные ДНК, РНК, рибосомы. Полуавтономная структура Являются энергетическими станциями клеток. Обеспечивают дыхательный процесс - кислородное окислене органических веществ. Идет синтез АТФ
Пластиды Хлоропласты Характерны для растительных клеток. Двумембранные, полуавтономные органеллы продолговатой формы. Внутри заполнены стромой, в которой располагаются граны. Граны образованы из мембранных структур - тилакоидов. Имеются ДНК, РНК, рибосомы Протекает фотосинтез. На мембранах тилакоидов идут реакции световой фазы, в строме - темновой фазы. Синтез углеводов
Хромопласты Двумембранные органеллы шаровидной формы. Содержат пигменты: красный, оранжевый, желтый. Образуются из хлоропластов Придают окраску цветкам, плодам. Образуются осенью из хлоропластов, придают листьям желтую окраску
Лейкопласты Двумембранные неокрашенные пластиды шарообразной формы. На свету могут переходить в хлоропласты Запасают питательные вещества в виде крахмальных зерен
Клеточный центр Немембранные структуры. Состоят их двух центриолей и центросферы Образует веретено деления клетки, участвуют в делении. После деления клетки удваиваются
Вакуоль Характерна для растительной клетки. Мембранная полость, заполнена клеточным соком Регулирует осмотическое давление клетки. Накапливает питательные вещества и продукты жизнедеятельности клетки
Ядро Главный компонент клетки. Окружено двухслойной пористой ядерной мембраной. Заполнено кариоплазмой. Содержит ДНК в виде хромосом (хроматина) Регулирует все процессы в клетке. Обеспечивает передачу наследственной информации. Число хромосом постоянно для каждого вида. Обеспечивает репликацию ДНК и синтез РНК
Ядрышко Темное образование в ядре, от кариоплазмы не отделено Место образования рибосом
Органеллы движения. Реснички. Жгутики Выросты цитоплазмы, окруженные мембраной Обеспечивают движение клетки, удаление частичек пыли (мерцательный эпителий)

Важнейшая роль в жизнедеятельности и делении клеток грибов, растений и животных принадлежит ядру и находящимся в нем хромосомам. Большинство клеток этих организмов имеет одно ядро, но есть и многоядерные клетки, например мышечные. Ядро расположено в цитоплазме и имеет округлую или овальную форму. Оно покрыто оболочкой, состоящей из двух мембран. Ядерная оболочка имеет поры, через которые происходит обмен веществ между ядром и цитоплазмой. Ядро заполнено ядерным соком, в котором расположены ядрышки и хромосомы.

Ядрышки - это "мастерские по производству" рибосом, которые формируются из образуемых в ядре рибосомных РНК и синтезированных в цитоплазме белков.

Главная функция ядра - хранение и передача наследственной информации - связана с хромосомами . Каждый вид организма имеет свой набор хромосом: определенное их число, форму и размеры.

Все клетки тела, кроме половых, называются соматическими (от греч. сома - тело). Клетки организма одного вида содержат одинаковый набор хромосом. Например, у человека в каждой клетке тела содержится 46 хромосом, у плодовой мухи дрозофилы - 8 хромосом.

Соматические клетки, как правило, имеют двойной набор хромосом. Он называется диплоидным и обозначается 2n . Так, у человека 23 пары хромосом, то есть 2n = 46. В половых клетках содержится в два раза меньше хромосом. Это одинарный, или гаплоидный , набор. У человека 1n = 23.

Все хромосомы в соматических клетках, в отличие от хромосом в половых клетках, парные. Хромосомы, составляющие одну пару, идентичны друг другу. Парные хромосомы называют гомологичными . Хромосомы, которые относятся к разным парам и различаются по форме и размерам, называют негомологичными (рис. 8).

У некоторых видов число хромо сом может совпадать. Например, у клевера красного и гороха посевного 2n = 14. Однако хромосомы у них различаются по форме, размерам, нуклеотидному составу молекул ДНК.

Рис. 8. Набор хромосом в клетках дрозофилы.

Рис. 9. Строение хромосомы.

Чтобы понять роль хромосом в передаче наследственной информации, необходимо познакомиться с их строением и химическим составом.

Хромосомы неделящейся клетки имеют вид длинных тонких нитей. Каждая хромосома перед делением клетки состоит из двух одинаковых нитей - хроматид , которые соединяются между ласти перетяжки - (рис. 9).

Хромосомы состоят из ДНК и белков. Поскольку нуклеотидный состав ДНК различается у разных видов, состав хромосом уникален для каждого вида.

Каждая клетка, кроме бактериальной, имеет ядро, в котором находятся ядрышки и хромосомы. Для каждого вида характерен определенный набор хромосом: число, форма и размеры. В соматических клетках большинства организмов набор хромосом диплоидный, в половых - гаплоидный. Парные хромосомы называют гомологичными. Хромосомы состоят из ДНК и белков. Молекулы ДНК обеспечивают хранение и передачу наследственной информации от клетки к клетке и от организма к организму.

Проработав эти темы, Вы должны уметь:

  1. Рассказать, в каких случаях следует применять световой микроскоп (строение), трансмиссионный электронный микроскоп.
  2. Описать структуру клеточной мембраны и пояснить связь между структурой мембраны и ее способностью осуществлять обмен веществами между клеткой и средой.
  3. Дать определение процессам: диффузия, облегченная диффузия, активный транспорт, эндоцитоз, экзоцитоз и осмос. Указать различия между этими процессами.
  4. Назвать функции структур и указать, в каких клетках (растительных, животных или прокариотических) они находятся: ядро, ядерная мембрана, нуклеоплазма, хромосомы, плазматическая мембрана, рибосома, митохондрия, клеточная стенка, хлоропласт, вакуоль, лизосома, эндоплазматическая сеть гладкая (агранулярная) и шероховатая (гранулярная), клеточный центр, аппарат Гольджи, ресничка, жгутик, мезосома, пили или фимбрии.
  5. Назвать не менее трех признаков, по которым можно отличить растительную клетку от животной.
  6. Перечислить важнейшие различия между прокариотической и эукариотической клеткой.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 1. "Плазматическая мембрана." §1, §8 стр. 5;20
  • Тема 2. "Клетка." §8-10 стр. 20-30
  • Тема 3. "Прокариотическая клетка. Вирусы." §11 стр. 31-34

Клетка давно определена как структурная единица всего живого. И это действительно так. Ведь миллиарды этих структур, словно кирпичики, образуют растения и животных, бактерий и микроорганизмов, человека. Каждый орган, ткань, система организма - все выстроено из клеток.

Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.

Органеллы клетки

Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:

  1. Плазматическая мембрана.
  2. Ядро и ядрышки с хромосомным материалом.
  3. Цитоплазма с включениями.
  4. Лизосомы.
  5. Митохондрии.
  6. Рибосомы.
  7. Вакуоли и хлоропласты, если клетка растительная.

Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.

Общее строение мембраны

Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.

Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС:

  • белки;
  • липиды;
  • углеводы.

Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).

Жидкостно-мозаичная модель строения

Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны. Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).

Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно "гулять" по мембране, меняя местоположение.

Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое - 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной - до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки - растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное - фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:

  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также "заякоренными" белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур - формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное - один раз;
  • политопное - в нескольких местах.

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный - над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Липиды плазмалеммы

Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке - "флип-флоп". Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы.

Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:

  • фосфолипиды;
  • сфингофосполипиды;
  • гликолипиды;
  • холестерол.

К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные - наружу. Примеры соединений:

  • фосфатидилхолин;
  • фосфатидилсерин;
  • кардиолипин;
  • фосфатидилинозитол;
  • сфингомиелин;
  • фосфатидилглицерин;
  • фосфатидилэтаноламин.

Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой - специальным ферментом, катализирующим процесс распада фосфолипидов.

Функции перечисленных соединений следующие:

  1. Обеспечивают общую структуру и строение бислоя плазмалеммы.
  2. Соприкасаются с белками на поверхности и внутри слоя.
  3. Определяют агрегатное состояние, которое будет иметь плазматическая мембрана клетки при различных температурных условиях.
  4. Участвуют в ограниченной проницаемости плазмолеммы для разных молекул.
  5. Формируют разные типы взаимодействий клеточных мембран друг с другом (десмосома, щелевидное пространство, плотный контакт).

Сфингофосфолипиды и гликолипиды мембраны

Сфингомиелины или сфингофосфолипиды по своей химической природе - производные аминоспирта сфингозина. Наравне с фосфолипидами принимают участие в образовании билипидного слоя мембраны.

К гликолипидам относится гликокаликс - вещество, во многом определяющее свойства плазматической мембраны. Это желеподобное соединение, состоящее в основном из олигосахаридов. Гликокаликс занимает 10% от общей массы плазмалеммы. С этим веществом напрямую связана плазматическая мембрана, строение и функции, которые она выполняет. Так, например, гликокаликс осуществляет:

  • маркерную функцию мембраны;
  • рецепторную;
  • процессы пристеночного переваривания частиц внутри клетки.

Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.

Холестерол (стерин мембраны)

Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.

Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.

В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний.

Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.

Углеводы мембраны

Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.

Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.

Основные функции плазмалеммы

Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее.

  1. Отграничивает содержимое клетки от окружающей среды и защищает его от внешних воздействий. Благодаря наличию мембраны поддерживается на постоянном уровне химический состав цитоплазмы, ее содержимое.
  2. Плазмалемма содержит ряд белков, углеводов и липидов, которые придают и поддерживают определенную форму клетки.
  3. Мембрану имеет каждая клеточная органелла, которая называется мембранной везикулой (пузырьком).
  4. Компонентный состав плазмалеммы позволяет ей исполнять роль "стражника" клетки, осуществляя выборочный транспорт внутрь нее.
  5. Рецепторы, ферменты, биологически активные вещества функционируют в клетке и проникают в нее, сотрудничают с ее поверхностной оболочкой только благодаря белкам и липидам мембраны.
  6. Через плазмалемму осуществляется транспортировка не только соединений различной природы, но и ионов, важных для жизнедеятельности (натрий, калий, кальций и другие).
  7. Мембрана поддерживает осмотическое равновесие вне и внутри клетки.
  8. При помощи плазмалеммы осуществляется перенос ионов и соединений различной природы, электронов, гормонов из цитоплазмы в органеллы.
  9. Через нее же происходит поглощение солнечного света в виде квантов и пробуждение сигналов внутри клетки.
  10. Именно данной структурой осуществляется генерация импульсов действия и покоя.
  11. Механическая защита клетки и ее структур от небольших деформаций и физических воздействий.
  12. Адгезия клеток, то есть сцепление, и удержание их рядом друг с другом также осуществляется благодаря мембране.

Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде. Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.

Типы транспорта через клеточный барьер

Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность - закон диффузии веществ.

  1. Пассивный транспорт или диффузия и осмос. Подразумевает свободное перемещение ионов и растворителя через мембрану по градиенту из области с высокой концентрацией в область с низкой. Не требует расхода энергии, так как протекает сам по себе. Так происходит действие натрий-калиевого насоса, смена кислорода и углекислого газа при дыхании, выход глюкозы в кровь и так далее. Очень распространено такое явление, как облегченная диффузия. Данный процесс подразумевает наличие какого-либо вещества-помощника, которое цепляет нужное соединение и протаскивает за собой по белковому каналу или через липидный слой внутрь клетки.
  2. Активный транспорт подразумевает затраты энергии на процессы поглощения и выведения через мембрану. Есть два основных способа: экзоцитоз - выведение молекул и ионов наружу. Эндоцитоз - захватывание и проведение внутрь клетки твердых и жидких частиц. В свою очередь, второй способ активного транспорта включает в себя две разновидности процесса. Фагоцитоз, который заключается в заглатывании везикулой мембраны твердых молекул, веществ, соединений и ионов и проведение их внутрь клетки. При протекании данного процесса образуются крупные везикулы. Пиноцитоз, напротив, заключается в поглощении капелек жидкостей, растворителей и других веществ и проведении их внутрь клетки. Он подразумевает формирование пузырьков малых размеров.

Оба процесса - пиноцитоз и фагоцитоз - играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.

или плазмалемма, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, ограничивающая клетку снаружи, что обусловливает ее непосредственную связь с внеклеточной средой, а следовательно, со всеми веществами и стимулами, воздействующими на клетку. Поэтому плазматическая мембрана играет роль барьера, преграды между сложно организованным внутриклеточным содержимым и внешней средой. В этом случае плазмалемма выполняет не только роль механического барьера, но, главное, ограничивает свободный поток низко- и высокомолекулярных веществ в обе стороны через мембрану. Более того, плазмалемма выступает как структура, «узнающая», рецептирующая, различные химические вещества и регулирующая избирательно транспорт этих веществ в клетку и из нее. Другими словами, плазматическая мембрана осуществляет функции, связанные с регулируемым избирательным трансмембранным транспортом веществ, и исполняет роль первичного клеточного анализатора. В этом отношении плазмалемму можно считать клеточным органоидом, входящим в вакуолярную систему клетки. Как и другие мембраны этой системы (мембраны лизосом, эндосом, аппарата Гольджи и др.), она возникает и обновляется за счет синтетической активности эндоплазматического ретикулума и имеет сходную композицию. Как ни странно, но плазматическую мембрану можно уподобить мембране внутриклеточной вакуоли, но вывернутой наизнанку: она не окружена гиалоплазмой, а окружает ее.

Барьерно-транспортная роль плазмалеммы

Окружая клетку со всех сторон, плазматическая мембрана выполняет роль механического барьера. Для того чтобы проколоть ее с помощью микроигл или микропипеток, требуется довольно большое усилие. При давлении на нее микроиглы она сначала сильно прогибается, а лишь затем прорывается. Искусственные липидные мембраны менее устойчивы. Эта механическая устойчивость плазматической мембраны может определяться дополнительными компонентами, такими как гликокаликс и кортикальный слой цитоплазмы (рис. 127).

Гликокаликс представляет собой внешний по отношению к липопротеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков - гликопротеидов. Эти цепочки содержат такие углеводы, как манноза, глюкоза, N-ацетилглюкозамин, сиаловая кислота и др. Такие углеводные гетерополимеры образуют ветвящиеся цепочки, между которыми могут располагаться выделенные из клетки гликолипиды и протеогликаны. Слой гликокаликса сильно обводнен, имеет желеподобную консистенцию, что значительно снижает в этой зоне скорость диффузии различных веществ. Здесь же могут «застревать» выделенные клеткой гидролитические ферменты, участвующие во внеклеточном расщеплении полимеров (внеклеточное пищеварение) до мономерных молекул, которые затем транспортируются в цитоплазму через плазматическую мембрану.

Как показали электронно-микроскопические исследования, особенно с применением специальных методов контрастирования полисахаридов, гликокаликс имеет вид рыхлого волокнистого слоя толщиной 3-4 нм, покрывающего всю поверхность клетки. Особенно хорошо гликокаликс выражен в щеточной каемке клеток всасывающего эпителия кишечника (энтероциты), однако он обнаружен практически у всех животных клеток, но степень его выраженности различна (рис. 128).

Механическая устойчивость плазматической мембраны, кроме того, обеспечивается структурой примыкающего к ней со стороны цитоплазмы кортикального слоя и внутриклеточных фибриллярных структур.

Кортикальный (от слова cortex - кора, кожица) слой цитоплазмы, тесно контактирующий с липопротеидной наружной мембраной, имеет ряд особенностей. Здесь в толщине 0,1-0,5 мкм отсутствуют рибосомы и мембранные пузырьки, но в большом количестве встречаются фибриллярные элементы цитоплазмы - микрофиламенты и часто микротрубочки. Основным фибриллярным компонентом кортикального слоя является сеть актиновых микрофибрилл. Здесь же располагается ряд вспомогательных белков, необходимых для движения участков цитоплазмы (подробнее о скелетно-двигательной системе клеток см. ). Роль этих связанных с актином белков очень важна, так как она объясняет их участие в связи, в «заякоривании» интегральных белков плазматической мембраны.

У многих простейших, особенно у инфузорий, плазматическая мембрана принимает участие в образовании пелликулы - жесткого слоя, часто определяющего форму клетки. К плазматической мембране здесь изнутри могут примыкать мембранные мешочки; в этом случае у поверхности клеток имеются три мембранных слоя: собственно плазматическая мембрана и две мембраны пелликулярных альвеол. У инфузории туфельки пелликула образует утолщения, располагающиеся в виде шестиугольников, в центре которых находятся реснички (рис. 129). Жесткость пелликулярных образований может быть связана также с элементами цитоплазмы, подстилающими плазматическую мембрану, с кортикальным слоем. Так, в гребнях пелликулы эвглены вблизи мембраны обнаруживаются кроме мембранных вакуолей параллельные пучки микротрубочек и микрофиламентов. Такая фибриллярная периферическая арматура вместе со складчатой многослойной мембранной периферией создает жесткую структуру пелликулы.

Барьерная роль плазмалеммы заключается также в ограничении свободной диффузии веществ. Модельные опыты на искусственных липидных мембранах показали, что они проницаемы для воды, газов, малых неполярных молекул жирорастворимых веществ, но совершенно не проницаемы для заряженных молекул (ионы) и для крупных незаряженных (сахара) (рис. 130).

Естественные мембраны также ограничивают скорость проникновения низкомолекулярных соединений в клетку.

Трансмембранный перенос ионов и низкомолекулярных соединений

Плазматическая мембрана, так же как и другие липопротеидные мембраны клетки, является полупроницаемой. Это значит, что через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладают вода и растворенные в ней газы, значительно медленнее проникают сквозь мембрану ионы (примерно в 10 4 раз медленнее). Поэтому если клетку, например эритроцит, поместить в среду, где концентрация солей будет ниже, чем в клетке (гипотония), то вода снаружи устремится внутрь клетки, что приведет к увеличению объема клетки и к разрыву плазматической мембраны («гипотонический шок»). Наоборот, при помещении эритроцита в растворы солей более высокой концентрации, чем в клетке, произойдет выход воды из клетки во внешнюю среду. Клетка при этом сморщится, уменьшится в объеме.

Такой пассивный транспорт воды из клетки и в клетку все же идет с низкой скоростью. Скорость проникновения воды через мембрану составляет около 10 -4 см/с, что в 100 000 раз меньше скорости диффузии молекул воды через водный слой толщиной 7,5 нм. В связи с этим было сделано заключение, что в клеточной мембране, в ее липопротеидном слое существуют специальные «поры» для проникновения воды и ионов. Число их не так велико: суммарная площадь при величине отдельной «поры» около 0,3-0,8 нм должна составлять лишь 0,06% всей клеточной поверхности.

В отличие от искусственных бислойных липидных мембран естественные мембраны, в первую очередь плазматическая мембрана, способны транспортировать ионы и многие мономеры, такие как сахара, аминокислоты и др. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (К + , Na +) и значительно ниже для анионов (Сl -).

Транспорт ионов через плазмалемму осуществляется за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут проводить в одном направлении одно вещество (унипорт) или несколько веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, глюкоза может входить в клетки симпортно вместе с ионом Na + .

Транспорт ионов может происходить по градиенту концентрации, пассивно, без дополнительной затраты энергии. Так, в клетку проникает ион Na + из внешней среды, где его концентрация выше, чем в цитоплазме. В случае пассивного транспорта некоторые мембранные транспортные белки образуют молекулярные комплексы - каналы, через которые растворенные молекулы проходят через мембрану за счет простой диффузии по градиенту концентрации. Часть этих каналов открыта постоянно, а другая часть может закрываться или открываться в ответ либо на связывание с сигнальными молекулами, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия) (рис. 131).

Наличие таких белковых транспортных каналов и переносчиков, казалось бы, должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных (табл. 14).

Как видно в этом случае, суммарная концентрация одновалентных катионов как внутри клеток, так и снаружи практически одинакова) (150 мМ), т.е. изотонична. Но оказывается в цитоплазме концентрация К + почти в 50 раз выше, a Na + ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +2 °С, и через некоторое время концентрация К + и Na + по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Данное явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насо сов. В плазматической мембране находится двухсубъединичная молекула (K + /Na +)-нacoca, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл три иона Na + и закачивает в клетку два иона К + против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na + переносится через мембрану из клетки, а К + получает возможность связаться с белковой молекулой и затем переносится в клетку (рис. 132). В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg 2+ и Са 2+ , также с затратой АТФ.

Рис. 132. (K + /Na +)-нacoc

1 - участок связывания Na + ; 2 - участок связывания К + ; 3 - мембрана

Такая постоянная работа пермеаз и насосов создает в клетке постоянную концентрацию ионов и низкомолекулярных веществ, т.е. создает так называемый гомеостаз - постоянство концентраций осмотически активных веществ. Надо отметить, что примерно 80% всей АТФ клетки тратится на поддержание гомеостаза.

В сочетании с активным транспортом ионов через плазматическую мембрану происходит транспорт различных сахаров, нуклеотидов и аминокислот. Так, активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na + , будет зависеть от активности (K + /Na +)-насоса. Если этот насос заблокировать, то скоро разность концентрации Na + по обе стороны мембраны исчезнет, сократится при этом диффузия Na + внутрь клетки и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K + /Na +)-ATФaзы и возникнет разность концентрации ионов, то сразу возрастут диффузный поток Na + и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.

Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода.

Само по себе участие специальных мембранных белков в пассивном или активном транспорте низкомолекулярных соединений указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки «узнают» данный ион, взаимодействуют с ним, связываются специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.

Везикулярный перенос: эндоцитоз и экзоцитоз

Макромолекулы, такие как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и другие, сквозь клеточные мембраны не проходят, в противовес тому, как транспортируются ионы и мономеры. Транспорт микромолекул, их комплексов, частиц внутрь клетки и из нее осуществляется совершенно иным путем - посредством везикулярного переноса. Этот термин означает, что различные макромолекулы, биополимеры или их комплексы не могут попадать в клетку сквозь плазматическую мембрану. И не только сквозь нее: любые клеточные мембраны не способны к трансмембранному переносу биополимеров, за исключением мембран, имеющих особые белковые комплексные переносчики - порины (мембраны митохондрий, пластид, пероксисом). В клетку же или из одного мембранного компартмента в другой макромолекулы попадают заключенными внутри вакуолей или везикул. Такой везикулярный перенос можно разделить на два вида: экзоцитоз - вынос из клетки макромолекулярных продуктов, и эндоцитоз - поглощение клеткой макромолекул (рис. 133).

Рис. 133. Сравнение эндоцитоза (а ) и экзоцитоза (б )

При эндоцитозе определенный участок плазмалеммы захватывает, как бы обволакивает внеклеточный материал, заключает его в мембранную вакуоль, возникшую за счет впячивания плазматической мембраны. В такую первичную вакуоль, или эндосому, могут попадать любые биополимеры, макромолекулярные комплексы, части клеток или даже целые клетки, где затем и распадаются, деполимеризуются до мономеров, которые путем трансмембранного переноса попадают в гиалоплазму. Основное биологическое значение эндоцитоза - это получение строительных блоков за счет внутриклеточного перевари вания, которое осуществляется на втором этапе эндоцитоза, после слияния первичной эндосомы с лизосомой - вакуолью, содержащей набор гидролитических ферментов.

Эндоцитоз формально разделяют на пиноцитоз и фагоцитоз (рис. 134). Фагоцитоз - захват и поглощение клеткой крупных частиц (иногда даже клеток или их частей) - был впервые описан И.И. Мечниковым. Фагоцитоз встречается как у одноклеточных (например, у амебы, некоторых хищных инфузорий), так и у многоклеточных животных. В последнем случае он осуществляется с помощью специализированных клеток. Такие клетки - фагоциты, характерны как для беспозвоночных (амебоциты крови или полостной жидкости), так и для позвоночных животных (нейтрофилы и макрофаги). Пиноцитоз вначале определялся как поглощение клеткой воды или водных растворов разных веществ. Сейчас известно, что как фагоцитоз, так и пиноцитоз протекают очень сходно, и поэтому употребление этих терминов может отражать лишь различия в объемах и массе поглощенных веществ. Общее для этих процессов то, что поглощенные вещества на поверхности плазматической мембраны окружаются мембраной в виде вакуоли - эндосомы, которая перемещается внутрь клетки.

Рис. 134. Схема фагоцитоза (а ) и пиноцитоза (б )

Эндоцитоз, включая пиноцитоз и фагоцитоз, может быть неспецифическим, или конститутивным, постоянным и специфическим, опосредуемым рецепторами (рецепторным). Неспецифический эндоцитоз (пиноцитоз и фагоцитоз) так называется потому, что он протекает как бы автоматически и часто может приводить к захвату и поглощению совершенно чуждых или безразличных для клетки веществ, например частичек сажи или красителей.

Неспецифический эндоцитоз часто сопровождается первоначальной сорбцией захватывающего материала гликокаликсом плазмалеммы. Гликокаликс из-за кислых групп своих полисахаридов имеет отрицательный заряд и хорошо связывается с различными положительно заряженными группами белков. При таком адсорбционном неспецифическом эндоцитозе поглощаются макромолекулы и мелкие частицы (кислые белки, ферритин, антитела, вирионы, коллоидные частицы). Жлдкофазный пиноцитоз приводит к поглощению вместе с жидкой средой растворимых молекул, которые не связываются с плазмалеммой.

На следующем этапе происходит изменение морфологии клеточной поверхности: или возникают небольшие впячивания плазматической мембраны, т.е. инвагинации, или же на поверхности клетки появляются выросты в виде складок, или «оборок» (от английского ruffl ), которые как бы захлестываются, складываются, отделяя небольшие объемы жидкой среды (рис. 135 и 136). Первый тип возникновения пиноцитозного пузырька - пиносомы, характерен для клеток кишечного эпителия, эндотелия, для амеб; второй - для фагоцитов и фибробластов. Эти процессы зависят от поступления энергии: ингибиторы дыхания блокируют эти процессы.

Вслед за такой перестройкой поверхности следует процесс слипания и слияния контактирующих мембран, который приводит к образованию пиноцитозного пузырька (пиносома), отрывающегося от клеточной поверхности и уходящего в глубь цитоплазмы. Как неспецифический, так и рецепторный эндоцитоз, приводящий к отщеплению мембранных пузырьков, происходит в специализированных участках плазматической мембраны. Это так называемые окаймленные ямки. Они называются так потому, что со стороны цитоплазмы плазматическая мембрана покрыта (одета) тонким (около 20 нм) волокнистым слоем, который на ультратонких срезах как бы окаймляет, покрывает небольшие впячивания - ямки (рис. 137). Эти ямки есть почти у всех клеток животных, они занимают около 2% клеточной поверхности. Окаймляющий слой состоит в основном из белка клатрина, ассоциированного с рядом дополнительных белков. Три молекулы клатрина вместе с тремя молекулами низкомолекулярного белка образуют структуру трискелиона, напоминающего трехлучевую свастику (рис. 138). Клатриновые трискелионы на внутренней поверхности ямок плазматической мембраны образуют рыхлую сеть, состоящую из пяти- и шестиугольников, в целом напоминающую корзинку. Клатриновый слой одевает весь периметр отделяющихся первичных эндоцитозных вакуолей - окаймленных пузырьков.

Клатрин относится к одному из видов так называемых одевающих белков (СОР - coated proteins). Эти белки связываются с интегральными белками-рецепторами со стороны цитоплазмы и образуют одевающий слой по периметру возникающей пиносомы, первичного эндосомного пузырька, т.е. «окаймленного» пузырька. В отделении первичной эндосомы участвуют также белки - динамины, которые полимеризуются вокруг шейки отделяющегося пузырька (рис. 139).

После того как окаймленный пузырек отделится от плазмалеммы и начнет переноситься в глубь цитоплазмы, клатриновый слой распадается, диссоциирует, мембрана эндосом (пиносом) приобретает обычный вид. После потери клатринового слоя эндосомы начинают сливаться друг с другом.

Мембраны окаймленных ямок содержат сравнительно мало холестерина, что может определять снижение жесткости мембран и способствовать образованию пузырьков. Биологический смысл появления клатриновой «шубы» по периферии пузырьков, возможно, заключается в том, что он обеспечивает сцепление окаймленных пузырьков с элементами цитоскелета и последующий их транспорт в клетке, а также препятствует их слиянию друг с другом.

Интенсивность жидкофазного неспецифического пиноцитоза может быть очень высокой. Так, клетка эпителия тонкого кишечника образует до 1000 пиносом в секунду, а макрофаги - около 125 пиносом в минуту. Размер пиносом невелик, их нижний предел составляет 60-130 нм, но обилие их приводит к тому, что при эндоцитозе плазмалемма быстро замещается, как бы «тратится» на образование множества мелких вакуолей. Например, у макрофагов вся плазматическая мембрана заменяется за 30 мин, у фибробластов - за 2 ч.

Дальнейшая судьба эндосом может быть различной, часть из них может возвращаться к поверхности клетки и сливаться с ней, но большая часть вступает в процесс внутриклеточного пищеварения. Первичные эндосомы содержат в основном захваченные в жидкой среде чужеродные молекулы и не содержат гидролитических ферментов. Эндосомы могут сливаться друг с другом, при этом увеличиваясь в размере. Они затем сливаются с первичными лизосомами, которые вводят в полость эндосом ферменты, гидролизующие различные биополимеры. Действие этих лизосомных гидролаз и вызывает внутриклеточное пищеварение - распад полимеров до мономеров.

Как уже указывалось, в ходе фагоцитоза и пиноцитоза клетки теряют большую площадь плазмалеммы (см. макрофаги), которая, однако, довольно быстро восстанавливается при рециклизации мембран, за счет возвращения вакуолей и их встраивания в плазмалемму. Это происходит вследствие того, что от эндосом или вакуолей, так же как и от лизосом, могут отделяться небольшие пузырьки, которые вновь сливаются с плазмалеммой. При такой рециклизации происходит как бы «челночный» перенос мембран: плазмалемма-пиносома-вакуоль-плазмалемма. Это ведет к восстановлению исходной площади плазматической мембраны. При таком возврате - рециклизации мембран, в оставшейся эндосоме удерживается весь поглощенный материал.

Специфический, или опосредуемый рецепторами, эндоцитоз имеет ряд отличий от неспецифического. Главное в том, что поглощаются молекулы, для которых на плазматической мембране есть специфические рецепторы, ассоциирующиеся только с данным типом молекул. Часто такие молекулы, связывающиеся с белками-рецепторами на поверхности клеток, называют лигандами.

Впервые опосредуемый рецепторами эндоцитоз был описан при накоплении белков в ооцитах птиц. Белки желточных гранул - вителлогенины, синтезируются в различных тканях, но затем с током крови попадают в яичники, где связываются со специальными мембранными рецепторами ооцитов и затем с помощью эндоцитоза попадают внутрь клетки, где и происходит отложение желточных гранул.

Другой пример избирательного эндоцитоза представляет собой транспорт в клетку холестерина. Этот липид синтезируется в печени и в комплексе с другими фосфолипидами и белковой молекулой образует так называемый липопротеид низкой плотности (ЛНП), который секретируется клетками печени и с кровью разносится по всему телу (рис. 140). Специальные рецепторы плазматической мембраны, диффузно расположенные на поверхности различных клеток, узнают белковый компонент ЛНП и образуют специфический комплекс рецептор-лиганд. Вслед за этим такой комплекс перемещается в зону окаймленных ямок и интернализуется - окружается мембраной и погружается в глубь цитоплазмы. Показано, что мутантные рецепторы могут связывать ЛНП, но не аккумулируются в зоне окаймленных ямок. Кроме рецепторов к ЛНП обнаружено более двух десятков других, участвующих в рецепторном эндоцитозе различных веществ. Все они используют один и тот же путь интернализации через окаймленные ямки. Вероятно, их роль заключается в накапливании рецепторов: одна и та же окаймленная ямка может собрать около 1000 рецепторов разного класса. Однако у фибробластов кластеры рецепторов ЛНП расположены в зоне окаймленных ямок даже в отсутствие лиганда в среде.

Дальнейшая судьба поглощенной частицы ЛНП заключается в том, что она подвергается распаду в составе вторичной лизосомы. После погружения в цитоплазму окаймленного пузырька, нагруженного ЛНП, происходит быстрая потеря клатринового слоя, мембранные пузырьки начинают сливаться друг с другом, образуя эндосому - вакуоль, содержащую поглощенные ЛНП-частицы, связанные еще с рецепторами на поверхности мембраны. Затем происходит диссоциация комплекса лиганд-рецептор; от эндосомы отщепляются мелкие вакуоли, мембраны которых содержат свободные рецепторы. Эти пузырьки рециклируются, включаются в плазматическую мембрану, и тем самым рецепторы возвращаются на поверхность клетки. Судьба же ЛНП состоит в том, что после слияния с лизосомами они гидролизуются до свободного холестерина, который может включаться в клеточные мембраны.

Эндосомы характеризуются более низким значением рН (4-5), более кислой средой, чем другие клеточные вакуоли. Это связано с наличием в их мембранах белков протонного насоса, закачивающих ионы водорода с одновременной затратой АТФ (Н + -зависимая АТФаза). Кислая среда внутри эндосом играет решающую роль в диссоциации рецепторов и лигандов. Кроме того, кислая среда является оптимальной для активации гидролитических ферментов в составе лизосом, которые активируются при слиянии лизосом с эндосомами, что приводит к образованию эндолизосомы, где и происходит расщепление поглощенных биополимерв.

В некоторых случаях судьба диссоциированных лигандов не связана с лизосомным гидролизом. Так, в некоторых клетках после связывания рецепторов плазмалеммы с определенными белками покрытые клатрином вакуоли погружаются в цитоплазму и переносятся к другой области клетки, где сливаются снова с плазматической мембраной, а связанные белки диссоциируют от рецепторов. Так осуществляется перенос - трансцитозис, некоторых белков через стенку эндотелиальной клетки из плазмы крови в межклеточную среду (рис. 141). Другой пример трансцитоза - перенос антител. Так, у млекопитающих антитела матери могут передаваться детенышу через молоко. В этом случае комплекс рецептор-антитело остается в эндосоме без изменений.

Как уже говорилось, фагоцитоз является вариантом эндоцитоза и связан с поглощением клеткой крупных агрегатов макромолекул, вплоть до живых или мертвых клеток. Так же как и пиноцитоз, фагоцитоз может быть неспецифическим (например, поглощение фибробластами или макрофагами частичек коллоидного золота или полимера декстрана) и специфическим, опосредуемым рецепторами на поверхности плазматической мембраны фагоцитирующих клеток. При фагоцитозе происходит образование больших эндоцитозных вакуолей - фа госом, которые затем, сливаясь с лизосомами, образуют фаголизосомы.

На поверхности клеток, способных к фагоцитозу (у млекопитающих это нейтрофилы и макрофаги), существует набор рецепторов, взаимодействующих с белками-лигандами. Так, при бактериальных инфекциях антитела к белкам бактерий связываются с поверхностью бактериальных клеток, образуя слой, в котором F c -области антител смотрят наружу. Этот слой узнается специфическими рецепторами на поверхности макрофагов и нейтрофилов, и в местах их связывания начинается поглощение бактерии путем обволакивания ее плазматической мембраной клетки (рис. 142).

Плазматическая мембрана принимает участие в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу (см. рис. 133). В случае экзоцитоза внутриклеточные продукты, заключенные в вакуоли или пузырьки и отграниченные от гиалоплазмы мембраной, подходят к плазматической мембране. В местах их контактов плазматическая мембрана и мембрана вакуоли сливаются, и пузырек опустошается в окружающую среду. С помощью экзоцитоза происходит процесс рециклизации мембран, участвующих в эндоцитозе.

С экзоцитозом связано выделение синтезированных в клетке разнообразных веществ. Секретирующие, т.е. выделяющие вещества во внешнюю среду, клетки могут вырабатывать и выбрасывать низкомолекулярные соединения (ацетилхолин, биогенные амины и др.), а также в большинстве случаев макромолекулы (пептиды, белки, липопротеиды, пептидогликаны и др.). Экзоцитоз, или секреция, в большинстве случаев осуществляется в ответ на внешний сигнал (нервный импульс, воздействие гормона, медиатора и др.), хотя в ряде случаев экзоцитоз происходит постоянно (секреция фибронектина и коллагена фибробластами). Сходным образом из цитоплазмы растительных клеток выводятся некоторые полисахариды (гемицеллюлозы), участвующие в образовании клеточных стенок.

Большинство секретируемых веществ используется другими клетками многоклеточных организмов (секреция молока, пищеварительных соков, гормонов и др.). Но часто клетки секретируют вещества и для собственных нужд. Например, рост плазматической мембраны осуществляется за счет встраивания участков мембраны в составе экзоцитозных вакуолей, часть элементов гликокаликса выделяется клеткой в виде гликопротеидных молекул и т.д.

Выделенные из клеток путем экзоцитоза гидролитические ферменты могут сорбироваться в слое гликокаликса и обеспечивать примембранное внеклеточное расщепление различных биополимеров и органических молекул. Огромное значение примембранное неклеточное пищеварение имеет для животных. Обнаружено, что в кишечном эпителии млекопитающих в зоне так называемой щеточной каемки всасывающего эпителия, особенно богатой гликокаликсом, обнаруживается огромное количество разнообразных ферментов. Часть этих же ферментов имеет панкреатическое происхождение (амилаза, липазы, различные протеиназы и др.), а часть выделяется собственно клетками эпителия (экзогидролазы, расщепляющие преимущественно олигомеры и димеры с образованием транспортируемых продуктов).

Рецепторная роль плазмалеммы

Мы уже встречались с этой особенностью плазматической мембраны при ознакомлении с ее транспортными функциями. Белки-переносчики и насосы являются кроме всего также рецепторами, узнающими и взаимодействующими с определенными ионами. Рецепторные белки связываются с лигандами и участвуют в отборе молекул, поступающих в клетки.

В качестве таких рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - гликопротеиды. Такие чувствительные к отдельным веществам участки могут быть разбросаны по поверхности клетки или собраны в небольшие зоны.

Разные клетки животных организмов могут обладать разными наборами рецепторов или же разной чувствительностью одного и того же рецептора.

Роль многих клеточных рецепторов заключается не только в связывании специфических веществ или способности реагировать на физические факторы, но и в передаче межклеточных сигналов с поверхности внутрь клетки. В настоящее время хорошо изучена система передачи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Эти гормоны связываются со специфическими рецепторами на поверхности плазматической мембраны клетки. Рецепторы после связи с гормоном активируют другой белок, лежащий уже в цитоплазматической части плазматической мембраны, - аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Роль циклического АМФ (цАМФ) заключается в том, что он является вторичным мессенджером - активатором ферментов киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глюкагона, вырабатываемого А-клетками островков Лангерганса, он связывается со специфическим рецептором, что стимулирует активацию аденилатциклазы. Синтезированный цАМФ активирует протеинкиназу А, которая в свою очередь активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глюкозы. Действие инсулина заключается в обратном: он стимулирует вхождение глюкозы в печеночные клетки и отложение ее в виде гликогена.

В целом цепь событий развертывается следующим образом: гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу, которая синтезирует цАМФ. Последний активирует или ингибирует внутриклеточный фермент или группу ферментов. Таким образом, команда (сигнал от плазматической мембраны) передается внутрь клетки. Эффективность этой аденилатциклазной системы очень высока. Так, взаимодействие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразователем внешних сигналов.

Существует и другой путь, при котором используются другие вторичные мессенджеры, - это так называемый фосфатидилинозитольный путь. Под действием соответствующего сигнала (некоторые нервные медиаторы и белки) активируется фермент фосфолипаза С, которая расщепляет фосфолипид фосфатидилинозитолдифосфат, который входит в состав плазматической мембраны. Продукты гидролиза этого липида, с одной стороны, активируют протеинкиназу С, которая вызывает активацию каскада киназ, что приводит к определенным клеточным реакциям, а с другой - приводит к освобождению ионов кальция, который регулирует целый ряд клеточных процессов.

Другой пример рецепторной активности - рецепторы ацетилхолина, важного нейромедиатора. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, что вызывает импульсное поступление Na + в клетку (деполяризация мембраны), открывая сразу около 2000 ионных каналов в зоне нервно-мышечного окончания.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводят к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо (у высших животных) уничтожаются в результате иммунологических реакций.

С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматической мембране или в ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазматической мембране светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь приводит к генерации электрического импульса.

Межклеточное узнавание

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществляться разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей достаточно хорошо изучен, он обеспечивается взаимодействием между гликопротеидами плазматических мембран. При таком межклеточном взаимодействии клеток между плазматическими мембранами всегда остается щель шириной около 20 нм, заполненная гликокаликсом. Обработка ткани ферментами, нарушающими целостность гликокаликса (муказами, действующими гидролитически на муцины, мукополисахариды) или повреждающими плазматическую мембрану (протеазами), приводит к обособлению клеток друг от друга, к их диссоциации. Однако если удалить фактор диссоциации, то клетки могут снова собираться, реагрегировать. Так можно диссоциировать клетки разных по окраске губок, оранжевых и желтых. Оказалось, что в смеси этих клеток образуются два типа агрегатов: одни состоят только из желтых, другие - только из оранжевых клеток. При этом смешанные клеточные суспензии самоорганизуются, восстанавливая исходную многоклеточную структуру. Сходные результаты были получены с суспензиями разделенных клеток эмбрионов амфибий; в этом случае происходит избирательное пространственное обособление клеток эктодермы от энтодермы и от мезенхимы. Более того, если для реагрегации используются ткани поздних стадий развития зародышей, то в пробирке самостоятельно собираются различные клеточные ансамбли, обладающие тканевой и органной специфичностью, образуются эпителиальные агрегаты, сходные с почечными канальцами, и т.д.

За агрегацию однородных клеток отвечают трансмембранные гликопротеиды. Непосредственно за соединение - адгезию, клеток отвечают молекулы так называемых САМ-белков (cell adhesion molecules). Некоторые из них связывают клетки друг с другом за счет межмолекулярных взаимодействий, другие образуют специальные межклеточные соединения, или контакты.

Взаимодействия между адгезивными белками могут быть гомо фильными, когда соседние клетки связываются друг с другом с помощью однородных молекул, и гетерофильными, когда в адгезии участвуют разного рода САМ на соседних клетках. Встречается межклеточное связывание через дополнительные линкерные молекулы.

Имеется несколько классов САМ-белков: кадгерины, иммуноглобулиноподобные N-CAM (молекулы адгезии нервных клеток), селектины, интегрины.

Кадгерины представляют собой интегральные фибриллярные мембранные белки, которые образуют параллельные гомодимеры. Отдельные домены этих белков связаны с ионами Са 2+ , что придает им определенную жесткость. Насчитывают более 40 видов кадгеринов. Так, Е-кадгерин характерен для клеток преимплантированных эмбрионов и для эпителиальных клеток взрослых организмов. Р-кадгерин характерен для клеток трофобласта, плаценты и эпидермиса, N-кадгерин располагается на поверхности нервных клеток, клеток хрусталика, на сердечных и скелетных мышцах.

Молекулы адгезии нервных клеток (N-CAM) принадлежат к суперсемейству иммуноглобулинов, они образуют связи между нервными клетками. Некоторые из N-CAM участвуют в соединении синапсов, а также при адгезии клеток иммунной системы.

Селектины - интегральные белки плазматической мембраны, участвуют в адгезии эндотелиальных клеток, в связывании кровяных пластинок, лейкоцитов.

Интегрины представляют собой гетеродимеры, с α и β-цепями. Интегрины в первую очередь осуществляют связь клеток с внеклеточными субстратами, но могут участвовать и в адгезии клеток друг с другом.

Как уже указывалось, на попавшие в организм чужеродные макромолекулы (антигены) развивается сложная комплексная реакция - иммунная реакция. Суть ее заключается в том, что часть лимфоцитов вырабатывает специальные белки-антитела, которые специфически связываются с антигенами. Так, макрофаги своими поверхностными рецепторами узнают комплексы антиген-антитело и поглощают их (например, поглощение бактерий при фагоцитозе).

В организме всех позвоночных, кроме того, существует система рецепции чужеродных клеток или же своих, но с измененными белками плазматической мембраны, например при вирусных инфекциях или при мутациях, часто связанных с опухолевым перерождением клеток.

На поверхности всех клеток позвоночных располагаются белки так называемого главного комплекса гистосовместимости (МНС - major histocompatibility complex). Это интегральные белки гликопротеины, гетеродимеры. Очень важно запомнить, что каждый индивидуум имеет свой набор таких белков МНС. Это связано с тем, что они очень полиморфны, так как в каждом индивидуме имеется большое число альтернативных форм одного и того же гена (более 100); кроме того, имеется 7-8 локусов, кодирующих молекулы МНС. Это приводит к тому, что каждая клетка данного организма, имея набор белков МНС, будет отличаться от клеток индивидуума этого же вида. Специальная форма лимфоцитов - Т-лимфоциты, узнают МНС своего организма, но малейшие изменения в структуре МНС (например, связь с вирусом или результат мутации в отдельных клетках) приводят к тому, что Т-лимфоциты узнают такие изменившиеся клетки и уничтожают их, но не путем фагоцитоза. Они выделяют из секреторных вакуолей специфические белки-перфорины, которые встраиваются в цитоплазматическую мембрану измененной клетки, образуют в ней трансмембранные каналы, делая плазматическую мембрану проницаемой, что и приводит к гибели измененной клетки (рис. 143 и 144).

Специальные межклеточные соединения (контакты)

Кроме таких сравнительно простых адгезивных (но специфических) связей (рис. 145) существует целый ряд специальных межклеточных структур - контактов, или соединений, которые выполняют определенные функции. Это запирающие, заякоривающие и коммуникационные соединения (рис. 146).

Запирающее , или плотное, соединение характерно для однослойных эпителиев. Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран (рис. 147, а и 148).

На плоскостных препаратах разломов плазматической мембраны в зоне плотного контакта с помощью метода замораживания и скалывания было обнаружено, что точки соприкосновения мембран представляют собой ряды глобул. Это белки окклудин и клаудин - специальные интегральные белки плазматической мембраны, встроенные рядами. Такие ряды глобул, или полоски, могут пересекаться так, что образуют на поверхности скола как бы решетку, или сеть. Очень характерна эта структура для эпителиев, особенно железистых и кишечных. В последнем случае плотный контакт образует сплошную зону слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) ее части (см. рис. 148). Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры при специальных окрасках можно видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок. Оказалось, что в данном случае роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом. Эта область контакта плохо проницаема для макромолекул и ионов, и тем самым она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (в данном случае - просвет кишечника).

Это можно продемонстрировать, используя электронно-плотные контрастеры, например раствор гидроокиси лантана. Если просвет кишечника или протока какой-нибудь железы наполнить раствором гидроокиси лантана, то на срезах под электронным микроскопом зоны, где располагается это вещество, обладают высокой электронной плотностью и будут темными. Оказалось, что ни зона плотного контакта, ни межклеточные пространства, лежащие ниже его, не темнеют. Если же повредить плотные контакты (легкой ферментативной обработкой или удалением ионов Са 2+), то лантан проникает и в межклеточные участки. Точно так же была доказана непроницаемость плотных контактов для гемоглобина и ферритина в канальцах почек. Таким образом, плотные контакты являются барьерами не только для макромолекул, они непроницаемы для жидкостей и ионов.

Замыкающий, или плотный, контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Заякоривающие, или сцепляющие, соединения, или контакты, так называются потому, что они соединяют не только плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета (рис. 149). Для этого рода соединений характерным является наличие двух типов белков. Первый тип представлен трансмембранными линкерными (связующими) белками, которые участвуют или в собственно межклеточном соединении или в соединении плазмалеммы с компонентами внеклеточного матрикса (базальная мембрана эпителиев, внеклеточные структурные белки соединительной ткани).

Ко второму типу относятся внутриклеточные белки, соединяющие, или заякоривающие, мембранные элементы такого контакта с цитоплазматическими фибриллами цитоскелета.

К заякоривающим соединениям относятся межклеточные сцепляющие точечные контакты, сцепляющие ленты, фокальные контакты, или бляшки сцепления; все эти контакты связываются внутри клеток с актиновыми микрофиламентами. Другую группу заякоривающих межклеточных соединений составляют десмосомы и полудесмосомы ; они связываются с другими элементами цитоскелета - с промежуточными филаментами.

Межклеточные точечные сцепляющие соединения обнаружены у многих неэпителиальных тканей, но более отчетливо описана структура сцепляющих (адгезив ных) лент в однослойных эпителиях (рис. 150). Эта структура опоясывает весь периметр эпителиальной клетки, подобно тому как это происходит в случае плотного соединения. Чаще всего такой поясок, или лента, лежит ниже плотного соединения (см. рис. 146). В этом месте плазматические мембраны не сближены, а даже несколько раздвинуты на расстояние 25-30 нм, и между ними видна зона повышенной плотности. Это не что иное, как места взаимодействия трансмембранных гликопротеидов, которые специфически сцепляются друг с другом и обеспечивают механическое соединение мембран двух соседних клеток. Эти линкерные белки относятся к Е-кадгеринам - белкам, обеспечивающим специфическое узнавание клетками однородных мембран. Разрушение этого слоя гликопротеидов приводит к обособлению отдельных клеток и к разрушению эпителиального пласта. С цитоплазматической стороны около мембраны видно скопление какого-то плотного вещества, к которому примыкает слой тонких (6-7 нм) филаментов, лежащих вдоль плазматической мембраны в виде пучка, идущего по всему периметру клетки. Тонкие филаменты относятся к актиновым фибриллам, они связываются с плазматической мембраной посредством белков катенина, винкулина и α-актинина, образующих плотный околомембранный слой.

Функциональное значение такого ленточного соединения заключается не только в механическом сцеплении клеток друг с другом: при сокращении актиновых филаментов в ленте может изменяться форма клетки. Считается, что кооперативное сокращение актиновых фибрилл во всех клетках эпителиального пласта может вызвать изменение его геометрии, например сворачивание в трубку, подобно тому, что происходит при образовании нервной трубки у эмбрионов позвоночных.

Фокальные контакты, или бляшки сцепления, встречаются у многих клеток и особенно хорошо изучены у фибробластов. Они построены по общему плану со сцепляющими лентами, но выражены в виде не больших участков - бляшек - на плазмалемме. В этом случае трансмембранные линкерные белки-интегрины специфически связываются с белками внеклеточного матрикса (например, с фибронектином) (рис. 151). Со стороны цитоплазмы эти же гликопротеиды связаны с примембранными белками, куда входит и винкулин, который в свою очередь связан с пучком актиновых филаментов. Функциональное значение фокальных контактов заключается как в закреплении клетки на внеклеточных структурах, так и в создании механизма, позволяющего клеткам перемещаться.

Десмосомы - структуры в виде бляшек или кнопок, также соединяют клетки друг с другом (рис. 152 и 153, а ). В межклеточном пространстве здесь также виден плотный слой, представленный взаимодействующими интегральными мембранными кадгеринами - десмоглеинами, которые сцепляют клетки друг с другом. С цитоплазматической стороны к плазмалемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. Клетки сердечной мышцы - кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В эндотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты.

Полудесмосомы в принципе сходны по строению с десмосомой, но представляют собой соединение клеток с межклеточными структурами. Так, в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками так называемой базальной мембраны, куда входят коллаген, ламинин, протеогликаны и др.

Функциональная роль десмосом и полудесмосом сугубо механическая - они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом прочно, что позволяет эпителиальным пластам выдерживать большие механические нагрузки. Подобно этому десмосомы прочно связывают друг с другом клетки сердечной мышцы, что позволяет им выполнять огромную механическую нагрузку, оставаясь связанными в единую сокращающуюся структуру.

В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии.

Щелевые контакты считаются коммуникационными соединениями клеток. Эти структуры участвуют в прямой передаче химических веществ из клетки в клетку, что может не только играть большую физиологическую роль при функционировании специализированных клеток, но и обеспечивать межклеточные взаимодействия при развитии организма, при дифференцировке его клеток. Характерным для этого типа контактов является сближение плазматических мембран двух соседних клеток на расстояние 2-3 нм (см. рис. 147, б и 153, б ). Именно это обстоятельство долгое время не позволяло на ультратонких срезах отличить данный вид контакта от плотного разделительного (замыкающего) контакта. При использовании гидроокиси лантана было замечено, что некоторые плотные контакты пропускают контрастер. В этом случае лантан заполнял тонкую щель шириной около 3 нм между сближенными плазматическими мембранами соседних клеток. Это и послужило появлению термина щелевой контакт. Дальнейший прогресс в расшифровке его строения был достигнут при использовании метода замораживания-скалывания. Оказалось, что на сколах мембран зоны щелевых контактов (размером от 0,5 до 5 мкм) усеяны гексагонально расположенными (с периодом 8-10 нм) частицами 7-8 нм в диаметре, имеющими в центре канал около 2 нм шириной. Эти частицы получили название коннексонов (рис. 154). В зонах щелевого контакта может быть от 10-20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Коннексоны были выделены препаративно, они состоят из шести субъединиц коннектина - белка с молекулярной массой около 30 тыс. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат - коннексон, в центре которого располагается канал. Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки, так что каналы двух коннексонов образуют единое целое. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку. Коннексоны могут закрываться, изменяя диаметр внутреннего канала, и тем участвовать в регуляции транспорта молекул между клетками.

При изучении гигантских клеток слюнных желез двукрылых выяснилось, какое функциональное значение имеют щелевые контакты. В такие клетки благодаря их величине легко можно вводить микроэлектроды для того, чтобы изучать электропроводимость их мембран. Оказалось, что если ввести электроды в две соседние клетки, то их плазматические мембраны проявляют низкое электрическое сопротивление, т.е. между клетками идет ток. Более того, выявлено, что при инъекции в одну клетку флуоресцирующего красителя метка быстро обнаруживается в соседних клетках. Используя разные флуорохромы на клетках культуры ткани млекопитающих, обнаружили, что через щелевые контакты могут транспортироваться вещества с молекулярной массой не более 1-1,5 тыс. и размером не более 1,5 нм (у насекомых через щелевой контакт могут проходить вещества с молекулярной массой до 2 тыс.). Среди этих веществ были разные ионы, аминокислоты, нуклеотиды, сахара, витамины, стероиды, гормоны, цАМФ. Ни белки, ни нуклеиновые кислоты через щелевые контакты проходить не могут.

Такая способность щелевых контактов служить местом транспорта низкомолекулярных соединений используется в тех клеточных системах, где нужна быстрая передача электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Так, все мышечные клетки миокарда сердца связаны с помощью щелевых контактов (кроме того, клетки там связаны и адгезивными контактами) (см. рис. 147, б ). Это создает условие для синхронного сокращения огромного количества клеток. При росте культуры эмбриональных сердечных мышечных клеток (миокардиоцитов) некоторые клетки в пласте начинают независимо друг от друга спонтанно сокращаться с разной частотой, и лишь после образования между ними щелевых контактов они начинают биться синхронно, как единый сокращающийся пласт клеток. Таким же способом обеспечивается совместное сокращение гладкомышечных клеток в стенке матки.

Щелевые контакты могут служить целям метаболической кооперации между клетками, обмениваясь различными молекулами, гормонами, цАМФ или метаболитами. Примером может служить совместное культивирование мутантных по тимидинкиназе клеток с нормальными: при возникновении щелевых контактов между этими типами клеток мутантные клетки через щелевые контакты получали от нормальных клеток тимидинтрифосфат и могли участвовать в синтезе ДНК.

У ранних эмбрионов позвоночных, начиная с восьмиклеточной стадии, большинство клеток связано друг с другом щелевыми контактами. По мере дифференцировки эмбриона щелевые контакты между всеми клетками исчезают и остаются только между группами специализирующихся клеток. Например, при образовании нервной трубки связь клеток этой структуры с остальным эпидермисом прерывается и они разобщаются.

Целостность и функционирование щелевых контактов сильно зависят от уровня ионов Са 2+ внутри клетки. В норме концентрация кальция в цитоплазме очень низка. Если Са 2+ инъецировать в одну из клеток пласта культуры тканей, то в соседних клетках увеличения уровня Са 2+ в цитоплазме не происходит; клетки как бы разобщаются с соседями, перестают проводить электрический ток и красители. Через некоторое время, после того как введенный кальций будет аккумулирован митохондриями, структура и функции щелевых контактов восстанавливаются. Такое свойство очень важно для поддержания целостности и работы всего слоя клеток, так как повреждение одной из них не передается на соседний через щелевые контакты, которые перестают работать как межклеточные диффузионные каналы.

Синаптический контакт (синапсы). Этот тип контактов характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом - рецептором или эффектором (например, нервно-мышечное окончание). Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому (рис. 155). В принципе подобного рода функциональная нагрузка, передача импульса, может осуществляться и другими типами контактов (например, щелевым контактом в сердечной мышце), однако в синаптической связи достигается высокая эффективность в реализации нервного импульса. Синапсы образуются на отростках нервных клеток - это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют вид грушевидных расширений - бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Следовательно, синапс - это структура, образующаяся между участками двух клеток (так же как и десмосома). Мембраны этих клеток разделены межклеточным пространством - синаптической щелью шириной около 20-30 нм. Часто в просвете этой щели виден тонковолокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического контакта одной клетки называется пресинаптической, мембрана другой клетки, воспринимающей импульс, - постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей - синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.

Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки (рис. 156 и 157). Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков. Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка. У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли. Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 Да.

Клеточная стенка (оболочка) растений

Если выделить любую клетку из организма животного и поместить ее в воду, то через короткое время клетка после набухания лопнет, т.е. она лизируется. Это происходит вследствие того, что через плазматическую мембрану вода поступает в цитоплазму, в зону с более высокой концентрацией солей и органических молекул. При этом увеличивается внутренний объем клетки до тех пор, пока не разорвется плазматическая мембрана. В организме животных этого не происходит, потому что клетки низших и высших животных существуют в окружении жидкостей внутренней среды, концентрация солей и веществ в которой близка к таковой в цитоплазме. Свободноживущие в пресной воде одноклеточные простейшие организмы не лизируются (при отсутствии клеточной стенки) из-за того, что у них постоянно работает клеточный насос, откачивающий воду из цитоплазмы, - сократительная вакуоль.

Если же мы в воду поместим клетки бактерий или растений, то они не будут лизироваться до тех пор, пока цела их клеточная стенка. Воздействием набора различных ферментов эти стенки можно растворить. В этом случае моментально происходят набухание и разрыв (лизис) клеток. Следовательно, в естественных условиях клеточная стенка предотвращает этот гибельный для клетки процесс. Более того, наличие клеточных стенок является одним из главных факторов, регулирующих поступление воды в клетку. Клетки бактерий и растений обитают чаше всего в гипотонической водной среде, они не имеют сократительных (выделительных) вакуолей, чтобы откачать воду, но зато прочная клеточная стенка предохраняет их от чрезвычайного набухания. По мере поступления воды в клетке возникает внутреннее давление - тургор, который препятствует дальнейшему поступлению воды.

Интересно, что у многих низших растений, например у зеленых водорослей, клетки имеют хорошо сформированную клеточную оболочку, но при половом размножении, когда образуются подвижные зооспоры, последние теряют клеточную оболочку и у них появляются пульсирующие вакуоли.

Клеточная стенка растений формируется при участии плазматической мембраны и является экстраклеточным (внеклеточным) многослойным образованием, защищающим поверхность клетки и служащим как бы наружным скелетом растительной клетки (рис. 158). Клеточная стенка растений состоит из двух компонентов: аморфного пластичного гелеобразного матрикса (основы) с высоким содержанием воды и опорной фибриллярной системы. Дополнительные полимерные вещества и соли, часто входящие в состав оболочек, придают им жесткость и делают их несмачиваемыми.

В химическом отношении главные компоненты оболочек растений относятся к структурным полисахаридам. В состав матрикса оболочек растений входят гетерогенные группы полисахаридов, растворяющиеся в концентрированных щелочах, гемицеллюлозы и пектиновые вещества. Гемицеллюлозы представляют собой ветвящиеся полимерные цепи, состоящие из различных гексоз (глюкоза, манноза, галактоза и др.), пентоз (ксилоза, арабиноза) и уроновых кислот (глюкуроновая и галактуроновая). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях и образуют разнообразные комбинации. Цепи гемицеллюлозных молекул не кристаллизуются и не образуют элементарных фибрилл. Из-за наличия полярных групп уроновых кислот они сильно гидратированы.

Пектиновые вещества - гетерогенная группа, в которую входят разветвленные, сильно гидратированные полимеры, несущие отрицательные заряды из-за множества остатков галактуроновой кислоты. Благодаря свойствам своих компонентов матрикс представляет собой мягкую пластическую массу, укрепленную фибриллами.

Волокнистые компоненты клеточных оболочек растений состоят обычно из целлюлозы - линейного, неветвящегося полимера глюкозы. Молекулярная масса целлюлозы варьирует от 5·10 4 до 5·10 5 , что соответствует 300-3000 остаткам глюкозы. Такие линейные молекулы целлюлозы могут соединяться в пучки или волокна. В клеточной оболочке целлюлоза образует фибриллы, которые состоят из субмикроскопических микрофибрилл толщиной до 25 нм, а они в свою очередь состоят из множества параллельно лежащих цепей молекул целлюлозы.

Количественные соотношения целлюлозы к веществам матрикса (гемицеллюлозы) могут быть весьма различными у разных объектов. Свыше 60% сухой массы первичных оболочек составляет их матрикс и около 30% приходится на скелетное вещество - целлюлозу. В сырых клеточных оболочках почти вся вода связана с гемицеллюлозами, поэтому масса основного вещества в набухшем состоянии достигает 80% сырой массы всей оболочки, тогда как содержание волокнистых веществ сводится всего к 12%. В волосках хлопчатника целлюлозный компонент составляет 90%; в древесине на долю целлюлозы приходится 50% от компонентов клеточной стенки.

Кроме целлюлозы, гемицеллюлозы и пектинов в состав клеточных оболочек входят дополнительные компоненты, придающие им особые свойства. Так, инкрустация (включение внутрь) оболочек лигнином (полимер кониферилового спирта) приводит к одревеснению клеточных стенок, повышению их прочности (рис. 159). Лигнин замешает в таких оболочках пластические вещества матрикса и играет роль основного вещества, обладающего высокой прочностью. Часто матрикс укреплен минеральными веществами (SiO 2 , CaCO 3 и др.).

На поверхности клеточной оболочки могут скапливаться различные адкрустирующие вещества, например кутин и суберин, приводящие к опробковению клеток. В клетках эпидермиса на поверхности клеточных оболочек откладывается воск, который образует водонепроницаемый слой, препятствующий потере клеткой воды.

Из-за своего пористого, рыхлого строения клеточная стенка растений проницаема в значительной степени для низкомолекулярных соединений, таких как вода, сахара и ионы. Но макромолекулы проникают через целлюлозные оболочки плохо: величина пор в оболочках, позволяющая свободную диффузию веществ, составляет всего лишь 3-5 нм.

Опыты с мечеными соединениями показали, что при росте клеточной оболочки выделение веществ, из которых она строится, происходит по всей поверхности клетки. Аморфные вещества матрикса, гемицеллюлозы и пектины синтезируются в вакуолях аппарата Гольджи и выделяются через плазмалемму путем экзоцитоза. Фибриллы целлюлозы синтезируются специальными ферментами, встроенными в плазмалемму.

Оболочки дифференцированных, зрелых, клеток обычно многослойные, в слоях фибриллы целлюлозы ориентированы по-разному, и количество их также может значительно колебаться. Обычно описывают первичные, вторичные и третичные клеточные оболочки (см. рис. 158). Для того чтобы разобраться в строении и появлении этих оболочек, необходимо познакомиться с тем, как они образуются после деления клеток.

При делении клеток растений после расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом (рис. 160). Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточ ная пластинка, или фрагмопласт. В центральной части ее располагается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи. В состав первичной клеточной стенки входит также небольшое количество белка (около 10%), богатого гидроксипролином и имеющего множество коротких олигосахаридных цепей, что определяет этот белок как гликопротеид. По периферии клеточной пластинки при наблюдении ее в поляризованном свете обнаруживается заметное двойное лучепреломление, вызванное тем, что в этом месте располагаются ориентированные фибриллы целлюлозы. Таким образом, растущая первичная клеточная стенка состоит уже из трех слоев: центрального - срединная пластинка, состоящая только из аморфного матрикса, и двух периферических - первичная оболочка, содержащая гемицеллюлозу и целлюлозные фибриллы. Если срединная пластинка - это продукт активности исходной клетки, то первичная оболочка образуется за счет выделения гемицеллюлозы и фибрилл целлюлозы двумя новыми клеточными телами. И все дальнейшее увеличение толщины клеточной (вернее, межклеточной) стенки будет происходить за счет активности двух дочерних клеток, которые с противоположных сторон выделяют вещества клеточной оболочки, утолщающейся путем подслаивания все новых и новых пластов. Как и с самого начала, выделение веществ матрикса осуществляется за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождения их содержимого за пределы цитоплазмы. Здесь же, вне клетки, на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка. С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями.

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерние происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идут наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

При образовании первичной клеточной оболочки в ее составе еще мало целлюлозных фибрилл, и они располагаются более или менее перпендикулярно будущей продольной оси клетки. Позже, в период растяжения (удлинения клетки за счет роста вакуолей в цитоплазме) ориентация этих поперечно-направленных фибрилл подвергается пассивным изменениям: фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембране клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение.

Часто под вторичной оболочкой обнаруживают третичную оболочку, которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Следует отметить, что при делении клеток растений формированию первичной оболочки не во всех случаях предшествует образование клеточной пластинки. Так, у зеленой водоросли спирогиры новые поперечные перегородки возникают путем образования на боковых стенках исходной клетки выступов, которые, постепенно разрастаясь к центру клетки, смыкаются и делят клетку надвое.

Как уже говорилось, если в водной гипотонической среде лишить клетку ее оболочки, то произойдет лизис, разрыв клетки. Оказалось, что, подбирая соответствующие концентрации солей и сахаров, можно уравнять осмотическое давление снаружи и внутри клеток, лишенных своих оболочек. При этом такие протопласты приобретают шаровидную форму (сферопласты). Если в среде, где находятся протопласты, будет достаточное количество питательных веществ и солей (среди них необходим Са 2+), то клетки снова восстанавливают, регенерируют свою клеточную оболочку. Более того, они способны в присутствии гормонов (ауксинов) делиться и создавать клеточные колонии, которые могут дать начало для роста целого растения, от которого была взята клетка.

Главный волокнистый компонент клеточной стенки больших групп грибов (базибиомицеты, аскомицеты, зигомицеты) - хитин; это - полисахарид, в котором основным сахаридом является N-ацетилглюкозамин. В состав клеточной стенки грибов, кроме хитина, могут входить вещества матрикса, гликопротеиды и различные белки, синтезированные в цитоплазме и выделенные клеткой наружу.

Клеточные оболочки бактерий

Опорным каркасом клеточной стенки бактерий и синезеленых водорослей также служит в значительной степени однородный полимер - пептидогликан, или муреин. Жесткий каркас, окружающий бактериальную клетку, представляет собой одну гигантскую мешковидную молекулу сложного полисахарида - пептида. Каркас этот называют муреиновым мешком. Основа структуры муреинового мешка - сеть параллельных полисахаридных цепей, построенных из чередующихся дисахаридов (ацетилглюкозамин, соединенный с ацетилмурамовой кислотой), связанных многочисленными пептидными поперечными связями (рис. 161). Длина цепочек может быть огромной - до нескольких сотен дисахаридных блоков. Основу пептидной части муреина составляют тетрапептиды, образованные различными аминокислотами.

Бактериальная стенка может составлять до 20-30% от сухой массы бактерии. Это связано с тем, что в ее состав кроме многослойного муреинового каркаса входит большое количество дополнительных компонентов, как и в матриксе стенки растений. У грамположительных бактерий (при окраске по Граму - окраска кристаллическим фиолетовым, обработка иодом, отмывка спиртом - бактерии по-разному воспринимают краситель: грамположительные остаются окрашенными после обработки спиртом, грамотрицательные обесцвечиваются) сопутствующими компонентами служат полимерные вещества, сложным образом вплетенные в муреиновую сеть. К ним относятся тейхоевые кислоты, полисахариды, полипептиды и белки. Клеточная стенка грамположительных бактерий обладает большой жесткостью, ее муреиновая сеть многослойна.

Стенки грамотрицательных бактерий содержат однослойную муреиновую сеть, составляющую 12% сухой массы стенки. Сопутствующие компоненты составляют до 80% сухой массы. Это липопротеиды, сложные липополисахариды. Они образуют сложную наружную липопротеиновую мембрану. Следовательно, периферия грамотрицательных бактерий содержит наружную мембрану, затем однослойную муреиновую сеть, ниже нее расположена плазматическая мембрана (рис. 162). Наружная мембрана обеспечивает структурную целостность клетки, служит барьером, ограничивающим свободный доступ разных веществ к плазматической мембране. На ней также могут располагаться рецепторы для бактериофагов. Она содержит белки-пори ны, которые участвуют в переносе многих низкомолекулярных веществ. Молекулы порина образуют тримеры, проходящие сквозь толщу мембраны. Одна из функций этих белков - формирование в мембране гидрофильных пор, через которые происходит диффузия молекул массой не более 900 Да. Через поры свободно проходят сахара, аминокислоты, небольшие олигосахариды и пептиды. Поры образованы разными поринами, обладают разной проницаемостью.

Между внешней липопротеидной мембраной бактериальной стенки и плазматической мембраной лежит периплазматическое простран ство, или периплазма. Ее толщина обычно составляет около 10 нм, она содержит тонкий (1-3 нм) муреиновый слой и раствор, содержащий специфические белки двух типов: гидролитические ферменты и транспортные белки. Из-за наличия гидролаз иногда периплазму рассматривают как аналог лизосомного компартмента эукариот. Периплазматические транспортные белки связывают и переносят от внешней мембраны к плазмалемме сахара, аминокислоты и др.

Предшественники стенок бактерий синтезируются внутри клетки, сборка стенок происходит снаружи от плазматической мембраны.

Под действием фермента лизоцима можно разорвать муреиновый каркас и растворить бактериальную стенку. В гипотонических условиях клетки при этом разрушаются, как разрушаются голые клетки животных и растений; в изотонических условиях образуются шаровидные протопласты, которые способны снова вырабатывать свою клеточную стенку.

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....