Пищевая сеть. Трофические уровни

К числу важнейших взаимоотношений между организмами относятся пищевые. Можно проследить бесчисленные пути движения вещества в экосистеме, при которых один организм поедается другим, тот - третьим и т. д. Ряд таких звеньев называется пищевой цепью. Пищевые цепи переплетаются и образуют пищевую (трофическую) сеть.

Пищевые цепи разделяют на два типа. Один тип пищевой цепи начинается с растений и идет к растительноядным животным и далее к хищникам - это цепь выедания (пастбищная).

Относительно простая и короткая пищевая цепь:
трава → кролик → лисица

(продуцент) (консумент (консумент

I порядка) II порядка)

Другой тип начинается от растительных и животных остатков к мелким животным и микроорганизмам, а затем к хищникам - эта цепь разложения (детритная).

Итак, все пищевые цепи начинаются с продуцентов. Без непрерывного образования ими органического вещества экосистема быстро съела бы сама себя и прекратила сущест­вование.

Пищевые связи можно уподобить потоку питательных веществ и энергии от одного трофического уровня к другому.

Общую массу организмов (их биомассу) на каждом трофи­ческом уровне можно измерить путем сбора или отлова и последующего взвешивания соответствующих выборок животных и растений. На каждом трофическом уровне биомасса на 90-99% меньше, чем на предыдущем. Допустим биомасса продуцентов на участке луга 0,4 га составляет 10 т, тогда биомасса фитофагов на той же площади будет не более 1000 кг. Пищевые цепи в природе обычно включают 3-4 звена, существование большего числа трофических уровней невоз­можно из-за быстрого приближения биомассы к нулю.

Большая часть получаемой энергии (80-90%) используется организмами на построение тела и поддержание жизне­деятельности. На каждом трофическом уровне число особей прогрессивно уменьшается. Эта закономерность носит название экологической пирамиды . Экологическая пирамида это отражает число особей на каждом этапе пищевой цепи или количество биомассы, или количество энергии. Эти величины имеют одинаковую направленность. С каждым звеном в цепи организмы становятся крупнее, они медленнее размно­жаются, их число уменьшается.

Разные биогеоценозы отличаются своей продуктивностью, скоростью потребления первичной продукции, а также разнообразными цепями питания. Однако, для всех цепей питания свойственны определенные закономерности, касаю­щиеся соотношения расходуемой и запасаемой продукции, т.е. биомассы с заключенной в ней энергии на каждом из трофических уровней. Эти закономерности получили назва­ние «правила экологической пирамиды». Различают разные типы экологических пирамид, в зависимости от того, какой показатель положен в ее основу. Так, пирамида биомассы отображает количественные закономерности передачи по цепи питания массы органического вещества. Пирамида энергии отображает соответствующие закономерности передачи энергии от одного звена цепи питания к другому. Разработана и пирамида чисел, отображающая количество особей на каждом из трофических уровней цепи питания.

Виды в биоценозе связаны между собой процессами обмена веществом и энергии, т. е. пищевыми взаимоотношениями. Прослеживая пищевые взаимоотношения между членами биоценоза (“кто кого и сколько поедает”), можно построить пищевые цепи и сети .

Трофические цепи (от греч. trophe – пища) – пищевые цепи – это последовательный перенос вещества и энергии. Например, пищевая цепь животных арктического моря: микроводоросли (фитопланктон) → мелкие растительноядные ракообразные (зоопланктон) → плотоядные планктоно-фаги (черви, моллюски, ракообразные) → рыбы (возможны 2-4 звена последовательности хищных рыб) → тюлени → белые медведи. Эта пищевая цепь длинная, пищевые цепи наземных экосистем более короткие, так как на суше больше потери энергии. Различают несколько типов наземных пищевых цепей .

1. Пастбищные пищевые цепи (цепи эксплуататоров) начинаются с продуцентов. При переходе с одного трофического уровня на другой происходит увеличение размеров особей при одновременном уменьшении плотности популяций, скорости размножения и продуктивности по массе.

Трава → полёвки → лисица

Трава → насекомые → лягушка → цапля → коршун

Яблоня → щитовка → наездник

Корова → слепень → бактерии → фаги

    Детритные цепи. Включают только редуцентов.

Опавшие листья → плесневые грибы → бактерии

Любой член какой-либо пищевой цепи одновременно является звеном и другой пищевой цепи: он потребляет и его потребляют несколько видов других организмов. Так образуются пищевые сети. Например, в пище лугового волка-койота насчитывают до 14 тысяч видов животных и растений. В последовательности переноса веществ и энергии от одной группы организмов к другой различают трофические уровни . Обычно цепи не превышают 5–7 уровней. Первый трофический уровень составляют продуценты, т. к. питаться солнечной энергией могут только они. На всех остальных уровнях – травоядные (фитофаги), первичные хищники, вторичные хищники и т. д. – идёт расход первоначально накопленной энергии на поддержание обменных процессов.

Пищевые отношения удобно представлять в виде трофических пирамид (численности, биомасс, энергий). Пирамида численности – отображение числа особей на каждом трофическом уровне в единицах (штуках).

Она имеет очень широкое основание и резкое сужение к конечным консументам. Это обычный вид пирамиды для травяных сообществ – луговых и степных биоценозов. Если рассмотреть лесное сообщество, то картина может быть искажена: на одном дереве могут кормиться тысячи фитофагов или на одном трофическом уровне окажутся тля и слон (разные фитофаги). Тогда численность консументов может быть больше численности продуцентов. Чтобы преодолеть возможные искажения используют пирамиду биомасс. Выражается она в единицах тоннажа сухой или сырой массы: кг, т и т. д.

В наземных экосистемах биомасса растений всегда больше биомассы животных. Иначе пирамида биомассы выглядит для водных, особенно морских экосистем. Биомасса животных намного больше биомассы растений. Эта неправильность связана с тем, что пирамиды биомасс не учитывают продолжительность существования поколений особей на разных трофических уровнях и скорости образования и выедания биомассы. Главный продуцент морских экосистем – фитопланктон. За год в океане может смениться до 50 поколений фитопланктона. За то время, пока хищные рыбы (а тем более киты) накопят свою биомассу, сменится множество поколений фитопланктона и его суммарная биомасса будет намного больше. Поэтому универсальным способом выражения трофической структуры экосистем являются пирамиды продуктивности, обычно их называют пирамидами энергий, имея в виду энергетическое выражение продукции.

Поглощенная солнечная энергия преобразуется в энергию химических связей углеводов и других органических веществ. Часть веществ окисляется в процессе дыхания растений и освобождает энергию. Эта энергия рассеивается в конечном итоге в виде тепла. Оставшаяся энергия обуславливает прирост биомассы. Суммарная биомасса стабильной экосистемы относительно постоянна. Таким образом, при переходе от одного трофического уровня к другому часть доступной энергии не воспринимается, часть отдается в виде тепла, часть расходуется на дыхание. В среднем при переходе с одного трофического уровня на другой общая энергия уменьшается примерно в 10 раз. Эта закономерность называется правилом пирамиды энергий Линдемана (1942 г.) или правилом 10 %. Чем длиннее пищевая цепь, тем меньше к ее концу остается доступной энергии, поэтому число трофических уровней никогда не бывает слишком большим.

Если энергия и основная масса органического вещества при переходе на следующую ступень экологической пирамиды уменьшается, то накопление попадающих в организм веществ, не участвующих в нормальном обмене веществ (синтетических ядов), примерно в той же пропорции увеличивается. Это явление называется правилом биологического усиления.

Основные принципы функционирования экологических систем

    Постоянный приток солнечной энергии – необходимое условие существования экосистемы.

    Круговорот биогенов. Движущими силами круговорота веществ служат потоки энергии солнца и деятельность живого вещества. Благодаря круговороту биогенных элементов создается устойчивая организованность всех экосистем и биосферы в целом, осуществляется их нормальное функционирование.

    Снижение биомассы на высших трофических уровнях : уменьшение количества доступной энергии обычно сопровождается уменьшением биомассы и численности особей на каждом трофическом уровне (вспомним пирамиды энергии, численности и биомассы).

Подробно эти принципы мы уже осветили в ходе лекции.

Трофическая структура биоценозов

ЭКОЛОГИЯ СООБЩЕСТВ (СИНЭКОЛОГИЯ)

Популяции разных видов в природных условиях объединяются в системы более высокого ранга – сообщества и биоценоз .

Термин «биоценоз» был предложен немецким зоологом К. Мебиусом и обозначает организованную группу популяций растений, животных и микроорганизмов, приспособленных к совместному обитанию в пределах определенного объема пространства.

Любой биоценоз занимает определенный участок абиотической среды. Биотоп пространство с более или менее однородными условиями, заселенное тем или иным сообществом организмов.

Размеры биоценотических группировок организмов чрезвычайно разнообразны – от сообществ на стволе дерева или на болотной моховой кочке до биоценоза ковыльной степи. Биоценоз (сообщество) – не просто сумма образующих его видов, но и совокупность взаимодействий между ними. Экология сообществ (синэкология)– это также научный подход в экологии, в соответствии с которым прежде всего исследуют комплекс отношений и господствующие взаимосвязи в биоценозе. Синэкология занимается преимущественно биотическими экологическими факторами среды.

В пределах биоценоза различают фитоценоз – устойчивое сообщество растительных организмов, зооценоз – совокупность взаимосвязанных видов животных и микробиоценоз – сообщество микроорганизмов:

ФИТОЦЕНОЗ + ЗООЦЕНОЗ + МИКРОБИОЦЕНОЗ = БИОЦЕНОЗ.

При этом в чистом виде ни фитоценоз, ни зооценоз, ни микробиоценоз в природе не встречаются, как и биоценоз в отрыве от биотопа.

Биоценоз формируют межвидовые связи, обеспечивающие структуру биоценоза – численность особей, распределение их в пространстве, видовой состав и тому подобное, а также структуру пищевой сети, продуктивность и биомассу. Для оценки роли отдельного вида в видовой структуре биоценоза используют обилие вида – показатель, равный числу особей на единицу площади или объема занимаемого пространства.

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, – это пищевые связи хищника и жертвы: одни – поедающие, другие – поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т. п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

Пищевая цепь – это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе малой части высокоэффективной солнечной энергии, поступившей на Землю. В конечном итоге эта цепь возвращается в окружающую природную среду в виде низкоэффективной тепловой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.



Каждое звено пищевой цепи называют трофическим уровнем. Первый трофический уровень занимают автотрофы, иначе именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего – вторичными консументами и т. д. Обычно бывают четыре или пять трофических уровней и редко более шести (рис. 5.1).

Существуют два главных типа пищевых цепей – пастбищные (или «выедания») и детритные (или «разложения»).

Рис. 5.1. Пищевые цепи биоценоза по Н. Ф. Реймерсу: обобщенная (а) и реальная (б). Стрелками показано направление перемещения энергии, а цифрами – относительное количество энергии, приходящей на трофический уровень

В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй – пастбищные животные (термин «пастбищные» охватывает все организмы, питающиеся растениями), а третий – хищники. Так, пастбищными пищевыми цепями являются:

Детритная пищевая цепь начинается с детрита по схеме:

ДЕТРИТ → ДЕТРИТОФАГ → ХИЩНИК

Характерными детритными пищевыми цепями являются:

Концепция пищевых цепей позволяет в дальнейшем проследить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого‑то одного типа, в природе встречаются редко. Реальные пищевые связи намного сложнее, ибо животное может питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно характерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми цепями иллюстрирует предложенная Ю. Одумом модель потока энергии (рис. 5.2).

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

Представители разных трофических уровней связаны между собой односторонне направленной передачей биомассы в пищевые цепи. При каждом переходе на следующий трофический уровень часть доступной энер­гии не воспринимается, часть отдается в виде тепла, а часть расходуется на дыхание. При этом общая энергия каждый раз уменьшается в несколько раз. Следствие этого -ограниченная длина пищевых цепей. Чем коро­че пищевая цепь или чем ближе организм к ее началу, тем больше количество доступной энергии.

Пищевые цепи хищников идут от продуцентов к тра­воядным, поедаемым мелкими плотоядными, а они слу­жат пищей более крупным хищникам и т. д. По мере

продвижения по цепи хищников животные увеличивают­ся в размерах и уменьшаются в числе. Относительно про­стая и короткая пищевая цепь хищников включает консументов II порядка:

Более длинная и сложная цепь включает консументов V порядка:

Удлинение цепи происходит благодаря участию в ней хищников.

В детритных цепях консументами являются детритофаги, относящиеся к различным систематическим груп­пам: мелкие животные, преимущественно беспозвоноч­ные, которые живут в почве и питаются опавшей листвой, или бактерии и грибы, разлагающие органические ве­щества по схеме:

В большинстве случаев деятельность обеих групп детритофагов характеризуется строгой согласованностью: животные создают условия для работы микроорганиз­мов, разделяя трупы животных и мертвые растения на мелкие части.



Пищевые цепи, начинающиеся с зеленых растений и от мертвого органического вещества, чаще всего пред­ставлены в экосистемах совместно, но почти всегда одна из них доминирует над другой. Тем не менее, в некото­рых специфических средах (например, абиссальной и подземной), где существование организмов с хлорофил­лом невозможно из-за отсутствия света, сохраняются пищевые цепи только детритного типа.

Пищевые цепи не изолированы одна от другой, а тес­но переплетены. Они составляют так называемые пище­вые сети. Принцип образования пищевых сетей состоит в следующем. Каждый продуцент имеет не одного, а несколько консументов. В свою очередь, консументы, среди которых преобладают полифаги, пользуются не одним, а несколькими источниками питания. Для иллюс­трации приведем примеры простой (рис, 9.3, а) и слож­ной (рис. 9.3, б) пищевых сетей.

В сложном природном сообществе те организмы, ко-

торые получают пищу от растений, занимающих первый

трофический уровень, через одинаковое число этапов, считаются принадлежащими к одному трофическому уровню. Так, травоядные занимают второй трофический уровень (уровень первичных консументов), хищники, поедающие травоядных,- третий (уровень вторичных кон­сументов), а вторичные хищники - четвертый (уровень третичных консументов). Необходимо подчеркнуть, что трофическая классификация делит на группы не сами виды, а типы их жизнедеятельности. Популяция одного вида может занимать один или более трофических уров­ней, в зависимости от того, какие источники энергии эти виды используют. Точно так же любой трофический уро­вень представлен не одним, а несколькими видами, в результате чего цепи питания сложно переплетены.

Рассмотрим диаграмму потока энергии в простой (неразветвленной) пищевой цепи, включающей три (1-3) трофических уровня (рис. 9.4).

Для данной конкретной экосистемы энергетический бюджет оценивался следующим образом: L =3000 ккал/м 2 в день, L A =1500, т.е. 50% от L, P N = 15, т.е. 1% от L A ,

Рис. 9.3. Важнейшие связи в пищевых сетях американской прерии (а ) и экосистемы северных морей для сельди (б ),

а - по Риклефсу, 1979; б - из Алимова, 1989.

Рис. 9.4. Упрощенная диаграмма потока энергии,

показывающая три трофических уровня

в линейной пищевой цепи (по: Одум, 1975).

Последовательные потоки энергии: L - общее освещение, L A - свет,

поглощенный растительным покровом (I - поступившая или

поглощенная энергия), P G - валовая первичная продукция,

P N - чистая первичная продукция, Р- вторичная продукция (консумен-

тов), NU - не используемая энергия, NA - не ассимилированная

консументами (выделенная с экскрементами) энергия, R -энергия.

Цифры внизу - порядок потерь энергии при каждом переносе.

P2 = 1,5, т.е. 10% от P N’ , и Р 3 = 0,3 ккал/м 2 в день, т. е. 20% от предыдущего уровня. На первом трофическом уровне поглощается 50% падающего света, а переходит в хими­ческую энергию пищи всего 1% поглощенной энергии. Вторичная продукция на каждом последующем трофичес­ком уровне консументов составляет около 10% предыду­щий, хотя на уровне хищников эффективность может быть выше.

Статьи поступления и расхода энергии, т.е. энерге­тический баланс, удобно рассмотреть с помощью уни­версальной модели, которая приложима к любому жи­вому компоненту системы, будь то растение, животное, микроорганизм или же особь, популяция, трофическая группа (рис. 9.5). Не вся энергия, поступившая в био­массу (/), подвергается превращению. Часть ее (NA ) не включается в метаболизм. Например, пища может прой­ти через пищеварительный тракт, не включаясь в мета-

Рис. 9.5. Компоненты «универсальной» модели

потока энергии (по: Одум, 1975).

Объяснение в тексте.

болизм, а часть энергии света проходит через расте­ния, не усваиваясь. Используемая, или ассимилируемая, часть энергии (А) тратится на дыхание (R ) и продуцирование органического вещества (Р ). Продукция может принимать различные формы: G – рост, или увеличение биомассы; Е – ассимилированное органическое вещество, выделяемое с экскрементами или секретируемое (про­стые сахара, аминокислоты, мочевина, слизь и т.д.), S -запас (например, жировые накопления, которые мо­гут быть реассимилированы позднее). Обратный путь за­пасенной продукции называют также «рабочей петлей», поскольку это та часть продукции, которая обеспечива­ет организм энергией в будущем (например, хищник использует энергию запасенных веществ для того, что­бы найти новую жертву). Оставшаяся за вычетом Е часть продукции - биомасса (В). Суммируя все статьи поступ­ления и расхода энергии, получим: A=I-NA; P = A-R; P=G + E + S; B = P-E; B = G + S.

Универсальную модель потока энергии можно использовать двояко. Во-первых, она может представлять популяцию какого-либо вида. В этом случае каналы притока энергии и связи дан­ного вида с другими составляют диаграмму пищевой сети с на­званием отдельных видов в ее узлах (рис. 9.6). Процедура пост­роения сетевой диаграммы включает: 1) составление схемы распределения популяций по трофическим уровням; 2) соедине­ние их пищевыми связями; 3) определение с помощью универ­сальной модели ширины каналов потоков энергии; при этом наи­более широкие каналы будут проходить через популяции видов-полифагов, в данном случае через популяции поденок, мошек и комаров-дергунов (рис. 9.6).

Рис. 9.6. Фрагмент пищевой сети пресноводного водоема.

Во-вторых, универсальная модель потока энергии может представлять определенный энергетический уровень. В этом варианте прямоугольники биомассы и каналы потоков энергии представляют все популяции, поддерживаемые одним источ­ником энергии. Обычно пищей лисам служат частично расте­ния (плоды и т. д.), частично травоядные животные (зайцы, полевые мыши и др.). Если мы хотим подчеркнуть аспект внутрипопуляционной энергетики, то всю популяцию лис необхо­димо изобразить одним прямоугольником. Если же требуется распределить метаболизм популяции лис на два трофических уровня соответственно пропорции растительной и животной пищи, то следует построить два или несколько прямоугольни­ков.

Зная универсальную модель потока энергии, мож­но определить отношения величин энергетического по­тока в разных точках пищевой цепи. Выраженные в процентах, эти отношения называют экологической эф­фективностью. В зависимости от задач исследования эколог изучает те или иные группы экологических эф-фективностей. Важнейшие из них рассматриваются ниже.

Первая группа энергетических отношений: В/R и P/R. Часть энергии,идущая на дыхание, т.е. на поддержа­ние структуры биомассы, велика в популяциях крупных организмов (люди, деревья и др.) При сильном стрессе R возрастает. Величина Р значительна в активных попу­ляциях мелких организмов, например бактерий и водо­рослей, а также в системах, получающих энергию из­вне.

Вторая группа отношений: А/I и Р/А. Первое из них называется эффективностью ассимиляции, второе -эф­фективностью роста тканей. Эффективность ассимиля­ции варьирует от 10 до 50% и больше. Она может быть либо очень мала, как в случае использования энергии света растениями или при ассимиляции пищи животными-детритофагами, либо очень велика, как в случае ас­симиляции пищи животными или бактериями, питающи­мися высококалорийной пищей, например сахарами или аминокислотами.

Эффективность ассимиляции у растительноядных животных соответствует питательным свойствам их пищи: она достигает 80% при поедании семян, 60% -молодой листвы, 30-40% -бо­лее старых листьев и 10-20% и даже менее при поедании дре­весины, в зависимости от степени ее разложения. Пища жи­вотного происхождения переваривается легче, чем раститель­ная. Эффективность ассимиляции у хищных видов составляет 60-90% потребленной пищи, причем виды, поедающие насеко­мых, стоят на нижней ступени этого ряда, а питающиеся мясом и рыбой - на верхней. Причина такого положения заключается в том, что жесткий хитиновый наружный скелет, на который приходится значительная часть массы тела у многих видов на­секомых, не переваривается. Это снижает эффективность ас­симиляции у животных, которые питаются насекомыми.

Эффективность роста тканей также широко варьиру­ет. Наибольших значений она достигает в тех случаях, когда организмы мелкие и условия среды, в которой они обитают, не требуют больших затрат на поддержание оптимальной для роста организмов температуры.

И, наконец, третья группа энергетических отношений: Р/В.

В тех случаях, когда Р оценивается как скорость, Р/В представляет собой отношение продукции в конкретный момент времени к биомассе: Р/В = В/(ВТ) = Т - 1 , где Т - время. Если рассчитывается интегральная продукция за некоторый промежуток времени, значение отношения Р/В определяется с учетом среднейза этот же отрезок времени биомассы. В этом случае отношение Р/В - величина безразмерная;она показывает, во сколь­ко раз продукция больше или меньше биомассы. Отно­шение продуктивности к биомассе можно рассматривать как внутри одного трофического уровня, так и между соседними.

Сравнивая продуктивность P t и биомассу B t внутри одного трофического уровня (t), отметим S -образный характер изменения P t в определенном диапазоне изме­нений B t . Например, на первом трофическом уровне про­дукция увеличивается сначала медленно, так как неве­лика поверхность листьев, затем быстрее и при боль­шой плотности биомассы - опять медленно, поскольку

фотосинтез в условиях значительного затенения листь­ев нижних ярусов ослабляется. На втором и третьем тро­фических уровнях при очень малом и при очень боль­шом числе животных на единицу площади отношение продуктивности к биомассе снижается, главным обра­зом из-за уменьшения рождаемости.

Отношение продуктивности предыдущего трофиче­ского уровня (Р t -1 ) к биомассе настоящего (B t) опре­деляется тем, что фитофаги, выедая часть растений, тем самым способствуют ускорению их прироста, т. е. фитофаги своей деятельностью содействуют продук­тивности растений. Аналогичное влияние оказывают на продуктивность консументов I порядка хищники, кото­рые, уничтожая больных и старых животных, способ­ствуют повышению коэффициента рождаемости фито­фагов.

Наиболее проста зависимость продуктивности по­следующего трофического уровня (P t +1) от биомассы на­стоящего (В t). Продуктивность каждого последующего трофического уровня возрастает при росте биомассы предыдущего.Отношение Р t +1 /B t показывает, в частности, от чего зависитвеличина вторичной продукции, а именно от величины первичной продукции, длины пищевой цепи, природы и величины энергии, привносимой извне в экосистему.

Приведенные рассуждения позволяют заметить, что на энергетические характеристики экосистемы опреде­ленное влияние оказывают размеры особей. Чем мель­че организм, тем выше его удельный метаболизм (на единицу массы) и, следовательно, меньше биомасса, которая может сохраняться на данном трофическом уров­не. И наоборот, чем крупнее организм, тем больше био­масса на корню. Так, «урожай» бактерий в данный мо­мент будет гораздо ниже «урожая» рыбы или млекопи­тающих, хотя эти группы использовали одинаковое количество энергии. Иначе обстоит дело с продуктивнос­тью. Поскольку продуктивность - это скорость прироста биомассы, то преимуществами здесь обладают мелкие организмы, которые благодаря более высокому уровню

метаболизма имеют более высокие темпы размножения и обновления биомассы, т. е. более высокую продуктив­ность.

Пищевая цепь состоит из организмов разных видов. В то же время организмы одного вида могут входить в состав разных пищевых цепей. Поэтому цепи питания переплетаются, образуя сложные пищевые сети, охватывающие все экосистемы планеты.[ ...]

Пищевая (трофическая) цепь - это перенос энергии от ее источника - продуцентов - через ряд организмов. Пищевые цепи можно разделить на два основных типа: пастбищная цепь, которая начинается с зеленого растения и идет далее к пасущимся растительноядным животным и к хищникам, и детритная цепь (от латинского истертый), которая начинается от продуктов распада мертвого органического вещества. В формировании этой цепи решающую роль играют различные микроорганизмы, которые питаются мертвым органическим веществом и минерализуют его, вновь превращая в простейшие неорганические соединения. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом. Часто животное, потребляющее живое органическое вещество, поедает и микробов, потребляющих в пищу неживое органическое вещество. Таким образом, пути потребления пищи разветвляются, образуя так называемые пищевые сети.[ ...]

Пищевая сеть - сложное переплетение в сообществе пищевых цепей.[ ...]

Пищевые сети образуются потому, что практически любой член какой-либо пищевой цепи одновременно является звеном и в другой пищевой цепи: он потребляет и его потребляют несколько видов других организмов. Так, в пище лугового волка - койота насчитывают до 14 тыс. видов животных и растений. Вероятно, таков же порядок числа видов, участвующих в поедании, разложении и деструкции веществ трупа койота.[ ...]

Пищевые цепи и трофические уровни. Прослеживая пищевые взаимоотношения между членами биоценоза («кто кого и сколько поедает»), можно построить пищевые цепи питания различных организмов. Примером длинной пищевой цепи может служить последовательность обитателей арктического моря: «микроводоросли (фитопланктон) -> мелкие растительноядные ракообразные (зоопланктон) - плотоядные планктонофаги (черви, ракообразные, моллюски, иглокожие) -> рыбы (возможны 2-3 звена последовательности хищных рыб) -> тюлени -> белый медведь». Цепи наземных экосистем обычно короче. Пищевая цепь, как правило, искусственно выделяется из реально существующей пищевой сети - сплетения многих цепей питания.[ ...]

Пищевая сеть - это сложная сеть пищевых взаимоотношений.[ ...]

Пищевые цепи подразумевают линейный поток ресурсов от одного трофического уровня к следующему (рис. 22.1, а). В такой конструкции взаимодействия между видами просты. Однако никакая система потоков ресурсов в БЭ не следует этой простой структуре; они гораздо больше напоминают сетевую структуру (рис. 22.1, Ь). Здесь виды на одном трофическом уровне питаются несколькими видами на следующем, более низком уровне и широко распространена всеядность (рис. 22.1, с). Наконец, полностью определенная пищевая сеть может продемонстрировать различные особенности: множество трофических уровней, хищничество и всеядность (рис. 22.1, [ ...]

Множество пищевых цепей, переплетаясь в биоценозах и экосистемах, образуют пищевые сети. Если общую цепь питания изобразить в виде строительных блоков, условно представляющих собой количественное соотношение усваиваемой на каждом этапе энергии, и сложить их друг на друга, получится пирамида. Ее называют экологической пирамидой энергий (рис.5).[ ...]

Диаграммы пищевых цепей и пищевых сетей. Точки обозначают виды, линии обозначают взаимодействия. Более высокие виды являются хищниками по отношению к более низким, поэтому ресурсы текут снизу вверх.[ ...]

В первом типе пищевой сети поток энергии идет от растений к растительноядным животным, а далее к консументам более высокого порядка. Это сеть выедания, или пастбищная сеть. Вне зависимости от величины биоценоза и места обитания растительноядные животные (наземные, водные, почвенные) пасутся, выедают зеленые растения и передают энергию на следующие уровни (рис. 96).[ ...]

В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых в свою очередь может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, многие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме.[ ...]

[ ...]

Эта схема не только иллюстрирует переплетение пищевых связей и показывает три трофических уровня, но и выявляет тот факт, что некоторые организмы занимают промежуточное положение в системе трех основных трофических уровней. Так, строящие ловчую сеть личинки ручейника питаются растениями и животными, занимая промежуточное положение между первичными и вторичными консументами.[ ...]

Первичным источником пищевых ресурсов человека были те экосистемы, в которых он мог существовать. Способами добывания пищи были собирательство и охота, причем по мере развития изготовления и использования все более совершенных орудий увеличивалась доля охотничьей добычи, значит, и доля мяса, то есть полноценных белков, в рационе. Способность организовывать большие устойчивые коллективы, развитие речи, позволяющей организовывать сложное согласованное поведение множества людей, сделали человека «суперхищником», занявшим верхнюю позицию в пищевых сетях тех экосистем, которые он осваивал по мере расселения по Земле. Так, единственным врагом мамонта был человек, который, вместе с отступлением ледника и изменением климата стал одной из причин гибели этих северных слонов как вида.[ ...]

[ ...]

На основании изучения 14 пищевых сетей в сообществах Коэн обнаружил удивительное постоянство отношения числа «типов» жертвы к числу «типов» хищников, составлявшее примерно 3: 4. Дальнейшие данные, подтверждающие это соотношение, приводят Брайанд и Коэн , исследовавшие 62 аналогичные сети. График такой пропорциональности имеет тангенс угла наклона менее 1 как во флуктуирующих, так и в постоянных средах. Использование «типов» организмов, а не подлинных видов обычно дает не вполне объективные результаты , однако, хотя полученное при этом отношение жертва/хищник, возможно, занижено, его постоянство примечательно.[ ...]

В БЭ многие (но определенно не все) пищевые сети имеют большое количество первичных производителей, меньше потребителей и совсем немного высших хищников, что придает сети форму, приведенную на рис. 22.1, Ь. Всеядные в этих системах могут быть редки, в то время как редуценты находятся в изобилии. Модели пищевых сетей обеспечили потенциальную основу для плодотворного анализа потоков ресурсов как в БЭ, так и в ПЭ. Сложности возникают, однако, когда пытаются количественно определить потоки ресурсов и подвергнуть структуру сети и свойства стабильности математическому анализу. Оказывается, что многие из необходимых данных трудно выявить с определенностью, особенно в том, что касается организмов, которые функционируют более чем на одном трофическом уровне. Эго свойство создает не основную сложность исследований потоков ресурсов, но оно серьезно усложняет анализ стабильности. Утверждение, что более сложные системы являются более стабильными - поскольку разрушение одного вида или путей потоков просто переводит энергию и ресурсы на другие пути, а не блокирует путь для всего потока энергии или ресурсов - пока горячо обсуждается.[ ...]

Анализ большого числа промышленных пищевых сетей может, таким образом, выявить характеристики, не показанные в других подходах. В проекте экосистемы на рис. 22.5, например, сетевой анализ может отразить отсутствующий сектор или тип промышленной деятельности, который способен увеличить связанность. Эти темы дают богатую область для детальных исследований.[ ...]

Внутри каждой экосистемы трофические сети имеют хорошо выраженную структуру, которая характеризуется природой и количеством организмов, представленных на каждом уровне различных пищевых цепей. Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют не схемы пищевых сетей, а экологические пирамиды. Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме.[ ...]

Некоторый интерес представляет длина пищевых цепей. Ясно, что уменьшение доступной энергии при переходе к каждому последующему звену ограничивает длину пищевых цепей. Однако доступность энергии, видимо, не единственный фактор, поскольку длинные пищевые цепи часто встречаются в неплодородных системах, например в олиготрофных озерах, а короткие - в очень продуктивных, или эвтрофных, системах. Быстрое продуцирование питательного растительного материала может стимулировать быстрое выедание, в результате чего поток энергии концентрируется на первых двух-трех трофических уровнях. Эвтрофикация озер также изменяет состав планктонной пищевой сети «фитопланктон-крупный зоопланктон-хищная рыба», превращая его в микробно-детритную микрозоопланктонную систему, не столь способствующую поддержанию спортивного рыболовства.[ ...]

При неизменном энергетическом потоке в пищевой сети, или цепи, более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные1. Значительная часть энергии уходит на поддержание обмена веществ. Это правило «метаболизм и размеры особей», или правило Ю. Одума, обычно не реализуется в водных биоценозах при учете реальных условий обитания в них (в идеальных условиях оно имеет всеобщее значение). Связано это с тем, что мелкие водные организмы в значительной мере поддерживают свой обмен веществ за счет внешней энергии непосредственно окружающей их среды.[ ...]

Почвенная микрофлора имеет хорошо развитую пищевую сеть и мощный компенсационный механизм, основанный на функциональной взаимозаменяемости одних видов другими. Кроме того, благодаря лабильному ферментативному аппарату многие виды могут легко переключаться с одного питательного субстрата на другой, обеспечивая тем самым стабильность экосистемы. Это существенно усложняет оценку воздействия на нее различных антропогенных факторов и требует использование интегральных показателей.[ ...]

[ ...]

Прежде всего рандомизированно составленные пищевые сети часто содержат биологически бессмысленные элементы (например, петли такого типа: А поедает В, В поедает С, С поедает А). Анализ «осмысленно» построенных сетей (Lawlor, 1978; Pimm, 1979а) показывает, что (а) они устойчивее рассмотренных и (б) нет такого резкого перехода к неустойчивости (по сравнению с приведенным выше неравенством), хотя устойчивость по-прежнему падает с ростом сложности.[ ...]

21.2

Безусловно, да, если не в составе биогеоценозов - низших ступеней иерархии экосистем,- то уж, во всяком случае, в рамках биосферы. Люди из этих сетей получают пищу (агроценозы- видоизмененные экосистемы с природной основой). Только из «дикой» природы люди извлекают топливо - энергию, основные рыбные ресурсы, другие «дары природы». Мечта В. И. Вернадского о полной автотрофности человечества пока остается иррациональной мечтой1 - эволюция необратима (правило Л. Доло), как и исторический процесс. Без подлинных автотрофов, в основном растений, человек не может существовать как гетеротрофный организм. Наконец, если бы он физически не был включен в пищевые сети природы, то его тело после смерти не подвергалось бы разрушению организмами-редуцентами, и Земля была бы завалена несгнившими трупами. Тезис о раздельности человека и природных пищевых цепей основан на недоразумении и явно ошибочен.[ ...]

В гл. 17 анализируются способы объединения различных групп консументов и их пищи в сеть взаимодействующих элементов, по которой происходит передача вещества и энергии. В гл. 21 мы возвратимся к этой теме и рассмотрим влияние структуры пищевой сети на динамику сообществ в целом, обратив особое внимание на особенности их структуры, способствующие стабильности.[ ...]

Четырех примеров будет достаточно, чтобы проиллюстрировать основные особенности пищевых цепей, пищевых сетей и трофических уровней. Первый пример - регион Крайнего Севера, называемый тундрой, где обитает сравнительно немного видов организмов, успешно приспособившихся к низким температурам. Поэтому пищевые цепи и пищевые сети здесь относительно просты. Один из основателей современной экологии, британский эколог Ч. Элтон, поняв это, уже в 20-30-х годах нашего века занялся изучением арктических земель. Он одним из первых четко обрисовал принципы и концепции, связанные с пищевыми цепями (Elton, 1927). Растения тундры - лишайник («олений мох») С1а donia, злаки, осоки и карликовые ивы составляют пищу оленя карибу в североамериканской тундре и его экологического аналога в тундре Старого Света - северного оленя. Эти животные в свою очередь служат пищей волкам и человеку. Тундровые растения поедают также лемминги - пушистые короткохвостые грызуны, напоминающие медведя в миниатюре, и тундряные куропатки. Всю долгую зиму и все короткое лето песцы и полярные совы питаются в основном леммингами. Любое значительное изменение численности леммингов отражается и на других трофических уровнях, так как других источников пищи мало. Вот почему численность некоторых групп арктических организмов сильно колеблется от сверхизобилия до почти полного исчезновения. Подобное часто случалось в человеческом обществе, если оно зависело от одного или нескольких немногих источников пищи (вспомним «картофельный голод» в Ирландии1).[ ...]

Одно из следствий гипотезы устойчивости, которое в прин-пице можно проверить, это то, что в средах с менее предсказуемым поведением пищевые цепи должны быть короче, поскольку в них, по-видимому, сохраняются лишь наиболее упругие пищевые сети, а у коротких цепей упругость выше. Брай-анд (Briand, 1983) разделил 40 пищевых сетей (по собранным им данным) на связанные с изменчивой (позиции 1-28 в табл. 21.2) и постоянной (позиции 29-40) средами. Достоверных различий в средней длине максимальных пищевых цепей между этими группами не обнаружилось: число трофических уровней составило 3,66 и 3,60 соответственно (рис. 21.9). Эти положения еще нуждаются в критической проверке.[ ...]

Кроме того, результаты моделирования становятся иными, когда учитывается, что популяции консументов испытывают влияние со стороны пищевых ресурсов, а те от воздействия консументов не зависят (¡3,/Х), 3(/ = 0: так называемая «система, регулируемая донором»), В пищевой сети подобного типа устойчивость либо не зависит от сложности, либо повышается вместе с ней (DeAngelis, 1975). На практике единственной группой организмов, которая обычно удовлетворяет этому условию, являются детритофаги.[ ...]

Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Например, явление «трофического каскада», когда в результате хищничества происходит изменение плотности, биомассы или продуктивности популяции, сообщества или трофического уровня по более чем одной линии пищевой сети (Пейс и др., 1999). П. Митчел (2001) приводит такой пример: морские выдры питаются морскими ежами, которые едят бурые водоросли, уничтожение охотниками выдр привело к уничтожению бурых водорослей вследствие роста популяции ежей. Когда запретили охоту на выдр, водоросли стали возвращаться на свои места обитания.[ ...]

Зеленые растения преобразуют энергию фотонов солнечного света в энергию химических связей сложных органических соединений, которые продолжают свой путь по разветвленным пищевым сетям природных экосистем. Однако в некоторых местах (например, на болотах, в устьях рек и морях) часть органических растительных веществ, попав на дно, покрывается песком раньше, чем станет пищей для животных или микроорганизмов. При наличии определенной температуры и давления грунтовых пород в течение тысяч и миллионов лет из органических веществ образуются уголь, нефть и прочее ископаемое топливо или, по выражению В. И. Вернадского, «живое вещество уходит в геологию».[ ...]

Примеры пишевых цепей: растения - растительноядные животные -хищник; злак-полевая мышь-лиса; кормовые растения - корова - человек. Как правило, каждый вид питается не одним-единственным видом. Поэтому пищевые цепи переплетаются, образуя пищевую сеть. Чем сильнее организмы связаны между собой пищевыми сетями и другими взаимодействиями, тем устойчивее сообщество против возможных нарушений. Естественные, ненарушенные экосистемы стремятся к равновесию. Состояние равновесия основано на взаимодействии биотических и абиотических факторов среды.[ ...]

Например, уничтожение ядохимикатами хозяйственно значимых вредителей в лесах, отстрел части популяций животных, вылов отдельных видов промысловых рыб - это частичные помехи, поскольку они влияют лишь на отдельные звенья пищевых цепей, не затрагивая пищевых сетей в целом. Чем сложнее пищевая сеть, структура экосистемы, тем значимость таких помех меньше, и наоборот. В то же время выброс и сброс в атмосферу или воду химических ксенобиотиков, например оксидов серы, азота, углеводородов, соединений фтора, хлора, тяжелых металлов, радикально меняет качество среды, создает помехи на уровне продуцентов в целом, а значит, и ведет к полной деградации экосистемы: так как погибает основной трофический уровень - продуценты.[ ...]

Энергозависимая пропускная способность = (/гЛ -)/к В. Энергетическая схема примитивной системы в Уганде. Г. Энергетическая схема сельского хозяйства в Индии, где главным источником энергии служит свет, но поток энергии через скот н зерноаые регулируется человеком. Д. Энергетическая сеть высокомеханизированного сельского хозяйства. Высокие урожаи основаны на значительном вложении энергии путем использования ископаемого топлива, за счет которого выполняется работа, ранее производившаяся человеком и животными; при этом выпадает пищевая сеть животных и растений, которых приходилось «кормить» в двух предыдущих системах.[ ...]

Был предпринят целый ряд попыток проанализировать математически зависимость между сложностью сообщества и его устойчивостью, в большинстве из которых авторы пришли к примерно одинаковым выводам. Обзор таких публикаций дал Мей (May, 1981). В качестве примера рассмотрим его работу (May, 1972), демонстрирующую как сам метод, так и его недостатки. На каждый вид влияли его взаимодействия со всеми остальными видами; количественно влияние плотности вида / на рост численности i оценивалось показателем р. При полном отсутствии влияния равен нулю, у двух конкурирующих видов Рц и Pji отрицательны, в случае хищника (¿) и жертвы (/) Ру положителен, a jjji - отрицателен.[ ...]

Кислотные осадки вызывают летальные последствия для жизни в реках и водоемах. Многие озера Скандинавии и восточной части Северной Америки оказались настолько закисле-ны, что рыба не может не только нереститься в них, но и просто выжить. В 70-е годы в половине озер указанных регионов рыба полностью исчезла. Наиболее опасно подкисление океанических мелководий, ведущее к невозможности размножения многих морских беспозвоночных животных, что может вызвать разрыв пищевых сетей и глубоко нарушить экологическое равновесие в Мировом океане.[ ...]

Модели контролируемых донором взаимодействий по ряду признаков отличаются от традиционных моделей взаимодействий типа хищник-жертва Лотки-Воль-терры (гл. 10). Одно из важных отличий состоит в том, что как полагают, взаимодействующие группы видов, для которых характерна контролируемая донором динамика, особенно устойчивы и, далее, что эта устойчивость фактически не зависит от увеличения видового разнообразия и сложности пищевой сети или даже возрастает. Эта ситуация совершенно противоположна той, в которой применима модель Лотки-Вольтерры. Подробнее эти важные вопросы, касающиеся сложности пищевой сети и устойчивости сообщества, мы обсудим в гл. 21.

Последние материалы раздела:

Английский с носителем языка по skype Занятия английским по скайпу с носителем
Английский с носителем языка по skype Занятия английским по скайпу с носителем

Вы могли слышать о таком замечательном сайте для языкового обмена, как SharedTalk. К сожалению, он закрылся, но его создатель возродил проект в...

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...