Первое начало термодинамики формулы. Первое начало термодинамики -объяснение этого закона и практические примеры

Существует две формы передачи энергии от одних тел к другим — это совершение работы одних тел над другими и передача теплоты. Энергия механического движения может переходить в энергию теплового движения и наоборот. В таких переходах энергии выполняется закон сохранения энергии. В применении к процессам, рассматриваемым в термодинамике, закон сохранения энергии именуется первым законом (или первым началом) термодинамики. Этот закон является обобщением эмпирических данных.

Формулировка первого закона термодинамики

Первый закон термодинамики формулируют следующим образом:

Количество теплоты, которое подводится к системе, расходуется на совершение данной системой работы (против внешних сил) и изменение ее внутренней энергии. В математическом виде первый закон термодинамики можно записать в интегральном виде:

где - количество теплоты, которое получает термодинамическая система; - изменение внутренней энергии рассматриваемой системы; A - работа, которую выполняет система над внешними телами (против внешних сил).

В дифференциальном виде первый закон термодинамики записывают как:

где - элемент количества теплоты, который получает система; - бесконечно малая работа, которую выполняет термодинамическая система; - элементарное изменение внутренней энергии, рассматриваемой системы. Следует обратить внимание на то, что в формуле (2) - элементарное изменение внутренней энергии является полным дифференциалом, в отличие от и .

Количество теплоты считают положительным, если система тепло получает и отрицательным, если тепло отводится от термодинамической системы. Работа будет больше нуля, если ее совершает система, и работа будет считаться отрицательной, если она совершается над системой внешними силами.

В то случае, если система вернулась в первоначальное состояние, то изменение ее внутренней энергии будет равно нулю:

В таком случае в соответствии с первым законом термодинамики мы имеем:

Выражение (4) означает, что невозможен вечный двигатель первого рода. То есть, принципиально нельзя создать периодически действующую систему (тепловой двигатель), совершающую работу, которая была бы больше, чем количество теплоты, полученное системой извне. Положение о невозможности вечного двигателя первого рода, также является одним из вариантов формулировки первого закона термодинамики.

Примеры решения задач

ПРИМЕР 1

Задание Какое количество теплоты (), передано идеальному газу, имеющему объем V в процессе изохорного нагрева, если его давление изменяется на величину ? Считайте, что число степеней свободы молекула газа равно i.
Решение Основой для решения задачи является первый закон термодинамики, который мы будем использовать в интегральном виде:

Так как по условию задачи процесс с газом проводят изохорный (), то работа в данном процессе равна нулю, тогда первое начало термодинамики для изохорного процесса получит вид:

Изменение внутренней энергии определяют при помощи формулы:

где i - число степеней свободы молекулы газа; - количество вещества; R - универсальная газовая постоянная. Так как нам не известно, как изменяется температура газа в рассматриваемом процессе, то используем уравнение Менделеева - Клапейрона для того, чтобы найти :

Выразим из (1.4) температуру, запишем формулы для двух состояний рассматриваемой системы:

Используя выражения (1.5) найдем :

Из выражений (1.3) и (1.6) следует, что для изохорного процесса изменение внутренней энергии можно найти как:

А из первого начала термодинамики для нашего процесса (при ), имеем, что:

Ответ

ПРИМЕР 2

Задание Найдите изменение внутренней энергии кислорода (), работу совершенную им (A) и полученное количество теплоты () в процессе (1-2-3), который указан на графике (рис.1). Считайте, что м 3 ; 100 кПа; м 3 ; кПа.

Решение Изменение внутренней энергии не зависит от хода процесса, так как внутренняя энергия является функцией состояния. Она зависит только от конечного и начального состояний системы. Поэтому можно записать, что изменение внутренней энергии в процессе 1-2-3, равно:

где i - число степеней свободы молекулы кислорода (так как молекула состоит из двух атомов, то считаем ), - количество вещества, . Разность температур можно найти, если использовать уравнение состояния идеального газа и посмотреть на график процессов:

(как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты , переданного системе:

ΔU = A + Q ,

где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.

Из (ΔU = A + Q ) следует закон сохранения внутренней энергии . Если систему изолировать от вне-шних воздействий, то A = 0 и Q = 0 , а следовательно, и ΔU = 0 .

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q ) записывается в виде:

где A" — работа, совершаемая системой (A" = -A ).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника (т. е. только за счет внутренней энергии).

Действительно, если к телу не поступает теплота (Q - 0 ), то работа A" , согласно уравнению , совершается только за счет убыли внутренней энергии А" = -ΔU . После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа , так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится опреде-ленное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам.

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам .

Изохорный процесс.

Зависимость р(Т) на термодинамической диаграмме изображается изохо рой .

Изохорный (изохорический) процесс — термодинамический процесс, происходящий в систе-ме при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется (ΔV= 0 ), и, согласно первому началу термоди-намики ,

ΔU = Q ,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа (А = рΔV =0 ) газом не совершается.

Если газ нагревается, то Q > 0 и ΔU > 0 , его внутренняя энергия увеличивается. При охлаждении газа Q < 0 и ΔU < 0 , внутренняя энергия уменьшается.

Изотермический процесс.

Изотермический процесс графически изображается изотермой .

Изотермический процесс — это термодинамический процесс, про-исходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется, см. формулу , (Т = const ), то все переданное газу количество теплоты идет на совершение работы:

При получении газом теплоты (Q > 0 ) он совершает положительную работу (A" > 0 ). Если газ отдает тепло окружающей среде Q < 0 и A" < 0 . В этом случае над газом совершается работа внешними силами. Для внешних сил работа положительна. Геометрически работа при изотермичес-ком процессе определяется площадью под кривой p(V) .

Изобарный процесс.

Изобарный процесс на термодинамической диаграмме изображается изобарой .

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением р .

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе, согласно формуле , передаваемое газу количество теплоты идет на изменение его внутренней энергии ΔU и на совершение им работы A" при постоянном давлении:

Q = ΔU + A".

Работа идеального газа определяется по графику зависимости p(V) для изобарного процесса (A" = pΔV ).

Для идеального газа при изобарном процессе объем пропорционален температуре , в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс.

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой (Q = 0) .

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия U может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики (ΔU = А + Q ), в адиабатной системе

ΔU = A ,

где A — работа внешних сил.

При адиабатном расширении газа А < 0 . Следовательно,

,

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что дав-ление газа уменьшается более резко, чем при изотермическом процессе. На рисунке ниже адиабата 1-2, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема V 1 , до V 2 .

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Уравнение теплового баланса.

В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутрен-ней энергии какого-либо тела системы ΔU 1 не может приводить к изменению внутренней энергии всей системы. Следовательно,

Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: ΔU i = Q i . Учитывая , получим:

Это уравнение называется уравнением теплового баланса . Здесь Q i - количество теплоты , по-лученное или отданное i -ым телом. Любое из количеств теплоты Q i может означать теплоту, выделяемую или поглощаемому при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

Уравнение теплового баланса является математическим выражением закона сохранения энер-гии при теплообмене .

Первое начало термодинамики - один из трех основных законов термодинамики, представляющий собой закон сохранения энергии для систем, в которых существенное значение имеют тепловые процессы.

Согласно первому началу термодинамики, термодинамическая система (например, пар в тепловой машине) может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии.

Первое начало термодинамики объясняет невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Сущность первого начала термодинамики заключается в следующем:

При сообщении термодинамической системе некоторого количества теплоты Q в общем случае происходит изменение внутренней энергиисистемы DU и система совершает работу А:

Уравнение (4), выражающее первое начало термодинамики, является определением изменения внутренней энергии системы (DU), так как Q и А - независимо измеряемые величины.

Внутреннюю энергию системы U можно, в частности, найти, измеряя работу системы в адиабатном процессе (то есть при Q = 0): А ад = - DU, что определяет U с точностью до некоторой аддитивной постоянной U 0:

U = U + U 0 (5)

Первое начало термодинамики утверждает, что U является функцией состояния системы, то есть каждое состояние термодинамической системы характеризуется определённым значением U, независимо от того, каким путём система приведена в данное состояние (в то время как значения Q и А зависят от процесса, приведшего к изменению состояния системы). При исследовании термодинамических свойств физической систем первое начало термодинамики обычно применяется совместно со вторым началом термодинамики.

3. Второе начало термодинамики

Второе начало термодинамики является законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы.

В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д.

Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики возникло исторически при анализе работы тепловых машин.

Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «…невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым».

Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких–либо устройств без использования каких-либо других процессов.

В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара».

Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы.

Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери.

Кроме того, отсюда следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.

В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S).

Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения. В принципе можно определить общее число этих всевозможных состояний. Параметр, который характеризует общее число этих состояний, и есть энтропия.

Рассмотрим это на простом примере.

Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T 1 >T 2 . Тело «1» отдает некоторое количество тепла Q , а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии. По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения.

Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии dS ³ 0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны.

Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней.

Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность)

где k - постоянная Больцмана, P – статистический вес.

k = 1.37·10 -23 Дж/К.

Статистический вес Р пропорционален числу возможных микроскопических состояний элементов макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует возможное несоответствие микроскопического описания макросостояния.

Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

W = exp (S/k). (7)

Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются.

Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени.

Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в уравнении (7), приводит к изменению вероятности данного макросостояния W в огромное число раз.

Именно этот факт является причиной того, что для системы с большим числом частиц следствия второго начала термодинамики практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само второе начало термодинамики.

Буквальное применение второго начала термодинамики к Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как в природе в принципе не может существовать абсолютно изолированных систем. Как будет показано далее, в разделе неравновесной термодинамики, процессы, протекающие в открытых системах, подчиняются другим законам и имеют другие свойства.

Первое начало термодинамики

План

    Внутренняя энергия.

    Изопроцессы.

    Работы при изопроцессах.

    Адиабатический процесс.

    Теплоемкость.

    Внутренняя энергия тела.

Внутренняя энергия тела слагается из кинетической энергии поступательного и вращательного движения молекул, кинетической и потенциальной энергии колебательного движения атомов в молекулах, потенциальной энергии взаимодействия между молекулами и внутримолекулярной энергии (внутриядерной).

Кинетическая и потенциальная энергия тела как целого не входит во внутреннюю энергию.

Внутренняя энергия термодинамической системы тел слагается из внутренней энергии взаимодействия между телами и внутренней энергии каждого тела.

Работа термодинамической системы над внешними телами заключается в изменении состояния этих тел и определяется количеством энергии, которую термодинамическая система передает внешним телам.

Теплота - это количество энергии, представляемое системой внешним телам при теплообмене. Работа и теплота не являются функциями состояния системы, а функцией перехода из одного состояния в другое.

Термодинамической системой – называют такую систему, совокупность макроскопических тел, которые могут обмениваться энергией между собой и с внешней средой (с другими телами) (Например, жидкость и находящийся над ней пар). Термодинамическая система характеризуется параметрами:

P , V , T , ρ и т.д.

Состояния системы, когда хотя бы один из параметров изменяется, называется неравновесными.

Термодинамические системы, которые не обмениваются с внешними телами энергией, называются замкнутыми.

Термодинамический процесс – переход системы из одного состояния (P 1 , V 1 , T 1 ) в другое (P 2 , V 2 , T 2 ) – нарушение равновесия в системе.

    Первое начало термодинамики.

Количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Первый закон термодинамики - это специальный случай закона сохранения энергии, учитывающий внутреннюю энергию системы:

Q = U 2 - U 1 + A ;

U 1, U 2 - начальное и конечное значения внутренней энергии тела.

A - работа, совершаемая системой.

Q - Количество теплоты, сообщаемое системе.

В дифференциальном виде:

d Q = dU + d A ;

dU - есть полный дифференциал, и он зависит от разности начального и конечного состояния системы.

d Q и d A – неполные дифференциалы, зависят от самого процесса, то есть от пути совершения процесса. Работа совершается тогда, когда изменяется объем:

d A = Fdx = pSdx = pdV ;

d A = pdV ;

Первое начало термодинамики - невозможен вечный двигатель первого рода, то есть двигатель, который совершал бы работу в большем количестве, чем получаемая им извне энергия.

- не зависит от пути интегрирования.

- зависит от пути интегрирования функции процесса и нельзя записать:

A 2 - A 1 ; Q 2 - Q 1 ;

A , Q - не являются функциями состояния. Нельзя говорить о законе работы и теплоты.

Это и есть не что иное, как закон сохранения энергии.

    Изопроцессы.

1) Изохорический процесс:

V= с onst ;

Процесс при нагревании газа в замкнутом объеме.

d Q=dU+pdV,

pdV=0; d U=dU,

Первое начало термодинамики приобретает такой вид.

Теплоемкость при V - const :

Теплоемкость определяется отношение приращения полученного системой тепла к приращению температуры.

2) Изобарический процесс:

P = const ;

d Q = dU + d A ;

Разделим на dT (для 1 моля газа):

pV=RT,

Cp = Cv + R ,

3) Изотермический процесс:

T = const ,

P V = A ;

Поскольку внутренняя энергия зависит от T , то при изотермическом расширении dU =0:

d Q = d A ,

Подводимые к газу при изотермическом расширении тепло целиком превращается в работу расширения.

dQ стремится к ∞, dT стремится к 0.

4) Адиабатический процесс:

Без теплообмена с окружающей средой. Первое начало термодинамики приобретает вид:

d Q=0; dU+d A=0,

dU+d A=0; d A=-dU,

При адиабатическом процессе работа совершается только за счет убыли внутренней энергии газа.

Процессы, в которых d Q =0 - адиабатические. Адиабатические процессы всегда сопровождаются изменением температуры тела. Так как при адиабатическом расширении работа, совершается за счет внутренней энергии (1кал= 4,19 Дж).

    Работа при изопроцессах.

1) Изохорический процесс:

V = const

d A = pdV =0; A v =0,

Работа сил давления при равновесном процессе численно равна площади под кривой, изображающей процесс на PV - диаграмме:

d A = pdV .

2) Изобарический процесс:

p=const;

d A=pdV;

3) Изотермический процесс:

T = const ;

d A = pdV ;

dV= RT;

;

Равновесие процесса:

4) Адиабатический процесс:

d Q = dU + pdV ;

dU=-pdV,

d Q=0; dU=C v dT,

,

Интегрируем:

+ (γ-1)·lnV= const,

(TV γ-1 )= const,

(TV γ-1 ) = const – уравнение Пуассона

;

Р V γ = const .

6. Теплоемкость.

1) Теплоемкостью тела называют количество теплоты, которое надо сообщить телу, чтобы оно нагрелось на 1 0 С.

C p = C V + R ; C P > C V,

Теплоемкость можно отнести к единице массы, одному молю и единице объема. Соответственно: удельная, молярная, объемная ([Дж/кг*град]; [Дж/мол*град]; [Дж/м 3* град]).

2)Теплоемкость в реальных газах:

Внутренняя энергия моля:

N a k = R ,

– теплоемкость одного моля при неизменном объеме (v = const ).

;

теплоемкость одного моля при неизменном давление (p = const ).

Удельная теплоемкость.

[ ] ;

Функция состояния.

W = U + PV ; C p > C v

При нагревании с сохранением Р часть Q идет на расширение. Только расширяясь можно сохранять Р.

Изотерма: PV = const ;

Адиабата: PV γ = const ;

PV γ

Поскольку γ>1, то кривая адиабаты идет круче изотермы.

;

C v dT + pdV=0;

d A=pdV= - C v dT;

PV γ =P 1 V 1 γ ,


Внутренняя энергия может изменяться за счет в основном двух различных процессов: совершения над телом работы А и сообщения ему количества тепла Q. Совершение работы сопровождается перемещением внешних тел, воздействующих на систему. Так, например, при вдвигании поршня, закрывающего сосуд с газом, поршень, перемещаясь, совершает над газом работу Л. По третьему закону. Ньютона газ при этом совершает над поршнем работу

Сообщение газу тепла не связано с перемещением внешних тел и, следовательно, не связано с совершением над газом макроскопической (т. е. относящейся ко всей совокупности молекул, из которых состоит тело) работы. В этом случае изменение внутренней энергии обусловлено тем, что отдельные молекулы более нагретого тела совершают работу над отдельными молекулами тела, нагретого меньше. Передача энергии происходит при этом также через излучение. Совокупность микроскопических (т. е. захватывающих не все тело, а отдельные его молекулы) процессов, приводящих к передаче энергии от тела к телу, носит название теплопередачи.

Подобно тому как количество энергии, переданное одним телом другому, определяется работой А, совершаемой друг над другом телами, количество энергии, переданное от тела к телу путем теплопередачи, определяется количеством тепла Q, отданного одним телом другому. Таким образом, приращение внутренней энергии системы должно быть равно сумме совершенной над системой работы А и количества сообщенного системе тепла

Здесь - начальное и конечное значения внутренней энергии системы. Обычно вместо работы А, совершаемой внешними телами над системой, рассматривают работу А (равную -А), совершаемую системой над внешними телами. Подставив -А вместо А и разрешив уравнение (83.1) относительно Q, получим:

Уравнение (83.2) выражает закон сохранения энергии и представляет собой содержание первого закона (начала) термодинамики. Словами его можно выразить следующим образом: количество тепла, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Сказанное отнюдь не означает, что всегда при сообщении тепла внутренняя энергия системы возрастает. Может случиться, что, несмотря на сообщение системе тепла, ее энергия не растет, а убывает . В этом случае согласно (83.2) , т. е. система совершает работу как за счет получаемого тепла Q, так и за счет запаса внутренней энергии, убыль которой равна . Нужно также иметь в виду, что величины Q и А в (83.2) являются алгебраическими означает, что система в действительности не получает тепло, а отдает).

Из (83.2) следует, что количество тепла Q можно измерять в тех же единицах, что и работу или энергию. В СИ единицей количества тепла служит джоуль.

Для измерения количества тепла применяется также особая единица, называемая калорией. Одна калория равна количеству тепла, необходимому для нагревания 1 г воды от 19,5 до 20,5 °С. Тысяча калорий называется большой калорией или килокалорией.

Опытным путем установлено, что одна калория эквивалентна 4,18 Дж. Следовательно, один джоуль эквивалентен 0,24 кал. Величина называется механическим эквивалентом тепла.

Если величины, входящие в (83.2), выражены в разных единицах, то некоторые из этих величии нужно умножить на соответствующий эквивалент. Так, например, выражая Q в калориях, a U и А в джоулях, соотношение (83.2) нужно записать в виде

В дальнейшем мы будем всегда предполагать, что Q, А и U выражены в одинаковых единицах, и писать уравнение первого начала термодинамики в виде (83.2).

При вычислении совершенной системой работы или полученного системой тепла обычно приходится разбивать рассматриваемый процесс на ряд элементарных процессов, каждый из которых соответствует весьма малому (в пределе - бесконечно малому) изменению параметров системы. Уравнение (83.2) для элементарного процесса имеет вид

где - элементарное количество тепла, - элементарная работа и - приращение внутренней энергии системы в ходе данного элементарного процесса.

Весьма важно иметь в виду, что и нельзя рассматривать как приращения величин Q и А.

Соответствующее элементарному процессу А какой-либо величины можно рассматривать как приращение этой величины только в том случае, если соответствующая переходу из одного состояния в другое, не зависит от пути, по которому совершается переход, т. е. если величина f является функцией состояния. В отношении функции состояния можно говорить о ее «запасе» в каждом из состояний. Например, можно говорить о запасе внутренней энергии, которым обладает система в различных состояниях.

Как мы увидим в дальнейшем, величина совершенной системой работы и количество полученного системой тепла зависят от пути перехода системы из одного состояния в другое. Следовательно, ни Q, ни А не являются функциями состояния, в силу чего нельзя говорить о запасе тепла или работы, которым обладает система в различных состояниях.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...