Основы теплотехники. Первый и второй законы термодинамики

Третий закон, или третье начало термодинамики, называют также принципом Нернста.

Второй закон термодинамики позволяет определить не значение самой энтропии, а только лишь её изменение:

dS = δQ/T .

Но абсолютное значение энтропии можно вычислить с помощью третьего закона термодинамики. При этом необходимо помнить, что этот закон можно применять только к равновесным состояниям термодинамической системы.

Третий закон термодинамики формулируется следующим образом: «Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система ».

где х - любой термодинамический параметр системы (давление, объём и др.).

Теорема Нернста

Вальтер Герман Нернст

В 1906 г. немецкий химик Вальтер Герман Нернст опубликовал свою формулировку третьего закона термодинамики, которую называют теоремой Нернста. Он утверждал, что энтропия химически однородного тела при температуре, равной абсолютному нулю, также равна нулю .

Энтропия любой равновесной термодинамической системы при Т = 0 обозначается как S 0 . Учёные условились, что при Т = 0 S 0 также равна нулю.

Согласно теореме Нернста «при стремлении температуры к абсолютному нулю (Т → 0) энтропия любой равновесной термодинамической системы стремится к определённому конечному пределу S 0 , не зависящему от параметров состояния (давления, объёма и др.) системы, и может быть принята равной нулю ». Эта формулировка не единственная. Их существует несколько. Но смысл их всех одинаков: «энтропия любого тела при температуре абсолютного нуля также равна нулю ».

Считается, что если термодинамическая система переходит из одного состояния в другое при температуре, близкой к абсолютному нулю, то энтропия не изменяется.

Определение Планка

Макс Планк

В 1911 г. немецкий физик-теоретик Макс Планк дал своё определение третьего закона термодинамики: «При стремлении температуры к абсолютному нулю энтропия всех тел также стремится к нулю».

В формуле Планка энтропия вычисляется через термодинамическую вероятность W .

S = k·lnW

При температуре абсолютного нуля термодинамическая система находится в квантово-механическом состоянии, которое можно описать единственным микростоянием. В этом случае W = 1. S 0 = k · ln1=0 .

Итак, энтропия термодинамической системы равна нулю при Т = 0 . Примем это состояние за начальное. Теперь мы сможем вычислить энтропию в любой другой точке термодинамической системы. Так как S 0 = 0 , то энтропия в любой другой точке системы будет равна её абсолютному значению.

Чтобы охладить термодинамическую систему до абсолютного нуля, нужно отводить теплоту и уменьшать температуру системы. Теплота отводится в результате изотермического процесса, а температура уменьшается адиабатически. Следовательно, эти процессы нужно чередовать. Но если отводится теплота, то изменяется энтропия. Согласно теореме Нернста, изменения энтропии при Т → 0 не происходит. Поэтому абсолютного нуля достичь невозможно. К нему можно только приблизиться.

Теорему Нернста невозможно доказать математически, но её справедливость подтверждена многочисленными экспериментами.

Обмен энергиями сопровождает все явления в окружающем нас мире.

ОПРЕДЕЛЕНИЕ

Термодинамика - это наука, которая разрабатывает общие методы исследования энергетических явлений.

Данная наука является разделом молекулярной физики. Термодинамика рассматривает макроскопические свойства тел и явлений, не занимаясь молекулярным строением вещества. Но, не смотря на общие выводы, термодинамика дает возможность сделать предположения относительно течения микропроцессов.

Основные законы термодинамики

Открытие закона сохранения энергии дало начало термодинамическим исследованиям. Термодинамику считают количественной теорией тепловых процессов. Развитие техники, появление первых тепловых двигателей дало толчок для развития данной науки. Первой задачей термодинамики стало: получение оптимальных условий использования теплоты при совершении работы. Термодинамику называют описательной (феноменологической) теорией.

Для описания процессов обмена энергией в термодинамике применяют понятия и величины, смысл которых не связан с представлениями о микромире. Это так называемые макроскопические (феноменологические, термодинамические) параметры. Данные понятия имеют смысл только для макроскопических тел.

Достоинством термодинамического метода можно считать то, что термодинамические методы и соотношения не сохраняются при развитии или даже принципиальном изменении представлений о строении вещества. Общие термодинамические соотношения можно применять к веществам в любом состоянии (газам, твердым телам, жидкостям, даже электромагнитному излучению).

К недостаткам термодинамического метода можно отнести то, что для применения общих соотношений термодинамики для конкретных случаев необходима информация о свойствах вещества. Это требует опытного исследования каждого конкретного вещества.

Начала термодинамики

Основой термодинамики являются три фундаментальных закона, которые называют началами термодинамики. Они установлены, как обобщение большого числа эмпирических фактов. Выводы термодинамики имеют общий характер.

Первое начало является применением закона сохранения энергии к тепловым явлениям:

где - количество теплоты, которое получает система; - изменение внутренней энергии системы; - работа, которую совершает термодинамическая система. Закон сохранения энергии для теплоты в (1) записан в интегральном виде. Первое начало термодинамики означает: Количество теплоты, подводимое к термодинамической системе, расходуется на совершение этой системой работы и изменение ее внутренней энергии. Считается, что если теплота к системе подводится, то она больше нуля ( title="Rendered by QuickLaTeX.com" height="17" width="65" style="vertical-align: -4px;">) и если работу выполняет сама термодинамическая система, то она положительна ( title="Rendered by QuickLaTeX.com" height="12" width="48" style="vertical-align: 0px;">).

В дифференциальном виде первое начало термодинамики принимает вид:

где - бесконечно малое количество теплоты, которое получает система; - элементарная работа, выполняемая системой; - ее малое изменение внутренней энергии.

Первое начала термодинамики ни как не указывает на направление развития процесса. Для этого существует второе начало. Оно определяет направление развития процессов, исследуемых термодинамикой. Согласно данному началу теплота не может целиком превращаться в работу. Формулировок второго начала термодинамики несколько. Приведем одну из них:

В любом процессе, который происходит в замкнутой системе, энтропия не убывает. В виде формулы второй закон термодинамики можно представить как:

где - энтропия; - путь, по которому система переходит из одного состояния в другое. Данная формулировка второго начала термодинамики базируется на определении энтропии как функции состояния термодинамической системы.

Энтропией называют функцию состояния термодинамической системы, элемент которой в обратимом процессе равен:

В соответствии со вторым началом термодинамики в необратимом элементарном процессе изменение энтропии:

Title="Rendered by QuickLaTeX.com">

При помощи третьего начала накладываются ограничения на процессы, утверждается неосуществимость процессов, которые бы вели к достижению термодинамического нуля температуры. Третье начало термодинамики носит название теоремы Нернста. Смысл данной теоремы можно свети к двум утверждениям:

Теорему Нернста можно сформулировать так: При температуре системы стремящейся к нулю энтропия стремится к нулю, и это не зависит от значений других параметров термодинамической системы.

Все термодинамические законы относятся к телам, количество молекул которых очень велико (макроскопические тела).

Примеры решения задач

ПРИМЕР 1

Задание Какое количество теплоты следует сообщить идеальному газу объемом , для того чтобы при изохорном нагревании его давление изменилось на ? Считайте, что число степеней свободы молекулы газа равно .
Решение

Так как по условию задачи проводят изохорный процесс, то работа в таком процессе равна нулю, следовательно, первое начало термодинамики преобразуется к виду:

Изменение внутренней энергии идеального газа найдем, используя формулу:

Состояние идеального газа можно описывать при помощи уравнения Менделеева - Клапейрона:

Записывая уравнение (1.4) для начального и конечного состояний газа в проводимом процессе, найдем изменение температуры ():

Используя формулы (1.2), (1.3) и (1.5), получим:

Ответ

ПРИМЕР 2

Задание Какое количество теплоты было подведено к идеальному газу в процессе, который представлен на рис.1, если работа газа в нем равна A? Число степеней свободы молекулы газа считайте равным .

Решение В качестве основы для решения задачи будем считать первое начало термодинамики в интегральном виде:

Является частным случаем закона сохранения и превращения энергии. Этот закон утверждает, что энергия не исчезает и не возникает вновь, а лишь переходит из одного вида в другой в различных процессах. Значит, если телу сообщить количество теплоты Q , то оно израсходуется на изменение внутренней энергии тела?U и на совершение внешней работы L :

Это соотношение представляет собой аналитическое выражение первого закона термодинамики для неподвижных тел.

В дифференциальной форме этот закон можно записать:

Или , или . (1)

Если в уравнение (1) подставить (связь между механической и технической работой), то получим:

Выражение (u +pv ) является калориметрическим параметром состояния тела. В технической термодинамике этот параметр называют энтальпией и обозначают буквой Н и измеряют в Дж, удельную энтальпию обозначают h и измеряют в Дж/кг, то есть

Энтальпия - это сумма внутренней энергии и упругостной энергии газа (потенциальной энергии давления).

Следовательно, первый закон термодинамики может быть записан так:

.

В изобарном процессе (р = const) vdp = 0, следовательно .

Для идеальных газов справедливы соотношения:

Второй закон термодинамики связан с необратимостью всех естественных процессов и является опытным законом, основывающимся на многовековых наблюдениях ученых, однако установлен он был только в середине XIX века. Являясь статическим законом, второй закон термодинамики отражает поведение большого числа частиц, входящих в состав изолированной системы. В системах, состоящих из малого количества частиц, могут иметься отклонения от второго закона термодинамики.

Самым вероятным состоянием изолированной термодинамической системы является состояние ее внутреннего равновесия, которому соответствует достижение максимального значения энтропии. Поэтому второй закон называют законом возрастания энтропии. В этой связи его можно сформулировать в виде следующего принципа: энтропия изолированной системы не может убывать .

Энтропия - это параметр состояния рабочего тела, устанавливающий связь между количеством теплоты и температурой. Для ее определения запишем уравнение первого закона термодинамики в таком виде

.

Разделим данное выражение на Т , а р заменим на , получим:

или .

Выражение говорит о том, что является полным дифференциалом некоторой функции s , являющейся параметром состояния, поскольку она зависит только от двух параметров состояния газа и не зависит от того, каким путем газ перешел из одного состояния в другое. Энтропию обозначают буквой S и измеряют в Дж/К. Энтропию, отнесенную к 1 кг газа, называют удельной энтропией и обозначают буквой s и измеряют в кДж/(К?кг).


Таким образом, .

Второй закон термодинамики представляет собой обобщение изложенных положений и постулатов, применительных к тепловым двигателям и заключается в следующем:

1. Самопроизвольное протекание естественных процессов возникает и развивается при отсутствии равновесия между участвующей в процессе термодинамической системой и окружающей средой.

2. Самопроизвольно происходящие в природе естественные процессы, работа которых может быть использована человеком, всегда протекает лишь в одном направлении от более высокого потенциала к более низкому.

3. Ход самопроизвольно протекающих процессов происходит в направлении, приводящем к установлению равновесия термодинамической системы с окружающей средой, и по достижении этого равновесия процессы прекращаются.

4. Процесс может протекать в направлении, обратном самопроизвольному процессу, если энергия для этого заимствуется из внешней среды.

Все эти формулировки , различающиеся по форме, эквивалентны друг другу по существу, так как они напрямую связаны с принципом невозможности убывания энтропии: .

    Первый закон термодинамики – изменение внутренней энергии системы при переходе из одного состояния в другое равно сумме количества теплоты, подведенной к системе из вне и работе внешних сил действующих на нее:U = Q + A .

Аналитические выражения :

Через внутреннюю энергию и работу: dq = du + pdV

Через энтальпию: dq=dh-Vdp

    Второй закон термодинамики применительно к циклам. Энтропия.

- Теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратное состояние.

- Не вся теплота полученная от теплоотдачи, может перейти в работу, а только ее часть. Часть теплоты должна перейти в теплоприемник.

Энтропия – это параметр состояния рабочего тела устанавливающий связь между количеством теплоты и температурой. S = Ms измеряется вДж/К.

Аналитически энтропия определяется следующим образом: dS =сигма q / T .

    Круговые термодинамические процессы (прямые и обратные циклы). Цикл Карно. Термический КПД цикла.

Прямой цикл

Обратный цикл

Ɛ= q 2/ l ц= q 2/(q 1- q 2), Ɛ- холод. Коэф.

Работа совершаемая из вне.

Невозможная самопроизв. Подача тепла от холодного к горячему.

Цикл Карно - идеальный термодинамический цикл. Состоит из 2 адиабатических и 2 изотермических процессов.

Работа совершаемая самой системой.

    Теплоемкость. Определение С p и Cv и связь между ними.

Теплоемкость – кол-во теплоты, которое необходимо сообщать телу, чтобы изменить его на 1 градус. физическая величина , определяющая отношение бесконечно малого количества теплоты δQ , полученного телом, к соответствующему приращению его температуры δT.

- При постоянном обьеме,равная отношению кол-ва теплоты подведенной к телу в процессе при постоянном обьеме, к изменению температуры тела.

- При постоянном давлении, равная отношению кол-ва теплоты, сообщаемой телу в процессе при постоянном давлении, к изменению температуры телаdT.

Связь - Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

    Водяной пар как рабочее тело, p - v , T - s , h - s диаграммы.

Водяной пар является рабочим телом большинства тепловых механизмов. Газообразное состояние воды. Не имеет цвета, вкуса и запаха. Содержится в тропосфере.

1-2 нагрев воды до кипения

2-3 парообразование

3-4 перегрев пара

1-2 нагрев

2-3 кипение(парообразование)

3-4 перегрев

ВНП- влажный насыщщеный пар

диаграмма водяного пара для паровых процессов и циклов теплоэнергетич установок.

    Основные хар-ки водяного пара: насыщенный и перегретый пар, теплота парообразования.

Насы́щенный пар - это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава . Он имеет температуру зависящую от давления среды в которой происходит процесс кипения.

Перегре́тый пар - пар , нагретый до температуры, превышающей температуру кипения при данном давлении. Перегретый пар используется в циклах различных тепловых машин с целью повышения их КПД . Получение перегретого пара происходит в специальных устройствах - пароперегревателях .

    Теплота парообразования вещества - количество теплоты, необходимое для перевода 1 моля вещества в состояние пара при температуре кипения. Измеряется в Джоулях.

    Термодинамические процессы идеальных газов. Классификация, уравнение состояния, значение показателя “ n ” в обобщающем уравнении pv ^ n = const для основных процессов.

Основные процессы идеальных газов:

Изохорный (протекающий при постоянном обьеме)

Изобарный (при постоянном давлении)

Изометрический (при постоянном t)

Адиабатный (процесс, при котором отсутствует теплообмен с окружающей средой)

Политропный (удовлетвор. уравнение pv^n=const

Уравнение состояния: pv = RT или pv / T = P

pv ^ n = const ; показатель политропы может принимать любое значение от

    Термодинамический анализ процессов в компрессорах.

Терм. анализом компрессора является определенная работа, затрачиваемая на сжатие рабочего тела при заданных начальных и конечных параметрах. Обычно в компрессорах осуществляется политропное сжатие с показателем политропы n=1,2.

    Виды и количественные хар-ки переноса тепла. Понятие теплоотдачи и теплопередачи.

Теплопрово́дность - это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.).

Конве́кция (от лат. convectiō - «перенесение») - явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н.естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. Вынужденная – Сама вызывает движение среды.

Тепловое излучение – передача тепла с помощью электро магнитных колебаний с различной длиной волны. Актуально при высоких температурах.

Колич. Хар-ки.

[Дж] – кол-во тепла

[Дж/с] – тепловой поток

[Вт/м^2] – плотность теплового потока

Теплоотдача – передача тепла от среды к стенке или от стенки к среде.

Теплопередача – суммарная передача тепла от одной среды к другой.

    Уравнение теплопроводности для плоской стенки. Физический смысл коэффициента теплопроводности.

Температура изменяется только в направлении по оси х.

Q=λ/толщ.стенки * (tст1 – tст2) F * τ

λ – коэф.теплопроводности матер.стенки

tст1 – tст2 – разность t поверх. стенки

F – поверхность стенки

Тау – время.

Λ – коэф-т теплопроводности [Вт/м*К] – характеризует скорость передачи тепла.

    Конвективный теплообмен: закон Ньютона-Рихмана, коэффициент теплоотдачи и факторы, флияющие на его величину.

Конвективный теплообмен – обмен тепловой энергии между поверхностью твердого тела и окруж. ее средой.

Закон Нью́тона - Ри́хмана - эмпирическая закономерность, выражающая тепловой поток между разными телами через температурный напор.

Кол-во теплоты перед конвенцией рассчитывается по ур-ию теплоот. Ньютона-Рихмана Q=aF(tст – tж) а – коэф. теплоотдачи.

коэффициент теплоотдачи- плотность теплового потока при перепаде температур на 1K, измеряется в Вт/(м²·К).

Он зависит:

    от вида теплоносителя и его температуры;

    от температуры напора, вида конвекции и режима течения;

    от состояния поверхности и направления обтекания;

    от геометрии тела.

    Виды критериальных уравнений конвективного теплообмена. Физический смысл критериев подобия Nu , Re , Gr , Pr .

Nu = αl/λ Nu = f(Re1 * Pr) - критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью(газом);

Ест: Nu = f(Gr1*Pr) → Nu = C(Gr*Pr)^n

Вын: Nu = C * Re^n * Pr^m * (Prж/ Pr ст) Re = w·l/v , w – м/с, v – кинет. Вязкость, м/с, l – хар-ка разницы - критерий Рейнольдса , характеризует соотношение сил инерции и вязкости и определяет характер течения жидкости (газа); Gr = gl 3 /ν 2 * β(tст – tж) ; β= 1/Т - критерий Грасгофа(естественная конвекция) , характеризует подьемную силу, возникающую в жидкости (газе) вследствие разности плотностей; Pr = (М ·c p)/λ; М – динамика вязкости; Ср - теплоемкость - критерий Прандтля , характеризует физические свойства жидкости (газа);

l – определяющий размер (длина, высота, диаметр).

Термодинамика первоначально возникла как наука о превращениях теплоты в работу. Однако законы, лежащие в основе термодинамики, имеют настолько общий характер, что в настоящее время термодинамические методы с большим успехом применяются для исследования многочисленных физических и химических процессов и для изучения свойств вещества и излучения. Как уже отмечалось в § 79, при изучении свойств и процессов превращения вещества термодинамика не вдается в рассмотрение микроскопической картины явлений. Она рассматривает явления, опираясь на извлеченные из опыта основные законы (начала). По этой причине выводы, к которым приходит термодинамика, имеют такую же степень достоверности, как и лежащие в ее основе законы. Последние же являются обобщением огромного количества опытных данных.

Основу термодинамики образуют ее два начала. Первое начало устанавливает количественные соотношения, имеющие место при превращениях энергии из одних видов в другие. Второе начало определяет условия, при которых возможны эти превращения, т. е. определяет возможные направления процессов.

Первое начало термодинамики утверждает, что количество тепла, сообщаемое системе, затрачивается на приращение внутренней энергии системы и совершение системой работы над внешними телами:

или в дифференциальной форме:

(104.2)

(см. (83.2) и (83.4)).

Первое начало иногда формулируется следующим образом: невозможен перпетуум мобиле (вечный двигатель) первого рода, т. е. такой периодически действующий двигатель, который совершал бы работу в большем количестве, чем получаемая им извне энергия.

Всякий двигатель представляет собой систему, совершающую многократно некий круговой процесс (цикл). Пусть в ходе цикла рабочее вещество (например, газ) сначала расширяется до объема а затем снова сжимается до первоначального объема (рис. 104.1). Чтобы работа за цикл была больше нуля, давление (а следовательно, и температура) в процессе расширения должно быть больше, чем при сжатии. Для этого рабочему веществу нужно в ходе расширения сообщать тепло, а в ходе сжатия отнимать от него тепло.

Совершив цикл, рабочее вещество возвращается в исходное состояние. Поэтому изменение внутренней энергии за цикл равно нулю. Количество тепла, сообщаемого рабочему телу за цикл, равно где - тепло, получаемое рабочим телом при расширении, - тепло, отдаваемое при сжатии. Работа А, совершаемая за цикл, равна площади цикла (см. § 84). Таким образом, выражение (104.1), написанное для цикла, имеет вид

Периодически действующий двигатель, совершающий работу за счет получаемого извне тепла, называется тепловой машиной. Как следует из (104.3), не все получаемое извне тепло используется для получения полезной работы. Для того чтобы двигатель работал циклами, часть тепла, равная должна быть возвращена во внешнюю среду и, следовательно, не используется по назначению (т. е. для совершения полезной работы). Очевидно, что чем полнее превращает тепловая машина получаемое извне тепло в полезную работу А, тем эта машина выгоднее. Поэтому тепловую машину принято характеризовать коэффициентом полезного действия (сокращенно к. п. д.), который определяется как отношение совершаемой за цикл работы А к получаемому за цикл теплу

Приняв во внимание соотношение (104.3), выражение для к. п. д. можно записать в виде

Из определения к. п. д. следует, что он не может быть больше единицы.

Если обратить цикл, изображенный на рис. 104.1, получится цикл холодильной машины. Такая машина отбирает за цикл от тела с температурой количество тепла и отдает телу с более высокой температурой количество тепла Над машиной за цикл должна быть совершена работа А. Эффективность холодильной машины характеризуют ее холодильным коэффициентом, который определяют как отношение отнятого от охлаждаемого тела тепла к работе А, которая затрачивается на приведение машины в действие:

Второе начало термодинамики, как и первое, может быть сформулировано несколькими способами. С одной из формулировок мы познакомились в § 103. Она заключается в утверждении о том, что энтропия изолированной системы не может убывать:

Клаузиус сформулировал второе начало следующим образом: невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого к телу более нагретому. Не следует представлять дело так, что второе начало вообще запрещает переход тепла от тела менее нагретого к телу более нагретому. В холодильной машине как раз совершается такой переход. Однако этот переход не является единственным результатом процесса. Он сопровождается изменениями в окружающих телах, связанными с совершением над системой работы А.

Покажем, что совершаемый в изолированной системе воображаемый процесс, противоречащий второму началу в формулировке Клаузиуса, сопровождается уменьшением энтропии. Тем самым мы докажем эквивалентность формулировки Клаузиуса и статистической формулировки второго начала, согласно которой энтропия изолированной системы не может убывать.

Предварительно сделаем следующее замечание. Допустим, что некоторое тело обменивается теплом с другим телом, которое мы будем называть тепловым резервуаром. Пусть теплоемкость резервуара бесконечно велика. Это означает, что получение или отдача резервуаром конечного количества тепла не изменяет его температуры. Протекающий в теле процесс, сопровождающийся обменом теплом с резервуаром, может быть обратимым только в том случае, если в ходе этого процесса температура тела будет равна температуре соответствующего резервуара. В самом деле, если, например, тело получает тепло от резервуара с температурой имея температуру, меньшую чем то при протекании того же процесса в обратном направлении тело сможет вернуть резервуару полученное от него тепло в том случае, если его температура во всяком случае не ниже чем

Следовательно, при прямом и обратном ходе процесса температура тела будет различна, тело проходит в обоих случаях через различные последовательности состояний (характеризующиеся неодинаковыми температурами), и рассматриваемый процесс будет необратимым.

Таким образом, процесс, сопровождающийся теплообменом, может быть обратимым только в том случае, если, получая тепло и возвращая его при обратном ходе резервуару, тело имеет одну и ту же температуру, равную температуре резервуара. Строго говоря, при получении тепла температура тела должна быть на бесконечно малую величину меньше температуры резервуара (иначе тепло не потечет от резервуара к телу), а при отдаче тепла температура тела должна быть на бесконечно малую величину выше температуры резервуара.

Следовательно, единственным обратимым процессом, сопровождающимся теплообменом с резервуаром, температура которого остается неизменной, является изотермический процесс, протекающий при температуре резервуара.

Рассмотрим изолированную систему, состоящую из двух тел с одинаковой теплоемкостью С. Пусть тело В передает телу А количество тепла Q, в результате чего температура тела А повышается от значения до , а температура тела В уменьшается от значения до Такой процесс противоречит второму началу в формулировке Клаузиуса. Найдем изменение энтропии в данном случае.

В ходе указанного процесса происходит теплообмен между телами с неодинаковыми температурами. Согласно сказанному выше такой процесс необратим. Формула же (103.20) применима только к обратимым процессам. Для того чтобы найти изменение энтропии при необратимом процессе, поступают следующим образом. Рассматривают какой-либо обратимый процесс, приводящий систему в то же конечное состояние, что и данный необратимый процесс, и вычисляют для этого процесса приращение энтропии по формуле

(104.7)

(см. (103.20)).

В соответствии со сказанным выше рассмотрим обратимый процесс, в ходе которого тело В отдает тепло Q порциями последовательно ряду резервуаров с температурами, имеющими все значения от до а тело А получает тепло Q порциями от ряда резервуаров с температурами от до . В результате система перейдет обратимо из состояния, в котором тела имеют температуры в состояние, в котором температуры тел равны

На первый взгляд может показаться, что такой формулировке противоречит, например, процесс изотермического расширения идеального газа. Действительно, все полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу - не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объема газа.

В тепловой машине превращение тепла в работу обязательно сопровождается дополнительным процессом - передачей некоторого количества тепла более холодному телу, вследствие чего получаемое от более нагретого тела количество тепла не может быть превращено полностью в работу.

Легко убедиться в том, что утверждение, содержащееся в формулировке Кельвина, логически вытекает из утверждения, заключающегося в формулировке Клаузиуса. В самом деле, работа может быть полностью превращена в тепло, например, при посредстве трения. Поэтому, превратив с помощью процесса, запрещенного формулировкой Кельвина, тепло, отнятое от какого-нибудь тела, полностью в работу, а затем превратив эту работу при посредстве трения в тепло, сообщаемое другому телу с более высокой температурой, мы осуществили бы процесс, невозможный согласно формулировке Клаузиуса.

Используя процессы, запрещаемые вторым началом термодинамики, можно было бы создать двигатель, совершающий работу за счет тепла, получаемого от такого, например практически неисчерпаемого источника энергии, как океан.

Практически такой двигатель был бы равнозначен вечному двигателю. Поэтому второе начало термодинамики иногда формулируется следующим образом: невозможен перпетуум мобиле второго рода, т. е. такой периодически действующий двигатель, который получал бы тепло от одного резервуара и превращал это тепло полностью в работу.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...