Описание физических свойств железа по плану. Железо

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.


Польза железа для организма

Главной функцией железа в организме принято считать образование гемоглобина. Это не удивительно, ведь в его составе содержится три четвертых запасов железа. А вот в составе других белковых структур процент железа относительно невысок – около 5%.

Зачем нужен гемоглобин? Белок, содержащий большое количество железа, связывает молекулы кислорода, которые с кровью переносятся к рабочим тканям и органам. Вот почему снижение количества гемоглобина в крови немедленно сказывается на общем самочувствии и работоспособности. Так что даже незначительная потеря крови чревата для организма нарушениями. Для спортсменов нехватка железа чревата нарушением восстановления после интенсивной физической нагрузки.

В числе других функций железа, можно перечислить такие как:

  • Энергетическая подпитка мышц. Самый «дешевый» источник топлива для мышц – это кислород. Благодаря его преобразованию в процессе ряда химических реакций мышца получает энергию для сокращения. Помимо кислорода используются и другие источники энергии. Это фосфаты, содержащиеся в клетках, – креатинфосфат и АТФ, а также гликоген мышц и печени. Однако их запасы слишком малы для поддержания работы длительностью более 1 минуты. Креатинфосфата хватает на работу длительностью до 10 секунд, АТФ – на 2-3 секунды. Чем выше концентрация гемоглобина в крови, тем больше кислорода он способен подать в рабочие ткани и органы. А вот дефицит железа может вызывать мышечные спазмы, усиливающиеся в период покоя (сна, сидения).
  • Энергетическая подпитка мозга. Кислород необходим мозгу так же, как и мышцам. Более того, дефицит железа чреват развитием болезни Альцгеймера, деменции (приобретённое слабоумие) и других заболеваний, вызванных нарушениями мозговой деятельности.
  • Регуляция температуры тела. Эта функция выполняется железом опосредованно. Стабильность концентрации железа в крови обусловливает адекватность протекания всех метаболических процессов.
  • Укрепление иммунитета. Микроэлемент необходим для кроветворения. Белые (лимфоциты) и красные (эритроциты) кровяные клетки формируются в присутствии железа. Первые отвечают за иммунитет, а вторые снабжают кровь кислородом. Если в организме количество железа соответствует норме, он способен самостоятельно противостоять заболеваниям. Как только концентрация железа снижается, инфекционные заболевания дают о себе знать.
  • Развитие плода. Во время беременности важно употреблять достаточное количество железа, так как часть расходуется при кроветворении у плода. А вот недостаток железа повышает риск преждевременных родов, провоцирует недостаточный вес у новорожденного и нарушение в развитии.

Как железо взаимодействует в организме

Сама по себе нормальная концентрация железа в организме еще не гарантирует хорошее самочувствие, высокий иммунитет, отсутствие заболеваний и работоспособность. Не менее важно взаимодействие этого микроэлемента с другими веществами, ведь функции одних могут отрицательно влиять на функции других.

Избегайте сочетания железа с:

  • витамином Е и фосфатами: нарушается усваивание железа;
  • Тетрациклином и фторхинолонами: тормозится процесс всасывание последних;
  • Кальцием: нарушается процесс абсорбции железа;
  • молоком, кофе и чаем – всасывание железа ухудшается;
  • цинком и медью – нарушается процесс всасывания в кишечнике;
  • соевым белком – усваивание подавляется;
  • хромом: железо подавляет его всасывание.

А вот аскорбиновая кислота, сорбит, фруктоза и янтарная кислота улучшают всасывание железа организмом.

Эти нюансы обязательно учитываются во время приема железосодержащих препаратов, так как можно вместо улучшения самочувствия получить противоположный эффект.

Роль железа в возникновении и течении различных заболеваний

Существует множество заболеваний, при которых употребление продуктов богатых железом может усугубить ситуацию.

Люди с повышенным уровнем железа в организме больше подвержены риску инфекций, сердечных заболеваний и некоторых видов онкологии (особенно мужчины).

В виде свободных радикалов железо провоцирует развитие атеросклероза. То же самое касается ревматоидного артрита. Употребление железа при этом заболевании провоцирует воспаление суставов.

При индивидуальной непереносимости железа употребление некоторых продуктов вызывает изжогу, тошноту, запоры и диарею.

При беременности избыток железа повышает риск развития патологии плаценты (увеличивается свободно-радикальное окисление в результате чего гибнут митохондрии – кислородные «депо» клеток).

При патологических нарушениях усвоения железа повышен риск заболевания гемохроматоз – накопление железа во внутренних органах (печени, сердце, поджелудочной железе).

В каких продуктах содержится железо


Запасы железа пополняют за счет продуктов животного и растительного происхождения. Первые содержат «гемовое» железо, вторые – «негемовое».

Для усвоения гемового употребляют продукты животного происхождения – телятину, говядину, свинину, крольчатину и субпродукты (печень, почки). Для получения пользы от негемового нужно одновременно с железосодержащими продуктами употреблять витамин С .

Рекордсменами по содержанию железа считаются такие продукты растительного происхождения, мг Fe2+:

  • арахис – в 200 г продукта содержится 120;
  • соя – в 200 г продукта – 8,89;
  • картофель – в 200 г продукта – 8,3;
  • фасоль белая– в 200 г продукта – 6,93;
  • бобы – в 200 г продукта – 6,61;
  • чечевица – в 200 г продукта – 6,59;
  • шпинат – в 200 г продукта – 6,43;
  • свекла (ботва) – в 200 г продукта – 5,4;
  • нут – в 100 г продукта – 4,74;
  • брюссельская капуста– в 200 г продукта – 3,2;
  • капуста белокочанная– в 200 г продукта – 2,2;
  • зеленый горошек – в 200 г продукта – 2,12.

Из злаковых в рацион лучше включать овсяную и гречневую крупы, непросеянную муку, ростки пшеницы. Из трав тимьян, сезам (кунжут). Много железа содержится в сушеных белых грибах и лисичках, абрикосах, персиках, яблоках, сливе, айве. А также инжире, гранате и сухофруктах.

В числе продуктов животного происхождения запасы железа в говяжьих почках и печени, рыбе, яйцах (желток). В мясных продуктах – телятине, свинине, крольчатине, индейке. Морепродукты (моллюски, улитки, устрицы). Рыба (скумбрия, горбуша).

Усвояемость железа

Интересно, что при употреблении мясных продуктов железо усваивается на 40-50%, при употреблении рыбных продуктов – на 10%. Рекордсмен по усвоению железа– печень животных.

Из продуктов растительного происхождения процент железа, который усваивается, еще меньше. Из бобовых человек усваивает до 7%, из орехов – 6, из фруктов и яиц – 3, из приготовленных круп – 1.

Совет! Пользу для организма несет рацион, в котором сочетаются продукты растительного и животного происхождения. При добавлении 50 г мяса к овощам усвояемость железа возрастает в два раза. При добавлении 100 г рыбы – в три раза, при добавлении фруктов, содержащих витамин C – в пять раз

Как сохранить железо в пище и его сочетание с другими веществами


При приготовлении продукты теряют часть полезных веществ, и железо не исключение. Железо в продуктах животного происхождения более устойчиво к воздействию высокой температуры. С овощами и фруктами все сложнее – часть железа переходит в воду, в которой готовятся продукты. Единственный выход – минимизировать термическую обработку продуктов растительного происхождения.

Чтобы повысить усвоение железа, употребляйте железосодержащие продукты вместе с витамином С. Достаточно половинки грейпфрута или апельсина, чтобы организм усвоил его в три раза больше. Единственный нюанс – данное правило действует только с железосодержащими продуктами растительного происхождения.

В рационе обязателен витамин А , недостаток которого блокирует способности организма использовать запасы железа для формирования эритроцитов (красные кровяные тельца).

При недостатке меди железо теряет «мобильность», в результате чего нарушается процесс транспортировки полезных веществ из «хранилищ» в клетки и органы. Чтобы этого избежать, включайте в рацион больше бобовых.

Сочетание железа с витаминами группы В : «работоспособность» последних многократно усиливается.

А вот молочную пищу и зерна лучше употреблять отдельно от железосодержащих продуктов, так как они блокируют всасывание микроэлемента в кишечнике.

Суточная норма железа

  • до 6 месяцев – 0,3;
  • 7-11 месяцев – 11;
  • до 3 лет – 7;
  • до 13 лет – 8–10.

Подростки:

  • от 14 до 18 лет (мальчики) – 11; девочки – 15.

Взрослые:

  • мужчины – 8–10;
  • женщины до 50 лет – 15–18; старше 50 лет – 8–10, беременные – 25–27.

Чем опасен недостаток железа в организме

Недостаток железа в организме опасен следующим состоянием:

  • острой анемией, или малокровием – снижением концентрации гемоглобина в крови, при котором также уменьшается количество эритроцитов и изменяется их качественный состав. Результат малокровия – снижение дыхательной функции крови и развитие кислородного голодания тканей. Распознать острую анемию можно по бледности кожных покровов и повышенной утомляемости. Слабость, регулярная головная боль и головокружение – признаки нехватки железа. Тахикардия (учащенное сердцебиение) и одышка – предвестники проблем с сердцем и легкими;
  • утомляемостью и слабостью в мышцах;
  • чрезмерными менструальными кровотечениями у женщин.

Недостаток железа в организме приводит к ухудшению состояния кожных покровов, ломкости ногтей, выпадению волос. Ухудшение памяти, повышенная раздражительность – признаки дефицита железа. Снижение работоспособности и постоянная сонливость – предвестники кислородного голодания.

Недостаток железа может быть спровоцирован такими факторами:

  • повышенной потерей крови. Первопричиной такого варианта развития событий может быть донорское переливание крови, обильное кровотечение у женщин и повреждения мягких тканей;
  • интенсивные физические нагрузки аэробной и аэробно-силовой направленности (те, которые развивают выносливость). Во время таких упражнений эритроцитам приходится быстрее переносить кислород, в результате чего дневной расход гемоглобина может увеличиться почти в два раза;
  • активная умственная деятельность. Во время творческой работы активно расходуются не только запасы железа, но и гликогена, запасенного в печени и мышцах;
  • заболевания органов желудочно-кишечного тракта: гастрит с пониженной кислотностью, язва двенадцатиперстной кишки, цирроз печени, аутоиммунные заболевания кишечника провоцируют плохое всасывание железа.

Как быстро восполнить недостаток железа

Чтобы восполнить дефицит железа в организме, диетологи рекомендуют употреблять продукты растительного и животного происхождения. Первые являются источником так называемого «негемового» железа, то есть железа, которое не входит в состав гемоглобина. В таких продуктах железо обычно идет в сочетании с витамином С.

Лучше всего дефицит железа восполняют такие «негемовые» продукты как бобовые и зеленые листовые овощи, а также цельные зерна.

«Гемовые» продукты содержат железо, входящее в состав гемоглобина. Наибольшие запасы гемоглобина характерны для всей пищи животного происхождения, а также морепродуктов. В отличие от «негемовых», «гемовые» продукты быстрее восполняют запасы железа, так как организм легче их усваивает.

Совет! Несмотря на то, что «гемовые» продукты быстрее усваиваются организмом, не стоит чрезмерно ими увлекаться. Для восполнения запасов железа лучше всего сочетать продукты растительного и животного происхождения, например, зеленые листовые овощи и красные сорта мяса

Однако важно помнить о секретах приготовления пищи, ведь именно от способов приготовления зависит конечный процент железа в продуктах питания. Например, цельные зерна при переработке теряют около 75% запасов железа. Вот почему мука из цельных зерен практически не несет пользы для организма. Примерно то же самое происходит при приготовлении пищи растительного происхождения при помощи варки – часть железа остается в составе воды. Если варить шпинат в течение 3 мин., от запасов железа останется не более 10%.

Если хотите получить максимальную пользу от продуктов питания растительного происхождения, старайтесь избегать длительной термической обработки и минимизируйте количество воды. Идеальный способ приготовления – на пару.

С продуктами животного происхождения все намного проще – железо, входящее в состав гемоглобина, обладает высокой устойчивостью к термической обработке.

Что нужно знать об избытке железа в организме


Несправедливым было бы полагать, что опасность для здоровья представляет исключительно недостаток железа. Его избыток также чреват неприятными симптомами. Из-за чрезмерного накопления железа в организме нарушается работа многих функциональных систем.

Причины передозировки. Чаще всего причиной повышенной концентрации микроэлемента становится генетический сбой, в результате которого увеличивается всасываемость железа кишечником. Реже – переливание крови в большом количестве и неконтролируемое использование железосодержащих препаратов. Последнее случается при самостоятельном увеличении дозы железосодержащего препарата при пропуске очередного приема.

При избытке железа в организме обычно бывает такое:

  • изменяется пигментации кожи (симптомы часто путают с гепатитом) – желтеют ладони, подмышки, темнеют старые шрамы. Склеры, нёбо ротовой полости и язык также приобретают желтоватый оттенок;
  • нарушается сердечный ритм, увеличивается печень;
  • снижается аппетит, повышается утомляемость, учащаются приступы головной боли;
  • нарушается деятельность органов пищеварения – тошнота и рвота чередуются с диареей, в области желудка появляется ноющая боль;
  • снижается иммунитет;
  • повышается вероятность развития инфекционных и опухолевых патологий, например, рака печени и кишечника, а также развитие ревматоидного артрита.

Препараты, содержащие железо

К препаратам железа относят медикаменты, содержащие соли и комплексы соединений микроэлемента, а также его сочетания с другими минералами.

Во избежание патологических состояний и осложнений железосодержащие препараты следует принимать только по предписанию врача после ряда анализов. В противном случае избыток железа может привести к нарушению работы сердца, печени, желудка, кишечника и головного мозга.

  • запиваются небольшим количеством воды;
  • несочетаемы с препаратами кальция, Тетрациклином, Левомицетином, а также антацидами (Альмагель, Фосфалюгель и т. д.);
  • принимаются в строгой дозировке. Если по каким-то причинам очередной прием препарат был пропущен, следующая доза остается неизменной. Передозировка железа (300 миллиграммов в сутки) может привести к летальному исходу;
  • минимальный курс – два месяца. В течение первого месяца нормализуются показатели гемоглобина и эритроцитов. В дальнейшем приём препаратов направлен на восполнение запасов железа (наполнение «депо»). Дозировка в течение второго месяца снижается.

Следует помнить, что даже при соблюдении всех мер предосторожности прием железосодержащих препаратов может стать причиной таких побочных эффектов как гиперемия кожи, тошнота, снижение аппетита, сонливость, головная боль, нарушение деятельности органов пищеварения (запор, диарея, кишечная колика, изжога и отрыжка), металлический привкус во рту. В некоторых случаях могут потемнеть зубы (в полости рта содержится сероводород, который при взаимодействии с железом преобразуется в сульфид железа).

Совет! Чтобы избежать потемнения зубов (особенно актуально при кариесе), сразу же после приема железосодержащих препаратов ротовую полость нужно прополоскать. Если препарат выпускается в жидкой лекарственной форме, его лучше принимать через трубочку. При появлении любого из этих симптомов прием лекарств нужно немедленно прекратить

Обзор железосодержащих средств подан ниже.

В числе наиболее часто назначаемых препаратов железа Конферон, Феракрил, Феррум лек, Гемостимулин. Их преимущества – максимально точная дозировка и минимум побочных эффектов.

Дозировка препарата рассчитывается индивидуально – 2 мг на 1 кг массы тела пациента (но не более 250 мг в сутки). Для лучшего всасывания лекарства принимают во время пищи, запивая небольшим количеством жидкости.

Положительные изменения (увеличение количества ретикулоцитов) диагностируют уже через неделю после начала приема средств. Еще через две-три недели увеличивается концентрация гемоглобина.

Препарат Форма выпуска Состав
Гемоферпролонгатум Таблетки, покрытые оболочкой, массой 325 мг Сульфат железа, в одной таблетке – 105 мг Fe2+
Тардиферон Таблетки пролонгированного действия Мукопротеоза и аскорбиновая кислота, в одной таблетке – 80 мг Fe2+
Ферроглюконат и Ферронал Таблетки по 300 мг Глюконат железа, в одной таблетке – 35 мг Fe2+
Ферроградумет Таблетки, покрытые оболочкой Сульфат железа плюс пластическая матрица – градумет, в одной таблетке – 105 мг Fe2+
Хеферол Капсулы по 350 мг Фумаровая кислота, в одной таблетке – 100 мг Fe2+
Актиферрин Капсулы, капли оральные, сироп Сульфат железа, D, L-серин (капсулы и капли оральные) и сульфат железа, D, L-серин, глюкозу, фруктозу, сорбат калия (сироп). В 1 капсуле и 1 мл сиропа – 38,2 мг Fe2+, в 1 мл капель, в 1 мл сиропа – и 34,2 мг Fe2+
Гемсинерал-ТД Капсулы Микрогранулы фумарата железа, фолиевой кислоты, цианокобаламина. В одной капсуле – 67 мг Fe2+
Гино-тардиферон Таблетки Сульфат железа, фолиевая и аскорбиновая кислоты, мукопротеоза. В одной таблетке – 80 мг Fe2+
Глобирон Желатиновые капсулы по 300 мг Железа фумарат, витамины В6, В12, фолиевая кислота, докузат натрия. В одной капсуле – 100 мг Fe2+
Ранферон-12 Капсулы по 300 мг Железа фумарат, аскорбиновая и фолиевая кислоты, цианокобаламин, цинка сульфат, железа аммонийного цитрат. В одной капсуле – 100 мг Fe2+
Сорбифердурулес Таблетки, покрытые оболочкой, с пролонгированным высвобождением ионов железа Железа сульфат, аскорбиновая кислота, матрица (дурулес). В одной таблетке – 100 мг Fe2+
Тотема Раствор для перорального приема в ампулах по 10 мл Железа глюконат, марганец, медь, а также бензоат, цитрат натрия и сахароза. В одной ампуле – 50 мг Fe2+
Хеферол Капсулы по 350 мг Фумаровая кислота. В одной капсуле – 100 мг Fe2+
Фенюльс Капсулы Железа сульфат, фолиевая и аскорбиновая кислоты, тиамин. А также рибофлавин, цианокобаламин, пиридоксин, фруктоза, цистеин, кальция пантотенат, дрожжи. В одной капсуле – 45 мг Fe2+

Противопоказания к приему железосодержащих препаратов

  • апластическая и/или гемолитическая анемия;
  • прием медикаментов из группы тетрациклинов или антацидов;
  • хроническое воспаление почек и печени;
  • употребление продуктов с высоким содержанием кальция, клетчатки и кофеина;
  • прием лекарственных препаратов, снижающих уровень кислотности желудочного сока; антибиотиков и препаратов тетрациклинового ряда (эти группы препаратов снижают всасываемость железа в кишечнике).

Условные противопоказания:

  • язвенный колит;
  • язвенная болезнь желудка и/или двенадцатиперстной кишки;
  • энтериты различной этиологии.

Инъекции железа и их особенности описано ниже. Помимо железосодержащих капсул и таблеток, назначаются инъекции. Их прием необходим при:

  • хронических патологиях органов пищеварения, сопровождаемых пониженной всасываемостью железа. Диагнозы: панкреатит (воспаление поджелудочной железы), синдром мальабсорбции, целиакия, энтерит;
  • язвенном колите неспецифического характера;
  • непереносимости солей железа или гиперчувствительности с аллергическими проявлениями;
  • язвенной болезни желудка и двенадцатиперстной кишки в периоды обострения;
  • постоперационный период после удаления части желудка или тонкого кишечника.

Преимуществом инъекций является быстрое и максимальное насыщение железом по сравнению с другими формами выпуска препаратов.

Важно! При приеме таблеток и капсул максимальная доза не должна превышать 20-50 мг (при приеме 300 мг железа возможен летальный исход). При инъекции максимальной дозой считается 100 мг препарата железа

Побочные эффекты при введении железа с помощью инъекции: уплотнения (инфильтраты) тканей в месте введения препарата, флебиты, абсцессы, аллергическая реакция (в худшем случае – сразу развивается анафилактический шок), ДВС-синдром, передозировка железа.

Разновидности препаратов поданы в таблице

Препарат Форма выпуска Состав
Феррум Лек (внутримышечно) Ампулы по 2 мл Гидроксид железа и декстран. В одной ампуле – 100 мг Fe2+
Венофер (внутривенно) Ампулы по 5 мл Железа гидроксид сахарозных комплексов. В одной ампуле – 100 мг Fe2+
Ферковен (внутривенно) Ампулы по 1 мл Железа сахарат, раствор углеводов и глюконат кобальта. В одной ампуле – 100 мг Fe2+
Жектофер (внутримышечно) Ампулы по 2 мл Железо-сорбитол-лимонно-кислый комплекс
Феррлецит (раствор – внутримышечно, ампулы – внутривенно) Раствор для инъекций в ампулах по 1 и по 5 мл Железоглюконатный комплекс
Фербитол (внутримышечно) Ампулы по 1 мл Железосорбитоловый комплекс

17. d -элементы.Железо, общая характеристика, свойства. Оксиды и гидроксиды, КО и ОВ характеристика, биороль, способность к комплексообразованию.

1.Общая характеристика.

Железо - d-элемент побочной подгруппы восьмой группы четвёртого периода ПСХЭ с атомным номером 26.

Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое веществожелезо - ковкийметаллсеребристо-белого цветас высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажностина воздухе.

4Fe + 3O2 + 6H2O = 4Fe(OH)3

В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

3Fe + 2O2 = FeO + Fe2O3

3Fe + 4H2O = FeO*Fe2O3

FeO*Fe2O3 = Fe3O4 (железная окалина)

Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь(до 2,14 вес. % углерода) и чугун(более 2,14 вес. % углерода), а также нержавеющая(легированная) сталь с добавками легирующих металлов (хром,марганец, никельи др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.

2.Свойства

1.Физ.св-ва. Железо - типичный металл, в свободном состоянии - серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности - углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» - группу трёх металлов (железо Fe,кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

2.Хим.св-ва.

Степень окисления

Оксид

Гидроксид

Характер

Примечания

Слабоосновный

Очень слабое основание, иногда - амфотерный

Не получен

*

Кислотный

Сильный окислитель

Для железа характерны степени окисления железа - +2 и +3.

    Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 . Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) - слабый восстановитель.

    Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 . Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH) 3 растворяется (и то не полностью), только в концентрированных щелочах. Fe 2 O 3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO 2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.

    Кроме того, существует оксид Fe 3 O 4 , формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O 2) 2 .

    Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли - ферраты (например, K 2 FeO 4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей . Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

    С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):

    При взаимодействии железа с приблизительно 70%-й серной кислотой при нагревании реакция протекает с образованием сульфата железа(III) :

3.Оксиды и гидроксиды, КО и ОВ хар-ка…

    Соединения железа (II)

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH) 2 . Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа(II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O.

Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K 3 (красная кровяная соль). При взаимодействии ионов Fe 2+ и 3− выпадает осадоктурнбулевой сини :

Для количественного определения железа (II) в растворе используют фенантролин , образующий с железом (II) красный комплекс FePhen 3 в широком диапазоне рН (4-9)

    Соединения железа (III)

Оксид железа(III) Fe 2 O 3 слабо амфотерен , ему отвечает ещё более слабое, чем Fe(OH) 2 , основание Fe(OH) 3 , которое реагирует с кислотами:

Соли Fe 3+ склонны к образованию кристаллогидратов. В них ион Fe 3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.Ион Fe 3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практчиески полностью осаждается в виде Fe(OH) 3:

При частичном гидролизе иона Fe 3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.Основные свойства гидроксида железа(III) Fe(OH) 3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:

Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH) 3 .

При сплавлении со щелочами и оксидами других металлов Fe 2 O 3 образует разнообразные ферриты :

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов , например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами SCN . При взаимодействии ионов Fe 3+ с анионами SCN − образуется смесь ярко-красных роданидных комплексов железа 2+ , + , Fe(SCN) 3 , - . Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe 3+ служит гексацианоферрат(II) калия K 4 (жёлтая кровяная соль). При взаимодействии ионов Fe 3+ и 4− выпадает ярко-синий осадок берлинской лазури :

    Соединения железа (VI)

Ферраты - соли не существующей в свободном виде железной кислоты H 2 FeO 4 . Это соединения фиолетового цвета, по окислительным свойствам напоминающие перманганаты, а по растворимости - сульфаты. Получают ферраты при действии газообразного хлора или озона на взвесь Fe(OH) 3 в щелочи , например, феррат(VI) калия K 2 FeO 4 . Ферраты окрашены в фиолетовый цвет.

Ферраты также можно получить электролизом 30%-ного раствора щелочи на железном аноде:

Ферраты - сильные окислители. В кислой среде разлагаются с выделением кислорода:

Окислительные свойства ферратов используют для обеззараживания воды .

4.Биороль

1)В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания).

2)Обычно железо входит в ферменты в виде комплекса.В частности, этот комплекс присутствует в гемоглобине - важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

4)Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

Железо – основной конструкционный материал. Металл используется буквально везде – от ракет и подводных лодок до столовых приборов и кованых украшений на решетке. В немалой степени этому способствует элемент в природе. Однако истинной причиной является, все же, его прочность и долговечность.

В данной статье нами будет дана характеристика железа как металла, указаны его полезные физические и химические свойства. Отдельно мы рассказываем, почему железо называют черным металлом, чем оно отличается от других металлов.

Как не странно, но до сих пор иногда возникает вопрос о том, железо — это металл или неметалл. Железо – элемент 8 группы, 4 периода таблицы Д. И. Менделеева. Молекулярная масса 55,8, что довольно много.

Это металл серебристо-серого цвета, довольно мягкий, пластичный, обладающий магнитными свойствами. На деле чистое железо встречается и используется крайне редко, поскольку металл химически активен и вступает в разнообразные реакции.

О том, что такое железо, расскажет это видео:

Понятие и особенности

Железом обычно называют сплав с небольшой долей примесей – до 0,8%, который сохраняет практически все свойства металла. Повсеместное применение находит даже не этот вариант, а сталь и чугун. Свое наименование – черный металл, железо, а, вернее говоря, все тот же чугун и сталь, получили благодаря цвету руды – черному.

Сегодня черными металлами называют сплавы железа: сталь, чугун, феррит, а также марганец, и, иногда, хром.

Железо – очень распространенный элемент. По содержанию в земной коре он занимает 4 место, уступая кислороду, и . В ядре Земли находится 86% железа, и всего 14% – в мантии. В морской воде вещества содержится очень мало – до 0,02 мг/л, в речной воде несколько больше – до 2 мг/л.

Железо – типичный металл, к тому же довольно активный. Он взаимодействует с разбавленными и концентрированными кислотами, но под действием очень сильных окислителей может образовать соли железной кислоты. На воздухе железо быстро покрывается оксидной пленкой, предупреждающей дальнейшую реакцию.

Однако в присутствии влаги вместо оксидной пленки появляется ржавчина, которая благодаря рыхлой структуре дальнейшему окислению не препятствует. Эта особенность – корродирование в присутствии влаги, является главным недостатком железных сплавов. Стоит отметить, что провоцируют коррозии примеси, в то время как химически чистый металл устойчив к воде.

Важные параметры

Чистый металл железо довольно пластичен, хорошо поддается ковке и плохо литью. Однако небольшие примеси углерода значительно увеличивают его твердость и хрупкость. Это качество и стало одной из причин вытеснения бронзовых орудий труда железными.

  • Если сравнить железные сплавы и , из тех, что были известны в древнем мире, очевидно, что , и по коррозийной стойкости, а, значит, и по долговечности. Однако массовое привело к истощению оловянных рудников. А, так как значительно меньше, чем , перед металлургами прошлого оставался вопрос о замене. И железо заменило бронзу. Полностью последняя была вытеснена, когда появились стали: такого сочетания твердости и упругости, бронза не дает.
  • Железо образует с кобальтом и триаду железа. Свойства элементов очень близки, ближе, чем у их же аналогов с таким же строение внешнего слоя. Все металлы обладают прекрасными механическими свойствами: легко обрабатываются, прокатываются, протягиваются, их можно ковать и штамповать. Кобальт и не столь реакционноспособны и более устойчивы к коррозии, чем железо. Однако меньшая распространенность этих элементов не позволяет использовать их так же широко, как и железо.
  • Главным «конкурентом» железу по области использования выступает . Но на деле оба материала обладают совершенно разными качествами. далеко не столь прочен, как железо, хуже вытягивается, не поддается ковке. С другой стороны, металл отличается, куда меньшим весом, что заметно облегчает конструкции.

Электропроводность железа весьма средняя, в то время как алюминий по этому показателю уступает лишь серебру, и золоту. Железо является ферромагнетиком, то есть, сохраняет намагниченность при отсутствии магнитного поля, а и втягивается в магнитное поле.

Столь разные свойства обуславливают абсолютно разные области применения, так что «сражаются» конструкционные материалы очень редко, например, в производстве мебели, где легкость алюминиевого профиля противопоставляется прочности стального.

Преимущества и недостатки железа рассмотрены далее.

Плюсы и минусы

Главное преимущество железа по сравнению с другими конструкционными металлами – распространенность и относительная простота выплавки. Но, учитывая в каком количестве используется железо, это весьма немаловажный фактор.

Преимущества

К плюсам металла относят и другие качества.

  • Прочность и твердость при сохранении упругости – речь идет не о химически чистом железе, а о сплавах. Причем качества эти варьируются в довольно широких пределах в зависимости от марки стали, способа термообработки, метода получения и так далее.
  • Разнообразие сталей и ферритов позволяет создать и подобрать материал буквально для любой задачи – от каркаса моста до режущего инструмента. Возможность получения заданных свойств при добавлении очень незначительных примесей – необычайно большое достоинство.
  • Легкость механической обработки позволяет получить продукцию самого разного вида: прутки, трубы, фасонные изделия, балки, листовое железо и так далее.
  • Магнитные свойства железа таковы, что металл является основным материалом при получении магнитоприводов.
  • Стоимость сплавов зависит, конечно, от состава, но все равно значительно ниже, чем у большинства цветных, пусть и с более высокими прочностными характеристиками.
  • Ковкость железа обеспечивает материалу очень высокие декоративные возможности.

Недостатки

Минусы железных сплавов значительны.

  • В первую очередь это недостаточная коррозийная стойкость. Специальные виды сталей – нержавеющие, обладают этим полезным качеством, но и стоят намного дороже. Значительно чаще металл защищают с помощью покрытия – металлического или полимерного.
  • Железо способно накапливать электричество, поэтому изделия из его сплавов подвергаются электрохимической коррозии. Корпуса приборов и машин, трубопроводы должны каким-то образом защищаться – катодная защита, протекторная и так далее.
  • Металл тяжелый, поэтому железные конструкции заметно утяжеляют объект строительства – здание, железнодорожный вагон, морское судно.

Состав и структура

Железо существует в 4 различных модификациях, отличающихся друг от друга параметрами решетки и структурой. Наличие фаз имеет действительно решающее значение для выплавки, поскольку именно фазовые переходы и их зависимость от легирующих элементов обеспечивает само течение металлургических процессов в этом мире. Итак, речь идет о следующих фазах:

  • α-фаза устойчива до +769 С, обладает объемно-центрированной кубической решеткой. α-фаза является ферромагнетиком, то есть, сохраняет намагниченность в отсутствии магнитного поля. Температура в 769 С является точкой Кюри для металла.
  • β-фаза существует от +769 С до +917 С. Структура модификации та же, но параметры решетки несколько другие. При этом сохраняются практически все физические свойства за исключением магнитных: железо становится парамагнетиком.
  • γ — фаза появляется в диапазоне от +917 до +1394 С. Для нее характера гранецентрированная кубическая решетка.
  • δ-фаза существует выше температуры в +1394 С, обладает объемно-центрированной кубической решеткой.

Выделяют также ε-модификацию, которая появляется при высоком давлении, а также в результате легирования некоторыми элементами. ε -фаза обладает плотноупакованной гексагонической решеткой.

Про физические и химические свойства железа поведает этот видеоролик:

Свойства и характеристики

Очень сильно зависят от его чистоты. Разница между свойствами химически чистого железа и обычного технического, а тем более легированной стали, весьма существенна. Как правило, физические характеристики приводят для технического железа с долей примесей 0,8%.

Необходимо отличать вредные примеси от легирующих добавок. Первые – сера и фосфор, например, придают сплаву хрупкость, не увеличивая твердость или механическую стойкость. Углерод в стали увеличивает эти параметры, то есть, является полезным компонентом.

  • Плотность железа (г/см3) в некоторой степени зависит от фазы. Так, α-Fe имеет плотность равную 7,87 г/куб. см при нормальной температуре и 7,67 г/куб. см при +600 С. Плотность γ-фазы ниже – 7,59 г/куб. см. а δ-фазы еще меньше – 7,409 г/куб.см.
  • Температура плавления вещества – +1539 С. Железо относится к умеренно тугоплавким металлам.
  • Температура кипения – +2862 С.
  • Прочность, то есть стойкость к нагрузкам разного рода – давление, растяжение, изгиб, регламентируется для каждой марки стали, чугуна и феррита, так что об этих показателях говорить в общем сложно. Так, быстрорежущие стали имеет предел прочности на изгиб равный 2,5–2,8 ГПа. А тот же параметр обычного технического железа составляет 300 МПА.
  • Твердость по шкале Мооса – 4–5. Специальные стали и химически чистое железо достигают куда более высоких показателей.
  • Удельное электрическое сопротивление 9,7·10-8 ом·м. Железо проводит ток куда хуже меди или алюминия.
  • Теплопроводность тоже ниже, чем у этих металлов и зависит от фазового состава. При 25 С составляет 74,04 вт/(м·К)., при 1500 С — 31,8 [Вт/(м.К)].
  • Железо прекрасно куется, причем как при нормальной, так и повышенной температуре. Чугун и сталь поддаются литью.
  • Биологически инертным вещество назвать нельзя. Однако токсичность его очень низкая. Связано это, правда, не столько с активностью элемента, сколько с неспособностью человеческого организма хорошо его усвоить: максимум составляет 20% от получаемой дозы.

К экологическим веществам железо отнести нельзя. Однако основной вред окружающей среде причиняет не его отходы, поскольку железо ржавеет и довольно быстро, а отходы производства – шлаки, выделяющиеся газы.

Производство

Железо относится к весьма распространенным элементам, так что и не требует больших расходов. Разрабатываются месторождения как открытым, так и шахтным методом. По сути, все горные руды включают в состав железо, но разрабатываются лишь те, где доля металла достаточно велика. Это богатые руды – красный, магнитный и бурый железняк с долей железо до 74 %, руды со средним содержанием – марказит, например, и бедные руды с долей железа не менее 26% – сидерит.

Богатая руда сразу же отправляется на завод. Породы со средним и низким содержанием обогащаются.

Существует несколько методов получения железных сплавов. Как правило, выплавка любой стали включает получение чугуна. Его выплавляют в доменной печи при температуре 1600 С. Шихту – агломерат, окатыши, загружают вместе с флюсом в печь и продувают горячим воздухом. При этом металл плавится, а кокс горит, что позволяет выжечь нежелательные примеси и отделить шлак.

Для получения стали обычно используют белый чугун – в нем углерод связан в химическое соединение с железом. Наиболее распространены 3 способа:

  • мартеновский – расплавленный чугун с добавкой руды и скрапа плавят при 2000 С с тем, чтобы уменьшить содержание углерода. Дополнительные ингредиенты, если они есть, добавляют в конце плавки. Таким образом получают самую высококачественную сталь.
  • кислородно-конвертерный – более производительный способ. В печи толщу чугуна продувают воздухом под давлением в 26 кг/кв. см. Может использоваться смесь кислорода с воздухом или чистый кислород с целью улучшить свойства стали;
  • электроплавильный – чаще применяется для получения специальных легированных сталей. Чугун палят в электрической печи при температуре в 2200 С.

Сталь можно получить и прямым методом. Для этого в шахтную печь загружают окатыши с большим содержанием железа и при температуре в 1000 С продувают водородом. Последний восстанавливает железо из оксида без промежуточных стадий.

В связи со спецификой черной металлургии на продажу попадает либо руда с определенным содержанием железа, либо готовая продукция – чугун, сталь, феррит. Цена их очень сильно отличается. Средняя стоимость железной руды в 2016 году – богатой, с содержанием элементов более 60%, составляет 50$ за тонну.

Стоимость стали зависит от множества факторов, что порой делает взлеты и падение цен совершено непредсказуемо. Осенью 2016 стоимость арматуры, горяче- и холоднокатаной стали резко возросла благодаря не менее резкому подъему цен на коксующийся уголь – непременного участника выплавки. В ноябре европейские компании предлагает рулон горячекатаной стали по 500 Евро за т.

Область применения

Сфера использования железа и железных сплавов огромна. Проще указать, где металл не применяется.

  • Строительство – сооружение всех видов каркасов, от несущего каркаса моста, до коробки декоративного камина в квартире, не может обойтись без стали разных сортов. Арматура, прутки, двутавры, швеллеры, уголки, трубы: абсолютно вся фасонная и сортовая продукция используется в строительстве. То же самое касается и листового проката: из него изготавливают кровлю, и так далее.
  • Машиностроение – по прочности и стойкости к износу со сталью очень мало, что может сравниться, так что детали корпуса абсолютного большинства машин изготавливаются из сталей. Тем более в тех случаях, когда оборудование должно работать в условиях высоких температур и давления.
  • Инструменты – с помощью легирующих элементов и закалки металлу можно придать твердость и прочность близкую к алмазам. Быстрорежущие стали – основа любых обрабатывающих инструментов.
  • В электротехнике использование железа более ограничено, именно потому, что примеси заметно ухудшают его электрические свойства, а они и так невелики. Зато металл незаменим в производстве магнитных частей электрооборудования.
  • Трубопровод – из стали и чугуна изготавливают коммуникации любого рода и вида: отопление, водопроводы, газопроводы, включая магистральные, оболочки для силовых кабелей, нефтепроводы и так далее. Только сталь способна выдерживать столь огромные нагрузки и внутреннее давление.
  • Бытовое использование – сталь применяется везде: от фурнитуры и столовых приборов до железных дверей и замков. Прочность металла и износостойкость делают его незаменимым.

Железо и его сплавы сочетают в себе прочность, долговечностью стойкость к износу. Кроме того, металл относительно дешев в производстве, что и делает его незаменимым материалом для современного народного хозяйства.

Про сплавы железа с цветными металлами и тяжелыми черными расскажет это видео:

Железо было известно еще в доисторические времена, однако широкое применение нашло значительно позже, так как в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определенном уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Железом, о чем свидетельствуют его названия на языках древних народов: древнеегипетское "бени-пет" означает "небесное железо"; древнегреческое sideros связывают с латинским sidus (род. падеж sideris) - звезда, небесное тело. В хеттских текстах 14 века до н. э. упоминается о Железе как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, франц. fer, итал. ferro).

Способ получения Железа из руд был изобретен в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Железа распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришел железный век. Гомер (в 23-й песне "Илиады") рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Железо получали по сыродутному процессу. Железную руду восстанавливали древесным углем в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из нее выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Железа науглероживалась, то есть получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна "чушка", "свинское железо" - англ. pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причем такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 веках кричный способ был уже широко распространен.

В 14 веке чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь ("домницу"), а затем и в доменную печь. В середине 18 века в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии еще в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлической шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 века стал развиваться пудлинговый процесс передела чугуна в Железо на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 веков, изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Железе и его сплавах. Однако все существовавшие способы производства Железа не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 века, когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 веке возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространение Железа в природе. По содержанию в литосфере (4,65% по массе) Железо занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Железо принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Железо - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Железо накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Железа играют окислительно-восстановительные реакции - переход 2-валентного Железа в 3-валентное и обратно. В биосфере при наличии органических веществ Fe 3+ восстанавливается до Fe 2+ и легко мигрирует, а при встрече с кислородом воздуха Fe 2+ окисляется, образуя скопления гидрооксидов 3-валентного Железа. Широко распространенные соединения 3-валентного Железа имеют красный, желтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование -"красноцветная формация" (красные и бурые суглинки и глины, желтые пески и т. д.).

Физические свойства Железа. Значение Железа в современное технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддается прокатке, штамповке и волочению. Способность растворять углерод и других элементы служит основой для получения разнообразных железных сплавов.

Железо может существовать в виде двух кристаллических решеток: α- и γ-объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910°С устойчиво α-Fe с ОЦК-решеткой (а = 2,86645Å при 20 °С). Между 910 °С и 1400°С устойчива γ-модификация с ГЦК-решеткой (а = 3,64Å). Выше 1400°С вновь образуется ОЦК-решетка δ-Fe (a = 2,94Å), устойчивая до температуры плавления (1539 °С). α-Fe ферромагнитно вплоть до 769 °С (точка Кюри). Модификации γ-Fe и δ-Fe парамагнитны.

Полиморфные превращения Железа и стали при нагревании и охлаждении открыл в 1868 году Д. К. Чернов. Углерод образует с Железом твердые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77Å), размещаются в междоузлиях кристаллической решетки металла, состоящей из более крупных атомов (атомный радиус Fe 1,26 Å). Твердый раствор углерода в γ-Fe называется аустенитом, а в α-Fe - ферритом. Насыщенный твердый раствор углерода в γ-Fe содержит 2,0% С по массе при 1130 °С; α-Fe растворяет всего 0,02- 0,04% С при 723 °С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твердый раствор углерода в α-Fe, очень твердый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твердости и пластичности.

Физические свойства Железа зависят от его чистоты. В промышленных железных материалах Железу, как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает так называемых красноломкость, фосфор (даже 10 -2 % Р) - хладноломкость; углерод и азот уменьшают пластичность, а водород увеличивает хрупкость Железа (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Железа, относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26Å

Ионные радиусы Fe 2+ 0,80Å, Fe 3+ 0.67Å

Плотность (20°C) 7 ,874 г/см 3

t кип около 3200°С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт/(м·K)

Теплоемкость Железа зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоемкость (0-1000°С) 640,57 дж/(кг·К) .

Удельное электрическое сопротивление (20°С) 9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления (0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м 2 (19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга 4·10 -6

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв 170-210 Мн/м 2

Относительное удлинение 45-55%

Твердость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Химические свойства Железа. Конфигурация внешней электронной оболочки атома 3d 6 4s 2 . Железо проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Железа). С кислородом Железо образует оксид (II) FeO, оксид (III) Fe 2 O 3 и оксид (II,III) Fe 3 O 4 (соединение FeO c Fe 2 O 3 , имеющее структуру шпинели). Во влажном воздухе при обычной температуре Железо покрывается рыхлой ржавчиной (Fe 2 O 3 ·nH 2 O). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Железа. При нагревании Железа в сухом воздухе выше 200 °С оно покрывается тончайшей оксидной пленкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Железа - воронения. При нагревании в водяном паре Железо окисляется с образованием Fe 3 O 4 (ниже 570 °С) или FeO (выше 570 °С) и выделением водорода.

Гидрооксид Fe(OH) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей Fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом Fe(OH) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурый гидрооксид Fe(OH) 3 . Оксид FeO проявляет основные свойства. Оксид Fe 2 O 3 амфотерен и обладает слабо выраженной кислотной функцией; реагируя с более основными оксидами (например, с MgO, она образует ферриты - соединения типа Fe 2 O 3 ·nMeO, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Железа, существующего в виде ферратов, например K 2 FeO 4 , солей не выделенной в свободном состоянии железной кислоты.

Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl 2 и FeCl 3 . При нагревании Железа с серой образуются сульфиды FeS и FeS 2 . Карбиды Железа - Fe 3 C (цементит) и Fe 2 C (е-карбид) - выпадают из твердых растворов углерода в Железе при охлаждении. Fe 3 C выделяется также из растворов углерода в жидком Железе при высоких концентрациях С. Азот, подобно углероду, дает с Железом твердые растворы внедрения; из них выделяются нитриды Fe 4 N и Fe 2 N. С водородом Железо дает лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Железо энергично реагирует с кремнием и фосфором, образуя силициды (например, Fe 3 Si и фосфиды (например, Fe 3 P).

Соединения Железа с многими элементами (О, S и другими), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в оксиде Железа (II) часть ионов Fe 2+ в узлах решетки замещена ионами Fe 3+ ; для сохранения электронейтральности некоторые узлы решетки, принадлежавшие ионам Fe 2+ , остаются пустыми.

Нормальный электродный потенциал Железа в водных растворах его солей для реакции Fe = Fe 2+ + 2e составляет -0,44 в, а для реакции Fe = Fe 3+ + 3e равен -0,036 в. Таким образом, в ряду активностей Железо стоит левее водорода. Оно легко растворяется в разбавленных кислотах с выделением Н 2 и образованием ионов Fe 2+ . Своеобразно взаимодействие Железа с азотной кислотой. Концентрированная HNO 3 (плотность 1,45 г/см 3) пассивирует Железо вследствие возникновения на его поверхности защитной оксидной пленки; более разбавленная HNO 3 растворяет Железо с образованием ионов Fe 2+ или Fe 3+ , восстанавливаясь до NH 3 или N 2 и N 2 O. Растворы солей 2-валентного Железа на воздухе неустойчивы - Fe 2+ постепенно окисляется до Fe 3+ . Водные растворы солей Железа вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей Fe 3+ тиоцианат-ионов SCN- дает яркую кроваво-красную окраску вследствие возникновения Fe(SCN) 3 что позволяет открывать присутствие 1 части Fe 3+ примерно в 10 6 частях воды. Для Железа характерно образование комплексных соединений.

Получение Железа. Чистое Железо получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Постепенно увеличивается производство достаточно чистого Железо путем его прямого восстановления из рудных концентратов водородом, природным газом или углем при относительно низких температурах.

Применение Железа. Железо - важнейший металл современной техники. В чистом виде Железо из-за его низкой прочности практически не используется, хотя в быту "железными" часто называют стальные или чугунные изделия. Основная масса Железа применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Железа приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железом руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путем окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом S, P, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и других элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Железа особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и другие. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Железа создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Железа и его сплавов постоянно растет.

Железо как художественный материал использовалось с древности в Египте, Месопотамии, Индии. Со времен средневековья сохранились многочисленные высокохудожественные изделия из Железа в странах Европы (Англии, Франции, Италии, России и других) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Железа (часто со слюдяной подкладкой) отличаются плоскостными формами, четким линейно-графическим силуэтом и эффектно просматриваются на световоздушном фоне. В 20 веке Железо используется для изготовления решеток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Железо в организме. Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (так называемые концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Железа). Почти все Железо в организмах животных и растений связано с белками. Недостаток Железа вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Железа, вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Железа, и растения не получают его в достаточном количестве; в кислых почвах Железо переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Железа заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60-110 мг Железа, что значительно превышает его суточную потребность. Всасывание поступившего с пищей Железа происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Железо-белкового комплекса - ферритина. Основное депо Железа в организме - печень и селезенка. За счет ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и других железосодержащие ферменты. Выделяется Железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Железе меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым-0,1 и беременным - 0,3 мг Железа в сутки. У животных потребность в Железе ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг; для поросят - до 200 мг, для супоросных свиней - 60 мг.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...