Методы качественного анализа в аналитической химии кратко. Аналитическая химия

В теоретич. основах аналитической существенное место занимает , в т. ч. статистич. обработка результатов. Теория аналитической включает также учение об отборе и подготовке , о составлении схемы анализа и выборе методов, принципах и путях автоматизации анализа, применения ЭВМ, а также основы народнохозяйств. использования результатов хим. анализа. Особенность аналитической - изучение не общих, а индивидуальных, специфич. св-в и характеристик объектов, что обеспечивает избирательность мн. аналит. методов. Благодаря тесным связям с достижениями физики, математики, биологии и разл. областей техники (это особенно касается методов анализа) аналитическая превращ. в дисциплину на стыке наук.

Практически все методы определения основаны на зависимости к.-л. доступных измерению свойств в-в от их состава. Поэтому важное направление аналитической - отыскание и изучение таких зависимостей с целью использования их для решения аналит. задач. При этом почти всегда необходимо найти ур-ние связи между св-вом и составом, разработать способы регистрации св-ва (аналит. сигнала), устранить помехи со стороны др. компонентов, исключить мешающее влияние разл. факторов (напр., флуктуации т-ры). Величину аналит. сигнала переводят в единицы, характеризующие кол-во или компонентов. Измеряемыми быть, например, масса, объем, светопоглощение.

Большое внимание уделяется теории методов анализа. Теория хим. и частично физ.-хим. методов базируется на представлениях о нескольких осн. типах хим. р-ций, широко используемых в анализе (кислотно-основных, окислит.-восстановит., ), и нескольких важных процессах ( - , ). Внимание к этим вопросам обусловлено историей развития аналитической и практич. значимостью соответствующих методов. Поскольку, однако, доля хим. методов уменьшается, а доля физ.-хим. и физ. методов растет, большое значение приобретает совершенствование теории методов двух последних групп и интегрирование теоретич. аспектов отдельных методов в общей теории аналитической .

История развития. Испытания материалов проводились еще в глубокой древности, напр. исследовали с целью установления их пригодности для плавки, разл. изделия -для определения содержания в них Аи и Ag. Алхимики 14-16 вв. впервые применили и выполнили огромный объем эксперим. работ по изучению св-в в-в, положив начало хим. методам анализа. В 16-17 вв. (период ) появились новые хим. способы обнаружения в-в, основанные на р-циях в р-ре (напр., открытие Ag + по образованию осадка с Cl -). Родоначальником научной аналитической считают Р. Бойля, к-рый ввел понятие "хим. анализ".

До 1-й пол. 19 в. аналитическая была осн. разделом . В этот период были открыты мн. хим. элементы, выделены составные части нек-рых прир. в-в, установлены и кратных отношений, . Т. Бергман разработал схему систематич. анализа, ввел H 2 S как аналит. , предложил методы анализа в пламени с получением перлов и т.д. В 19 в. систематич. качеств. анализ усовершенствовали Г. Розе и К. Фрезениус. Этот же век ознаменовался огромными успехами в развитии количеств. анализа. Был создан титриметрич. метод (Ф. Декруазиль, Ж. Гей-Люссак), значительно усовершенствован гравиметрич. анализ, разработаны методы . Большое значение имело развитие методов орг. соединений (Ю. Либих). В кон. 19 в. сложилась теория аналитической , в основу к-рой было положено учение о хим. в р-рах с участием (гл. обр. В. Оствальд). К этому времени преобладающее место в аналитической заняли методы анализа в водных р-рах.

В 20 в. разработаны методы микроанализа орг. соединений (Ф. Прегль). Был предложен полярографич. метод (Я. Гейровский, 1922). Пoявилocь много физ.-хим. и физ. методов, напр. масс-спектрометрический, рентгеновский, ядерно-физические. Большое значение имело открытие (М.С. Цвет, 1903) и создание затем разных его вариантов, в частности распределит. (А. Мартин иР. Синт, 1941).

В России и в СССР большое значение для развития аналитической имели работы Н.А. Меншуткина (его учебник по аналитической выдержал 16 изданий). М.А. Ильинский, и особенно Л.А. Чугаев ввели в практику орг. аналит. (кон. 19-нач. 20 вв.), Н.А. Тананаев разработал капельный метод качеств. анализа (одновременно с Ф. Файглем, 20-е гг. 20 в.). В 1938 Н. А. Измайлов и М.С Шрайбер впервые описали . В 1940-е гг. были предложены плазменные источники для атомно-эмиссионного анализа. Большой вклад советские ученые внесли в изучение и его аналит. использования (И.П. Алимарин, А.К. БабкоХ в теорию действия орг. аналит. , в развитие методов фотометрич. анализа, атомно-абсорбц. , в аналитической отдельных элементов, особенно редких и платиновых, и ряда объектов - в-в высокой чистоты, минер. сырья, и .

Требования практики всегда стимулировали развитие аналитической . Так, в 40-70-х гг. 20 в. в связи с необходимостью анализа ядерных, полупроводниковых и др. материалов высокой чистоты были созданы такие чувствительные методы, как , искровая масс-спектроме-трия, химико-спектральный анализ, _вольтамперометрия, обеспечивающие определение до 10 -7 - 10 -8 % примесей в чистых в-вах, т.е. 1 часть примеси на 10-1000 млрд. частей осн. в-ва. Для развития черной , особенно в связи с переходом к скоростному конвертерному произ-ву стали, решающее значение приобрела экспрессность анализа. Использование т. наз. квантометров-фотоэлектрич. приборов для многоэлементного оптич. спектрального или рентгеновского анализа позволяет проводить анализ в ходе плавки за неск. минут.

Необходимость анализа сложных смесей орг. соединений обусловила интенсивное развитие , к-рая позволяет анализировать сложнейшие смеси, содержащие неск. десятков и даже сотен . Аналитическая в значит. мере способствовала овладению энергией , изучению космоса и океана, развитию электроники, прогрессу . наук.

Предмет исследования. Важную роль играет развитие теории отбора анализируемых материалов; обычно вопросы пробоотбора решаются совместно со специалистами по изучаемым в-вам (напр., с геологами, металловедами). Аналитическая разрабатывает способы разложения - , сплавление, и т.д., к-рые должны обеспечивать полное "вскрытие" образца и не допускать потерь определяемых компонентов и загрязнений извне. В задачи аналитической входит развитие техники таких общих операций анализа, как измерение объемов, прокаливание.

Одна из задач аналитической химии-определение направлений развития аналит. приборостроения, создание новых схем и конструкций приборов (что чаще всего служит завершающей стадией разработки метода анализа), а также синтез новых аналит. реактивов.

Для количеств. анализа очень важны метрологич. характеристики методов и приборов. В связи с этим аналитическая изучает проблемы градуировки, изготовления и использования образцов сравнения (в т.ч. ) и др. ср-в обеспечения правильности анализа. Существ. место занимает обработка результатов анализа, в т. ч. с использованием ЭВМ. Для условий анализа используют теорию информации, мат. теорию полезности, теорию распознавания образов и др. разделы математики. ЭВМ применяются не только для обработки результатов, но и для управления приборами, учета помех, градуировки, ; существуют аналит. задачи, решаемые только с помощью ЭВМ, напр. орг. соединений с использованием теории искусств. интеллекта (см. Автоматизированный анализ).

Методы определения-осн. группа методов аналитической . В основе методов количеств. анализа лежит зависимость к.-л. измеримого св-ва, чаще всего физического, от состава образца. Эта зависимость должна описываться определенным и известным образом.

Для анализа необходимы разнообразные методы, поскольку каждый из них имеет свои достоинства и ограничения. Так, чрезвычайно чувствит. радиоактивационные и масс-спектральные методы требуют сложной и дорогостоящей аппаратуры. Простые, доступные и очень чувствит. кинетич. методы не всегда обеспечивают нужную воспроизводимость результатов. При оценке и сопоставлении методов, при выборе их для решения конкретных задач принимаются во внимание мн. факторы: метрологич. параметры, сфера возможного использования, наличие аппаратуры, квалификация аналитика, традиции и др. Важнейшие среди этих факторов - такие метрологич. параметры, как предел обнаружения или диапазон (кол-в), в к-ром метод дает надежные результаты, и точность метода, т.е. правильность и воспроизводимость результатов. В ряде случаев большое значение имеют "многокомпонентные" методы, позволяющие определять сразу большое число компонентов, напр. атомно-эмиссионный и рентгеновский

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Кафедра химии

Утверждаю Зав. кафедрой професор

И.М.Паписов "___" ____________ 2007 г.

А.А. ЛИТМАНОВИЧ, О.Е. ЛИТМАНОВИЧ

АНАЛИТИЧЕСКАЯ ХИМИЯ Часть 1. Качественный химический анализ

Методическое пособие

для студентов II курса специальности “Инженерная защита окружающей среды”

МОСКВА 2007

Литманович А.А., Литманович О.Е. Аналитическая химия: Ч. 1: Качественный химический анализ: Методическое пособие / МАДИ

(ГТУ) – М., 2007. 32 с.

Рассмотрены основные химические законы качественного анализа неорганических соединений и их применимость для определения состава объектов окружающей среды. Пособие предназначено для студентов специальности “Инженерная защита окружающей среды”.

© Московский автомобильно-дорожный институт (государственный технический университет), 2008

ГЛАВА 1. ПРЕДМЕТ И ЗАДАЧИ АНАЛИТИЧЕСКОЙ ХИМИИ. АНАЛИТИЧЕСКИЕ РЕАКЦИИ

1.1. Предмет и задачи аналитической химии

Аналитическая химия – наука о методах исследования состава веществ. С помощью этих методов устанавливают, какие химические элементы, в какой форме и в каком количестве содержатся в изучаемом объекте. В аналитической химии выделяют два больших раздела – качественный и количественный анализ. Поставленные задачи аналитическая химия решает с помощью химических и инструментальных методов (физических, физикохимических).

В химических методах анализа определяемый элемент переводят в соединение, обладающее такими свойствами, с помощью которых можно установить присутствие этого элемента или измерить его количество. Одним из основных способов измерения количества образующегося соединения является определение массы вещества путем взвешивания на аналитических весах – гравиметрический метод анализа. Методы количественного химического анализа и инструментальные методы анализа будут рассмотрены в части 2 методического пособия по аналитической химии.

Актуальным направлением развития современной аналитической химии является разработка методов анализа объектов окружающей среды, сточных и сбросовых вод, газовых выбросов промышленных предприятий и автомобильного транспорта. Аналитический контроль позволяет обнаруживать превышение содержания особо вредных компонентов в сбросах и выбросах, способствует выявлению источников загрязнения окружающей среды.

Химический анализ основан на фундаментальных законах общей и неорганической химии, с которыми Вы уже знакомы. Теоретические основы химического анализа включают: знание свойств водных растворов; кислотно-основных равновесий в водных

растворах; окислительно-восстановительных равновесий и свойств веществ; закономерностей реакций комплексообразования; условий образования и растворения твердой фазы (осадков) .

1.2. Аналитические реакции. Условия и способы их проведения

Качественный химический анализ проводят с помощью аналитических реакций , сопровождающихся заметными внешними изменениями: например, выделением газа, изменением окраски, образованием или растворением осадка, в ряде случаев – появлением специфического запаха.

Основные требования к аналитическим реакциям:

1) Высокая чувствительность , характеризуемая величиной предела обнаружения (Сmin ) – наименьшей концентрацией компонента в пробе раствора, при которой данная методика анализа позволяет уверенно обнаруживать этот компонент. Абсолютное минимальное значение массы вещества, которая может быть обнаружена путем аналитических реакций, составляет от 50 до 0.001 мкг (1 мкг = 10–6 г).

2) Избирательность – характеризуется способностью реагента вступать в реакцию как можно с меньшим числом компонентов (элементов). На практике обнаружение ионов стараются проводить в таких условиях, при которых избирательная реакция становитсяспецифической , т.е. позволяет обнаружить данный ион в присутствии других ионов. В качествепримеров специфических реакций (которых немного) можно привести следующие.

а) Взаимодействие солей аммония с избытком щелочи при нагревании:

NH4 Cl + NaOH → NH3 + NaCl + H2 O . (1)

Выделяющийся аммиак легко распознать по характерному запаху (“нашатырный спирт”) или по изменению окраски влажной индикаторной бумажки, поднесенной к горлышку пробирки. Реакция

позволяет обнаружить присутствие ионов аммония NH4 + в анализируемом растворе.

б) Взаимодействие солей двухвалентного железа с гексацианоферратом (III) калия K3 с образованием осадка синего цвета (турнбуллева синь, или берлинская лазурь). Реакция (хорошо Вам знакомая по теме ”Коррозия металлов” в курсе

Эти реакции позволяют обнаружить ионы Fe2+ и Fe3+ в анализируемом растворе.

Специфические реакции удобны тем, что определять присутствие неизвестных ионов можно дробным методом – в отдельных пробах анализируемого раствора, содержащего и другие ионы.

3) Быстрота протекания реакции (высокая скорость ) ипростота выполнения.

Высокая скорость реакции обеспечивает достижение термодинамического равновесия в системе за короткое время (практически со скоростью смешения компнентов при реакциях в растворе).

При выполнении аналитических реакций необходимо вспомнить, от чего зависит смещение равновесия реакции в нужном направлении и ее протекание до большой глубины превращения . Для реакций, протекающих в водных растворах электролитов, на смещение термодинамического равновесия влияют концентрация одноименных ионов, рН среды, температура . В частности, от температуры зависит величина констант равновесия – константы

диссоциации для слабых электролитов и произведения растворимости (ПР) для малорастворимых солей, оснований

Указанные факторы определяют глубину протекания реакции, выход продукта и точность определения анализируемого вещества (либо – саму возможность обнаружения определенного иона при малом количестве и концентрации анализируемого вещества).

Чувствительность некоторых реакций повышается в водноорганическом растворе, например, при добавлении в водный раствор ацетона или этанола. Например, в водно-этанольном растворе растворимость CaSO4 значительно ниже, чем в водном (значение ПР меньше), что позволяет однозначно обнаружить присутствие ионов Ca2+ в анализируемом растворе при гораздо меньших его концентрациях, чем в водном растворе, а также – наиболее полно освободить раствор от этих ионов (осаждением с помощью H2 SO4 ) для продолжения анализа раствора.

При качественном химическом анализе разрабатывается рациональная последовательность в разделении и обнаружении ионов – систематический ход (схема) анализа. При этом ионы выделяют из смеси группами, основываясь на их одинаковом отношении к действию определенных групповых реагентов.

Используется одна порция анализируемого раствора, из которой последовательно выделяют в виде осадков и растворов группы ионов, в которых затем обнаруживают отдельные ионы. Применение групповых реагентов позволяет разложить сложную задачу качественного анализа на ряд более простых. Отношение ионов к действию определенных

групповых реагентов положено в основу аналитической классификации ионов .

1.3. Предварительный анализ водного раствора, содержащего смесь солей, по цвету, запаху, значению рН

Наличие окраски прозрачного раствора, предложенного для анализа, может указывать на присутствие одного или сразу нескольких ионов (табл. 1). Интенсивность окраски зависит от концентрации иона в пробе, а сама окраска может изменяться, если

катионы металлов образуют более устойчивые комплексные ионы, чем комплексные катионы с молекулами H2 O в качестве лигандов, для которых и указана окраска раствора в табл. 1 .

Таблица 1

Цвет раствора

Возможные катионы

Возможные

Бирюзовый

Cu2+

Cr3+

Ni2+

MnO4 2-

Fe3+ (из-за гидролиза)

CrO4 2- , Cr2 O7 2-

Co2+

MnO4 -

Измерение рН предложенного раствора (если раствор приготовлен в воде, а не в растворе щелочи или кислоты) также

дает дополнительную

информацию о

возможном составе

Таблица 2

Собствен-

Возможные

Возможные

ный рН вод-

ного раство-

Гидролиз

Na+ , K+ , Ba2+ ,

SO3 2- , S2- , CO3 2- ,

образованной

Ca2+

CH3 COO-

металлы s-

(соответствующие

основанием

электронного

кислоты – слабые

слабой кислотой

семейства)

электролиты)

Гидролиз

NH4 +

Cl-, SO4 2- , NO3 - , Br-

образованной

(соответствующие

практически

кислотой

металлов

электролиты)

основанием

Гидролиз

Al3+ , Fe3+

основания

Водные растворы некоторых солей могут иметь специфические запахи в зависимости от рН раствора из-за образования неустойчивых (разлагающихся) или летучих соединений.Добавив к пробе раствора растворы NaOH или

сильной кислоты (HCl, H2 SO4 ), можно аккуратно понюхать раствор(табл. 3).

Таблица 3

рН пробы раствора

Соответствующий ион

после добавления

в растворе

Нашатырный спирт

NH4 +

(запах аммиака)

неприятный

SO3 2-

запах (SO2 )

“Уксус”

(уксусная

CH3 COO-

кислота CH3 COOH)

(сероводород H2 S)

Причиной появления запаха (см. табл. 3) является хорошо известное свойство реакций в растворах электролитов – вытеснение слабых кислот или оснований (часто это водные растворы газообразных веществ) из их солей сильными кислотами и основаниями соответственно .

ГЛАВА 2. КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ КАТИОНОВ

2.1. Кислотно-основной метод классификации катионов по аналитическим группам

В основе наиболее простого и наименее “вредного” кислотнощелочного (основного) метода качественного анализа лежит отношение катионов к кислотам и основаниям. Классификация катионов проводится по следующим признакам:

а) растворимость хлоридов, сульфатов и гидроксидов; б) основной или амфотерный характер гидроксидов;

в) способность к образованию устойчивых комплексных соединений с аммиаком (NH3 ) – аммиакатов (т.е. амминокомплексов) .

Все катионы подразделяются на шесть аналитических групп с помощью 4-х реагентов: 2М раствор HCl, 1М раствор H2 SO4 , 2М раствор NaOH и концентрированный водный раствор аммиака

NH4 OH (15-17%-ный) (табл. 4).

Таблица 4 Классификация катионов по аналитическим группам

Групповой

Результат

действия группового

реагента

Ag+ , Pb2+

Осадок: AgCl, PbCl2

1M H2 SO4

(Pb2+ ), Ca2+ ,

Осадок (белый): BaSO4 ,

Ba2+

(PbSO4 ), CaSO4

Al3+ , Cr3+ , Zn2+

Раствор: [Аl(OH)4 ]– ,

(избыток)

– , 2–

NH4 OH (конц.)

Fe2+ , Fe3+ , Mg2+ ,

Осадок: Fe(OH)2 ,

Mn2+

Fe(OH)3 , Mg(OH)2 ,

Mn(OH)2

NH4 OH (конц.)

Cu2+ , Ni2+ , Co2+

Раствор (окрашен):

2+ ,синий

2+ ,голубой

2+ , желтый (на

воздухе синеет из-за

окисления до Co3+ )

Отсутствует

NH4 + , Na+ , K+

Очевидно, что приведенный перечень катионов далеко не полный и включает наиболее часто встречающиеся на практике катионы в анализируемых образцах. Кроме того, существуют и другие принципы классификации по аналитическим группам .

2.2. Внутригрупповой анализ катионов и аналитические реакции их обнаружения

2.2.1. Первая группа (Ag+ , Pb2+ )

Исследуемый раствор, содержащий катионы Ag+ , Pb2+

↓ + 2М раствор HCl + C 2 H5 OH (для понижения растворимости PbCl2 )

Если ПК > ПР, образуются белые осадки смеси хлоридов,

которые отделяют от раствора (раствор не анализируется):

Ag+ + Cl– ↔ AgCl↓ и Pb2+ + 2Cl– ↔ PbCl2 ↓ (3)

Очевидно, что при малых концентрациях осаждаемых катионов концентрация анионов Cl– должна быть относительно большой

↓ К части осадка + H2 O (дистиллированная) + кипячение

В раствор переходят частично

В осадке – весь AgCl и

ионы Pb 2+ (смещение равновесия

частично PbCl2

(3) влево, т.к. ПК < ПР для PbCl2 )

↓ + NH4 OH (конц.)

Обнаружение в растворе,

1. Растворение AgCl из-за

отделенном от осадка:

комплексообразования:

1. С реагентом КI (после

AgCl↓+ 2NH4 OH(изб.) →

охлаждения):

→+ +Cl– +2H2 O

Pb2+ + 2I– → PbI2 ↓ (золотистые

кристаллы) (4)

↓+ 2М раствор HNO3

↓ до рН<3

2. Осаждение AgCl из-за

распада комплексного иона:

Cl– + 2HNO3

→AgCl↓+ 2NH4 + + 2NO3

↓ К 2-й части осадка смесихлоридов + 30%-ный

Любой метод анализа использует определенный аналитический сигнал, который в данных условиях дают конкретные элементарные объекты (атомы, молекулы, ионы), из которых состоят исследуемые вещества.

Аналитический сигнал дает информацию как качественного, так и количественного характера. Например, если для анализа используются реакции осаждения, качественную информацию получают по появлению или отсутствию осадка. Количественную информацию получают по величине массы осадка. При испускании веществом света в определенных условиях качественную информацию получают по появлению сигнала (испускание света) при длине волны, соответствующей характерному цвету, а по интенсивности светового излучения получают количественную информацию.

По происхождению аналитического сигнала методы аналитической химии можно классифицировать на химические, физические и физико-химические.

В химических методах проводят химическую реакцию и измеряют либо массу полученного продукта – гравиметрические(весовые) методы, либо объем реагента, израсходованный на взаимодействие с веществом, – титриметрические,газоволюмометрические (объемные) методы.

Газоволюмометрия (газовый объёмный анализ) основана на избирательной абсорбции составных частей газовой смеси в сосудах, заполненных тем или иным поглотителем, c последующим измерением уменьшения объёма газа c помощью бюретки. Tак, диоксид углерода поглощают раствором гидроксида калия, кислород - раствором пирогаллола, монооксид углерода - аммиачным раствором хлорида меди. Газоволюмометрия относится к экспрессным методам анализа. Oна широко используется для определения карбонатов в г. п. и минералах.

Xимические методы aнализа широко используют для анализа руд, горных пород, минералов и других материалов при определении в них компонентов c содержанием от десятых долей до нескольких десятков процента. Xимические методы анализа характеризуются высокой точностью (погрешность анализа обычно составляет десятые доли процента). Однако эти методы постепенно вытесняются более экспрессными физико-химическими и физизическими методами анализа.

Физические методы анализа основаны на измерении какого-либо физического свойства веществ, являющегося функцией состава. Например, рефрактометрия основана на измерении относительных показателей преломления света. В активационном анализе измеряется активность изотопов и т. д. Часто при проведении анализа предварительно проводят химическую реакцию, и концентрацию полученного продукта определяют по физическим свойствам, например по интенсивности поглощения светового излучения цветным продуктом реакции. Такие методы анализа называют физико-химическими.

Физические методы анализа характеризуются высокой производительностью, низкими пределами обнаружения элементов, объективностью результатов анализа, высоким уровнем автоматизации. Физические методы анализа используют при анализе горных пород и минералов. Hапример, атомно-эмиссионным методом определяют вольфрам в гранитах и сланцах, сурьму, олово и свинец в горных породах и фосфатах; атомно-абсорбционным методом - магний и кремний в силикатах; рентгенофлуоресцентным - ванадий в ильмените, магнезите, глинозёме; масс-спектрометрическим - марганец в лунном реголите; нейтронно-активационным - железо, цинк, сурьму, серебро, кобальт, селен и скандий в нефти; методом изотопного разбавления - кобальт в силикатных породах.

Физические и физико-химические методы иногда называют инструментальными, т. к. в этих методах требуется применение специально приспособленных для проведения основных этапов анализа и регистрации его результатов инструментов (аппаратуры).

Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов.

Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества (кулонометрия, потенциометрия и т. д.), а также хроматография (например, газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей химических реакций (кинетические методы анализа), тепловых эффектов реакций (термометрическое титрование), а также на разделении ионов в магнитном поле (масс-спектрометрия).

Аналитическая химия

наука о методах изучения состава вещества. Она состоит из двух основных разделов: качественного анализа и количественного анализа. совокупность методов установления качественного химического состава тел - идентификации атомов, ионов, молекул, входящих в состав анализируемого вещества. Важнейшими характеристиками каждого метода качественного анализа являются: специфичность и чувствительность. Специфичность характеризует возможность обнаружения искомого элемента в присутствии других элементов, например железа в присутствии никеля, марганца, хрома, ванадия, кремния и др. Чувствительность определяет наименьшее количество элемента, которое может быть обнаружено данным методом; чувствительность выражается для современных методов значениями порядка 1 мкг (одной миллионной доли грамма).

Количественный анализ - совокупность методов определения количественного состава тел, т. е. количественных соотношений, в которых находятся химические элементы или отдельные соединения в анализируемом веществе. Важнейшей характеристикой каждого метода количественного анализа является, наряду со специфичностью и чувствительностью, точность. Точность анализа выражается значением относительной ошибки, которая не должна в большинстве случаев превышать 1-2%. Чувствительность в количественном анализе выражают в процентах.

Многие современные методы обладают весьма высокой чувствительностью. Так, методом радиоактивационного анализа можно установить наличие меди в кремнии с точностью до 2×10 -8 %.

В силу некоторых специфических особенностей в А. х. принято выделять анализ органических веществ (см. ниже).

Особое место в А. х. занимает основывающийся на всей совокупности методов качественного и количественного, неорганического и органического анализа в приложении их к тому или иному конкретному объекту. Технический анализ включает аналитический контроль процессов производства, сырья, готовой продукции, воды, воздуха, отходящих газов и т. д. Особенно велика потребность в «экспрессных» методах технического анализа, требующих 5-15 мин. для отдельного определения.

Определение пригодности того или иного продукта для нужд человека имеет столь же древнюю историю, как и само его производство. Первоначально такое определение имело целью установление причин несоответствия получаемых свойств продуктов желаемым или необходимым. Это относилось к продуктам питания - таким, как хлеб, пиво, вино и др., для испытания которых использовались вкус, запах, цвет (эти методы испытания, называемые органолептическими, применяются и в современной пищевой промышленности). Сырьё и продукты древней металлургии - руды, металлы и сплавы, которые применяли для изготовления орудий производства (медь, бронза, железо) или для украшения и товарообмена (золото, серебро), испытывались по их плотности, механическим свойствам посредством пробных плавок. Совокупностью подобных методов испытания благородных сплавов пользуются и до сих пор в пробирном анализе. Определялась доброкачественность красителей, керамических изделий, мыла, кожи, тканей, стекла, лекарственных препаратов. В процессе такого анализа стали различаться отдельные металлы (золото, серебро, медь, олово, железо), щёлочи, кислоты.

В алхимический период развития химии (см. Алхимия), характеризовавшийся развитием экспериментальных работ, увеличилось число различаемых металлов, кислот, щелочей, возникло понятие о соли, сере как горючем веществе и т. д. В этот же период были изобретены многие приборы для химических исследований, применено взвешивание исследуемых и используемых веществ (14-16 вв.).

Главное же значение алхимического периода для будущего А. х. заключалось в том, что были открыты чисто химические методы различения отдельных веществ; так, в 13 в. было обнаружено, что «крепкая водка» (азотная кислота) растворяет серебро, но не растворяет золото, а «царская водка» (смесь азотной и соляной кислот) растворяет и золото. Алхимики положили начало химическим определениям; до этого для различения веществ пользовались их физическими свойствами.

В период иатрохимии (16-17 вв.) ещё более увеличился удельный вес химических методов исследования, особенно методов «мокрого» качественного исследования веществ, переводимых в растворы: так, серебро и соляная кислота распознавались по реакции образования ими осадка в азотнокислой среде; пользовались реакциями с образованием окрашенных продуктов, например железа с дубильными веществами.

Начало научному подходу к химическому анализу положил английский учёный Р. Бойль (17 в.), когда он, отделив химию от алхимии и медицины и став на почву химического атомизма, ввёл понятие химического элемента как неразложимой далее составной части различных веществ. Согласно Бойлю, предметом химии является изучение этих элементов и способов их соединения для образования химических соединений и смесей. Разложение веществ на элементы Бойль и назвал «анализом». Весь период алхимии и иатрохимии был в значительной степени периодом синтетической химии; были получены многие неорганические и некоторые органические соединения. Но т. к. синтез был тесно связан с анализом, ведущим направлением развития химии в это время был именно анализ. Новые вещества получались в процессе всё более утончённого разложения природных продуктов.

Т. о., почти до середины 19 в. химия развивалась преимущественно как А. х.; усилия химиков были направлены на разработку методов определения качественно различных начал (элементов), на установление количественных законов их взаимодействия.

Большое значение в химическом анализе имела дифференциация газов, считавшихся ранее одним веществом; начало этим исследованиям было положено голландским учёным ван Гельмонтом (17 в.), открывшим углекислый газ. Наибольших успехов в этих исследованиях достигли Дж. Пристли, К. В. Шееле, А. Л. Лавуазье (18 в.). Экспериментальная химия получила твёрдую основу в установленном Лавуазье законе сохранения массы веществ при химических операциях (1789). Правда, ещё ранее этот закон в более общей форме высказал М. В. Ломоносов (1758), а шведский учёный Т. А. Бергман пользовался сохранением массы веществ для целей химического анализа. Именно Бергману принадлежит заслуга создания систематического хода качественного анализа, при котором переведённые в растворённое состояние исследуемые вещества затем разделяются на группы с помощью реакций осаждения реагентами и далее дробятся на ещё меньшие группы вплоть до возможности определения каждого элемента в отдельности. В качестве основных групповых реактивов Бергман предложил сероводород и щёлочи, которыми пользуются и до сих пор. Он также систематизировал качественный анализ «сухим путём», посредством нагревания веществ, которое приводит к образованию «перлов» и налётов различного цвета.

Дальнейшее совершенствование систематического качественного анализа было выполнено французскими химиками Л. Вокленом и Л. Ж. Тенаром, немецкими химиками Г. Розе и К. Р. Фрезениусом, русским химиком Н. А. Меншуткиным. В 20-30-е гг. 20 в. советский химик Н. А. Тананаев, основываясь на значительно расширившемся наборе химических реакций, предложил дробный метод качественного анализа, при котором отпадает необходимость систематического хода анализа, разделения на группы и применения сероводорода.

Количественный анализ первоначально основывался на реакциях осаждения определяемых элементов в виде малорастворимых соединений, массу которых далее взвешивали. Этот весовой (или гравиметрический) метод анализа также значительно усовершенствовался со времён Бергмана, главным образом за счёт улучшения весов и техники взвешивания и использования различных реактивов, в частности органических, образующих наименее растворимые соединения. В 1-й четверти 19 в. французский учёный Ж. Л. Гей-Люссак предложил объёмный метод количественного анализа (волюмометрический), в котором вместо взвешивания измеряют объёмы растворов взаимодействующих веществ. Этот метод, называемый также методом титрования или титриметрическим, до сих пор является основным методом количественного анализа. Он значительно расширился как за счёт увеличения числа используемых в нём химических реакций (реакции осаждения, нейтрализации, комплексообразования, окисления-восстановления), так и за счёт использования множества индикаторов (веществ, указывающих изменениями своего цвета на окончание реакции между взаимодействующими растворами) и др. средств индикации (посредством определения различных физических свойств растворов, например электропроводности или коэффициента преломления).

Анализ органических веществ, содержащих в качестве основных элементов углерод и водород, посредством сожжения и определения продуктов сгорания - углекислого газа и воды - впервые был проведён Лавуазье. Далее он был улучшен Ж. Л. Гей-Люссаком и Л. Ж. Тенаром и Ю. Либихом. В 1911 австрийский химик Ф. Прегль разработал технику микроанализа органических соединений, для проведения которого достаточно нескольких мг исходного вещества. Ввиду сложного построения молекул органических веществ, больших их размеров (полимеры), ярко выраженной изомерии органический анализ включает в себя не только элементный анализ - определение относительных количеств отдельных элементов в молекуле, но и функциональный - определение природы и количества отдельных характерных атомных группировок в молекуле. Функциональный анализ основан на характерных химических реакциях и физических свойствах изучаемых соединений.

Почти до середины 20 в. анализ органических веществ, в силу своей специфичности, развивался своими, отличными от неорганического анализа путями и в учебных курсах не включался в А. х. Анализ органических веществ рассматривался как часть органической химии. Но затем, по мере возникновения новых, главным образом физических, методов анализа, широкого применения органических реактивов в неорганическом анализе обе эти ветви А. х. стали сближаться и ныне представляют единую общую научную и учебную дисциплину.

А. х. как наука включает теорию химических реакций и химических свойств веществ и как таковая она в первый период развития общей химии совпадала с ней. Однако во 2-й половине 19 в., когда в химическом анализе доминирующее положение занял «мокрый метод», т. е. анализ в растворах, главным образом водных, предметом А. х. стало изучение только таких реакций, которые дают аналитически ценный характерный продукт - нерастворимое или окрашенное соединение, возникающее в ходе быстрой реакции. В 1894 немецкий учёный В. Оствальд впервые изложил научные основы А. х. как теорию химического равновесия ионных реакций в водных растворах. Эта теория, дополненная результатами всего последующего развития ионной теории, стала основой А. х.

Работами русских химиков М. А. Ильинского и Л. А. Чугаева (конец 19 в. - начало 20 в.) было положено начало применению органических реактивов, характеризующихся большой специфичностью и чувствительностью, в неорганическом анализе.

Исследования показали, что для каждого неорганического иона характерна химическая реакция с органическим соединением, содержащим определённую функциональную группировку (т. н. функционально-аналитическую группу). Начиная с 20-х гг. 20 в. в химическом анализе стала возрастать роль инструментальных методов, снова возвращавших анализ к исследованию физических свойств анализируемых веществ, но не тех макроскопических свойств, которыми оперировал анализ в период до создания научной химии, а атомных и молекулярных свойств. Современная А. х. широко пользуется атомными и молекулярными спектрами излучения и поглощения (видимые, ультрафиолетовые, инфракрасные, рентгеновские, радиочастотные и гамма-спектры), радиоактивностью (естественная и искусственная), масс-спектрометрией изотопов, электрохимическими свойствами ионов и молекул, адсорбционными свойствами и др. (см. Колориметрия , Люминесценция , Микрохимический анализ , Нефелометрия , Активационный анализ , Спектральный анализ , Фотометрия , Хроматография , Электронный парамагнитный резонанс , Электрохимические методы анализа). Применение методов анализа, основанных на этих свойствах, одинаково успешно в неорганическом и органическом анализе. Эти методы значительно углубляют возможности расшифровки состава и структуры химических соединений, качественного и количественного их определения; они позволяют доводить чувствительность определения до 10 -12 - 10 -15 % примеси, требуют малого количества анализируемого вещества, часто могут служить для т. н. неразрушающего контроля (т. е. не сопровождающегося разрушением пробы вещества), могут служить основой для автоматизации процессов производственного анализа.

Вместе с тем широкое распространение этих инструментальных методов ставит новые задачи перед А. х. как наукой, требует обобщения методов анализа не только на основе теории химических реакций, но и на основе физической теории строения атомов и молекул.

А. х., выполняющая важную роль в прогрессе химической науки, имеет также огромное значение в контроле промышленных процессов и в сельском хозяйстве. Развитие А. х. в СССР тесно связано с индустриализацией страны и последующим общим прогрессом. Во многих вузах организованы кафедры А. х., готовящие высококвалифицированных химиков-аналитиков. Советские учёные разрабатывают теоретические основы А. х. и новые методы для решения научных и практических задач. С возникновением таких отраслей, как атомная промышленность, электроника, производство полупроводников, редких металлов, космохимия, одновременно появилась необходимость разработки новых тонких и тончайших методов контроля чистоты материалов, где во многих случаях содержание примесей не должно превышать одного атома на 1-10 млн. атомов производимого продукта. Все эти проблемы успешно решаются советскими химиками-аналитиками. Совершенствуются также и старые методы химического контроля производства.

Развитие А. х. как особой отрасли химии вызвало к жизни и издание специальных аналитических журналов во всех промышленно развитых странах мира. В СССР издаются 2 таких журнала - «Заводская лаборатория» (с 1932) и «Журнал аналитической химии» (с 1946). Имеются и специализированные международные журналы по отдельным разделам А. х., например журналы по хроматографии и по электроаналитической химии. Специалистов по А. х. готовят на специальных отделениях университетов, химико-технологических техникумов и профессионально -технических училищ.

Лит.: Алексеев В. Н., Курс качественного химического полумнкроанализа, 4 изд., М. 1962: его же. Количественный анализ, 2 изд. , М., 1958; Ляликов Ю.С., Физико-химические методы анализа, 4 изд., М., 1964; Юйнг Г. Д. .Инструментальные методы химического анализа, пер. с англ., М., 1960; Лурье Ю. Ю., Справочник по аналитической химии, М., 1962.

Ю. А. Клячко.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Аналитическая химия" в других словарях:

    Рассматривает принципы и методы определения химического состава вещества. Включает качественный анализ и количественный анализ. Аналитическая химия возникла наряду с неорганической химией раньше других химических наук (до кон. 18 в. химия… … Большой Энциклопедический словарь

    аналитическая химия - (аналитика) – наука, развивающая общую методологию, методы и средства получения экспериментальной информации о химическом составе вещества и разрабатывающая способы анализа различных объектов. Рекомендации по терминологии аналитической химии … … Химические термины

    АНАЛИТИЧЕСКАЯ ХИМИЯ, изучает принципы и методы идентификации веществ и их компонентов (качественный анализ), а также определения количественного соотношения компонентов (атомы, молекулы, фазы и т.п.) в образце (количественный анализ). До 1 й… … Современная энциклопедия

    АНАЛИТИЧЕСКАЯ ХИМИЯ - АНАЛИТИЧЕСКАЯ ХИМИЯ, отдел химии, разрабатывающий теоретич. основы и практические методы химического анализа (см.) … Большая медицинская энциклопедия

Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача - определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа - измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO 4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС 2 О 4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Весы

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г - на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики - на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя - основы количественного анализа - учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.

Среди неорганических осадителей наиболее распространены растворы: HCL; Н 2 SO 4 ; H 3 PO 4 ; NaOH; AgNO 3 ; BaCL 2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт - электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные - черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством - дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) - кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....