Квадратные уравнения. Исчерпывающий гид (2019)

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Yandex.RTB R-A-339285-1

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a · x 2 + b · x + c = 0 вида x 1 = - b + D 2 · a , x 2 = - b - D 2 · a , где D = b 2 − 4 · a · c , устанавливает соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a . Это подтверждает и теорема Виета.

Теорема 1

В квадратном уравнении a · x 2 + b · x + c = 0 , где x 1 и x 2 – корни, сумма корней будет равна соотношению коэффициентов b и a , которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a , т. е. x 1 + x 2 = - b a , x 1 · x 2 = c a .

Доказательство 1

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны - b a и c a соответственно.

Составим сумму корней x 1 + x 2 = - b + D 2 · a + - b - D 2 · a . Приведем дроби к общему знаменателю - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a . Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: - b + D + - b - D 2 · a = - b + D - b - D 2 · a = - 2 · b 2 · a . Сократим дробь на: 2 - b a = - b a .

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x 1 · x 2 = - b + D 2 · a · - b - D 2 · a .

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: - b + D · - b - D 4 · a 2 .

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 .

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 . Формула D = b 2 − 4 · a · c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b 2 − 4 · a · c:

b 2 - D 4 · a 2 = b 2 - (b 2 - 4 · a · c) 4 · a 2

Раскроем скобки, приведем подобные слагаемые и получим: 4 · a · c 4 · a 2 . Если сократить ее на 4 · a , то остается c a . Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x 1 + x 2 = - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a = - 2 · b 2 · a = - b a , x 1 · x 2 = - b + D 2 · a · - b - D 2 · a = - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 = = D = b 2 - 4 · a · c = b 2 - b 2 - 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .

При дискриминанте квадратного уравнения равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D = 0 корень квадратного уравнения равен: - b 2 · a , тогда x 1 + x 2 = - b 2 · a + - b 2 · a = - b + (- b) 2 · a = - 2 · b 2 · a = - b a и x 1 · x 2 = - b 2 · a · - b 2 · a = - b · - b 4 · a 2 = b 2 4 · a 2 , а так как D = 0 , то есть, b 2 - 4 · a · c = 0 , откуда b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x 2 + p · x + q = 0 , где старший коэффициент a равен 1 . В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a , отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Теорема 2

Сумма корней в приведенном квадратном уравнении x 2 + p · x + q = 0 будет равна коэффициенту при x , который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x 1 + x 2 = − p , x 1 · x 2 = q .

Теорема, обратная теореме Виета

Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x 1 и x 2 приведенного квадратного уравнения x 2 + p · x + q = 0 будут справедливы соотношения x 1 + x 2 = − p , x 1 · x 2 = q . Из этих соотношений x 1 + x 2 = − p , x 1 · x 2 = q следует, что x 1 и x 2 – это корни квадратного уравнения x 2 + p · x + q = 0 . Так мы приходим к утверждению, которое является обратным теореме Виета.

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Теорема 3

Если числа x 1 и x 2 таковы, что x 1 + x 2 = − p и x 1 · x 2 = q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 + p · x + q = 0 .

Доказательство 2

Замена коэффициентов p и q на их выражение через x 1 и x 2 позволяет преобразовать уравнение x 2 + p · x + q = 0 в равносильное ему .

Если в полученное уравнение подставить число x 1 вместо x , то мы получим равенство x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = 0 . Это равенство при любых x 1 и x 2 превращается в верное числовое равенство 0 = 0 , так как x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0 . Это значит, что x 1 – корень уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , и что x 1 также является корнем равносильного ему уравнения x 2 + p · x + q = 0 .

Подстановка в уравнение x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 числа x 2 вместо x позволяет получить равенство x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = 0 . Это равенство можно считать верным, так как x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0 . Получается, что x 2 является корнем уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , а значит, и уравнения x 2 + p · x + q = 0 .

Теорема, обратная теореме Виета, доказана.

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x 1 + x 2 = - b a , x 1 · x 2 = a c .

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Пример 1

Какая из пар чисел 1) x 1 = − 5 , x 2 = 3 , или 2) x 1 = 1 - 3 , x 2 = 3 + 3 , или 3) x 1 = 2 + 7 2 , x 2 = 2 - 7 2 является парой корней квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 ?

Решение

Найдем коэффициенты квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 . Это a = 4 , b = − 16 , c = 9 . В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна - b a , то есть, 16 4 = 4 , а произведение корней должно быть равно c a , то есть, 9 4 .

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x 1 + x 2 = − 5 + 3 = − 2 . Это значение отлично от 4 , следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x 1 + x 2 = 1 - 3 + 3 + 3 = 4 . Мы видим, что первое условие выполняется. А вот второе условие нет: x 1 · x 2 = 1 - 3 · 3 + 3 = 3 + 3 - 3 · 3 - 3 = - 2 · 3 . Значение, которое мы получили, отлично от 9 4 . Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x 1 + x 2 = 2 + 7 2 + 2 - 7 2 = 4 и x 1 · x 2 = 2 + 7 2 · 2 - 7 2 = 2 2 - 7 2 2 = 4 - 7 4 = 16 4 - 7 4 = 9 4 . Выполняются оба условия, а это значит, что x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ: x 1 = 2 + 7 2 , x 2 = 2 - 7 2

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Пример 2

В качестве примера используем квадратное уравнение x 2 − 5 · x + 6 = 0 . Числа x 1 и x 2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x 1 + x 2 = 5 и x 1 · x 2 = 6 . Подберем такие числа. Это числа 2 и 3 , так как 2 + 3 = 5 и 2 · 3 = 6 . Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a .

Пример 3

Рассмотрим квадратное уравнение 512 · x 2 − 509 · x − 3 = 0 . Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1 , так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x 1 = 1 .

Теперь найдем второй корень. Для этого можно использовать соотношение x 1 · x 2 = c a . Получается, что 1 · x 2 = − 3 512 , откуда x 2 = - 3 512 .

Ответ: корни заданного в условии задачи квадратного уравнения 1 и - 3 512 .

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x 1 и x 2 . Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример 4

Напишите квадратное уравнение, корнями которого являются числа − 11 и 23 .

Решение

Примем, что x 1 = − 11 и x 2 = 23 . Сумма и произведение данных чисел будут равны: x 1 + x 2 = 12 и x 1 · x 2 = − 253 . Это значит, что второй коэффициент - 12 , свободный член − 253.

Составляем уравнение: x 2 − 12 · x − 253 = 0 .

Ответ : x 2 − 12 · x − 253 = 0 .

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак « + » или « - » ;
  • если квадратное уравнение имеет корни и если свободный член q является отрицательным числом, то один корень будет « + » , а второй « - » .

Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Пример 5

Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x 1 · x 2 = − 21 . Это невозможно при положительных x 1 и x 2 .

Ответ: Нет

Пример 6

При каких значениях параметра r квадратное уравнение x 2 + (r + 2) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r , при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D = (r + 2) 2 − 4 · 1 · (r − 1) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8 . Значение выражения r 2 + 8 положительно при любых действительных r , следовательно, дискриминант будет больше нуля при любых действительных r . Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r .

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r , при которых свободный член r − 1 отрицателен. Решим линейное неравенство r − 1 < 0 , получаем r < 1 .

Ответ: при r < 1 .

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Для алгебраического уравнения степени n вида a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n = 0 считается, что уравнение имеет n действительных корней x 1 , x 2 , … , x n , среди которых могут быть совпадающие:
x 1 + x 2 + x 3 + . . . + x n = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + . . . + x n - 1 · x n = a 2 a 0 , x 1 · x 2 · x 3 + x 1 · x 2 · x 4 + . . . + x n - 2 · x n - 1 · x n = - a 3 a 0 , . . . x 1 · x 2 · x 3 · . . . · x n = (- 1) n · a n a 0

Определение 1

Получить формулы Виета нам помогают:

  • теорема о разложении многочлена на линейные множители;
  • определение равных многочленов через равенство всех их соответствующих коэффициентов.

Так, многочлен a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n и его разложение на линейные множители вида a 0 · (x - x 1) · (x - x 2) · . . . · (x - x n) равны.

Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n = 2 , мы можем получить формулу Виета для квадратного уравнения: x 1 + x 2 = - a 1 a 0 , x 1 · x 2 = a 2 a 0 .

Определение 2

Формула Виета для кубического уравнения:
x 1 + x 2 + x 3 = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = - a 3 a 0

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

В этой лекции мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).

Например, для уравнения Зx 2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна , а произведение корней равно
т. е. - 2. А для уравнения х 2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х 1 и х 2 квадратного уравнения ах 2 + bх + с = 0 находятся по формулам

Где D = b 2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим


Теперь вычислим произведение корней х 1 и х 2 Имеем

Второе соотношение доказано:
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х 2 + рх + q = 0. В этом случае получаем:

x 1 = x 2 = -p, x 1 x 2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х 1 и х 2 — корни приведенного квадратного уравнения х 2 + рх + q = 0. Тогда

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


Доказательство. Имеем


Пример 1 . Разложить на множители квадратный трехчлен Зх 2 - 10x + 3.
Решение. Решив уравнение Зх 2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх 2 - 10x + 3: х 1 = 3, х2 = .
Воспользовавшись теоремой 2, получим

Есть смысл вместо написать Зx - 1. Тогда окончательно получим Зх 2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1 . Сократить дробь

Решение. Из уравнения 2х 2 + 5х + 2 = 0 находим х 1 = - 2,


Из уравнения х2 - 4х - 12 = 0 находим х 1 = 6, х 2 = -2. Поэтому
х 2 - 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

Пример 3 . Разложить на множители выражения:
а)x4 + 5x 2 +6; б)2x+-3
Р е ш е н и е. а) Введем новую переменную у = х 2 . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у 2 + bу + 6.
Решив уравнение у 2 + bу + 6 = 0, найдем корни квадратного трехчлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Теперь воспользуемся теоремой 2; получим

у 2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x 2 , т. е. вернуться к заданному выражению. Итак,
x 4 + 5х 2 + 6 = (х 2 + 2)(х 2 + 3).
б) Введем новую переменную у = . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у 2 + у - 3. Решив уравнение
2у 2 + у - 3 = 0, найдем корни квадратного трехчлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далее, используя теорему 2, получим:

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х 1 , х 2 таковы, что х 1 + х 2 = - р, x 1 x 2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х 2 - 11х + 24 = 0. Здесь x 1 + х 2 = 11, х 1 х 2 = 24. Нетрудно догадаться, что х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Здесь x 1 + х 2 = -11, х 1 х 2 = 30. Нетрудно догадаться, что х 1 = -5, х 2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х 2 + х - 12 = 0. Здесь x 1 + х 2 = -1, х 1 х 2 = -12. Легко догадаться, что х 1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х 2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х 1 = 1 — корень уравнения. Так как х 1 х 2 = -, а х 1 = 1, то получаем, что х 2 = - .

5) х 2 - 293x + 2830 = 0. Здесь х 1 + х 2 = 293, х 1 х 2 = 2830. Если обратить внимание на то, что 2830 = 283 . 10, а 293 = 283 + 10, то становится ясно, что х 1 = 283, х 2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х 1 = 8, х 2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х 2 + рх + q = 0.
Имеем х 1 + х 2 = -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х 1 х 2 = q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х 2 -4х-32 = 0.

Перед тем как перейти к теореме Виета, введем определение. Квадратное уравнение вида x ² + px + q = 0 называется приведенным. В этом уравнении старший коэффициент равен единице. Например, уравнение x ² — 3x — 4 = 0 является приведенным. Всякое квадратное уравнение вида ax ² + bx + c = 0 можно сделать приведенным, для этого делим обе части уравнения на а ≠ 0. Например, уравнение 4x ² + 4x — 3 = 0 делением на 4 приводится к виду: x ² + x — 3/4 = 0. Выведем формулу корней приведенного квадратного уравнения, для этого воспользуемся формулой корней квадратного уравнения общего вида: ax ² + bx + c = 0

Приведенное уравнение x ² + px + q = 0 совпадает с уравнением общего вида, в котором а = 1, b = p , c = q. Поэтому для приведенного квадратного уравнения формула принимает вид:

последнее выражение называют формулой корней приведенного квадратного уравнения, особенно удобно пользоваться этой формулой когда р — четное число. Для примера решим уравнение x ² — 14x — 15 = 0

В ответ запишем уравнение имеет два корня.

Для приведенного квадратного уравнения с положительным справедлива следующая теорема.

Теорема Виета

Если x 1 и x 2 — корни уравнения x ² + px + q = 0, то справедливы формулы:

x 1 + x 2 = — р

x 1 * x 2 = q, то есть сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Исходя из формулы корней приведенного квадратного уравнения имеем:

Складывая эти равенства, получаем: x 1 + x 2 = —р.

Перемножая эти равенства, по формуле разности квадратов получаем:


Отметим, что теорема Виета справедлива и тогда, когда дискриминант равен нулю, если считать, что в этом случае квадратное уравнение имеет два одинаковых корня: x 1 = x 2 = — р /2.

Не решая уравнения x ² — 13x + 30 = 0 найдем сумму и произведение его корней x 1 и x 2 . этого уравнения D = 169 — 120 = 49 > 0, поэтому можно применить теорему Виета: x 1 + x 2 = 13, x 1 * x 2 = 30. Рассмотрим еще несколько примеров. Один из корней уравнения x ² — рx — 12 = 0 равен x 1 = 4. Найти коэффициент р и второй корень x 2 этого уравнения. По теореме Виета x 1 * x 2 = — 12, x 1 + x 2 = — р. Так как x 1 = 4, то 4x 2 = — 12, откуда x 2 = — 3, р = — (x 1 + x 2) = — (4 — 3) = — 1. В ответ запишем, второй корень x 2 = — 3, коэффициент р = — 1.

Не решая уравнения x ² + 2x — 4 = 0 найдем сумму квадратов его корней. Пусть x 1 и x 2 — корни уравнения. По теореме Виета x 1 + x 2 = — 2, x 1 * x 2 = — 4. Так как x 1 ²+ x 2 ² = (x 1 + x 2)² — 2x 1 x 2 , тогда x 1 ²+ x 2 ² =(- 2)² -2 (- 4) = 12.

Найдем сумму и произведение корней уравнения 3x ² + 4x — 5 = 0. Данное уравнение имеет два различных корня, так как дискриминант D = 16 + 4*3*5 > 0. Для решения уравнения воспользуемся теоремой Виета. Эта теорема доказана для приведенного квадратного уравнения. Поэтому разделим данное уравнение на 3.

Следовательно, сумма корней равна -4/3, а их произведение равно -5/3.

В общем случае корни уравнения ax ² + bx + c = 0 связаны следующими равенствами: x 1 + x 2 = — b/a, x 1 * x 2 = c/a, Для получения этих формул достаточно разделить обе части данного квадратного уравнения на а ≠ 0 и применить к полученному приведенному квадратному уравнению теорему Виета. Рассмотрим пример, требуется составить приведенное квадратное уравнение, корни которого x 1 = 3, x 2 = 4. Так как x 1 = 3, x 2 = 4 — корни квадратного уравнения x ² + px + q = 0, то по теореме Виета р = — (x 1 + x 2) = — 7, q = x 1 x 2 = 12. В ответ запишем x ² — 7x + 12 = 0. При решении некоторых задач применяется следующая теорема.

Теорема, обратная теореме Виета

Если числа р , q , x 1 , x 2 таковы, что x 1 + x 2 = — р, x 1 * x 2 = q , то x 1 и x 2 — корни уравнения x ² + px + q = 0. Подставим в левую часть x ² + px + q вместо р выражение — (x 1 + x 2), а вместо q — произведение x 1 * x 2 . Получим: x ² + px + q = x ² — (x 1 + x 2) х + x 1 x 2 = x² — x 1 x — x 2 x + x 1 x 2 = (x — x 1) (x — x 2). Таким образом, если числа р , q , x 1 и x 2 связаны этими соотношениями, то при всех х выполняется равенство x ² + px + q = (x — x 1) (x — x 2), из которого следует, что x 1 и x 2 — корни уравнения x ² + px + q = 0. Используя теорему, обратную теореме Виета, иногда можно подбором найти корни квадратного уравнения. Рассмотрим пример, x ² — 5x + 6 = 0. Здесь р = — 5, q = 6. Подберем два числа x 1 и x 2 так, чтобы x 1 + x 2 = 5, x 1 * x 2 = 6. Заметив, что 6 = 2 * 3 , а 2 + 3 = 5, по теореме, обратной теореме Виета, получаем, что x 1 = 2, x 2 = 3 — корни уравнения x ² — 5x + 6 = 0.

В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов - теорему Виета. Для начала введем новое определение.

Квадратное уравнение вида x 2 + bx + c = 0 называется приведенным. Обратите внимание: коэффициент при x 2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

  1. x 2 + 7x + 12 = 0 - это приведенное квадратное уравнение;
  2. x 2 − 5x + 6 = 0 - тоже приведенное;
  3. 2x 2 − 6x + 8 = 0 - а вот это нифига не приведенное, поскольку коэффициент при x 2 равен 2.

Разумеется, любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведенным - достаточно разделить все коэффициенты на число a . Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

Задача. Преобразовать квадратное уравнение в приведенное:

  1. 3x 2 − 12x + 18 = 0;
  2. −4x 2 + 32x + 16 = 0;
  3. 1,5x 2 + 7,5x + 3 = 0;
  4. 2x 2 + 7x − 11 = 0.

Разделим каждое уравнение на коэффициент при переменной x 2 . Получим:

  1. 3x 2 − 12x + 18 = 0 ⇒ x 2 − 4x + 6 = 0 - разделили все на 3;
  2. −4x 2 + 32x + 16 = 0 ⇒ x 2 − 8x − 4 = 0 - разделили на −4;
  3. 1,5x 2 + 7,5x + 3 = 0 ⇒ x 2 + 5x + 2 = 0 - разделили на 1,5, все коэффициенты стали целочисленными;
  4. 2x 2 + 7x − 11 = 0 ⇒ x 2 + 3,5x − 5,5 = 0 - разделили на 2. При этом возникли дробные коэффициенты.

Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

Теорема Виета. Рассмотрим приведенное квадратное уравнение вида x 2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x 1 и x 2 . В этом случае верны следующие утверждения:

  1. x 1 + x 2 = −b . Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x , взятому с противоположным знаком;
  2. x 1 · x 2 = c . Произведение корней квадратного уравнения равно свободному коэффициенту.

Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

  1. x 2 − 9x + 20 = 0 ⇒ x 1 + x 2 = − (−9) = 9; x 1 · x 2 = 20; корни: x 1 = 4; x 2 = 5;
  2. x 2 + 2x − 15 = 0 ⇒ x 1 + x 2 = −2; x 1 · x 2 = −15; корни: x 1 = 3; x 2 = −5;
  3. x 2 + 5x + 4 = 0 ⇒ x 1 + x 2 = −5; x 1 · x 2 = 4; корни: x 1 = −1; x 2 = −4.

Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

Задача. Решите квадратное уравнение:

  1. x 2 − 9x + 14 = 0;
  2. x 2 − 12x + 27 = 0;
  3. 3x 2 + 33x + 30 = 0;
  4. −7x 2 + 77x − 210 = 0.

Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

  1. x 2 − 9x + 14 = 0 - это приведенное квадратное уравнение.
    По теореме Виета имеем: x 1 + x 2 = −(−9) = 9; x 1 · x 2 = 14. Несложно заметить, что корни - числа 2 и 7;
  2. x 2 − 12x + 27 = 0 - тоже приведенное.
    По теореме Виета: x 1 + x 2 = −(−12) = 12; x 1 · x 2 = 27. Отсюда корни: 3 и 9;
  3. 3x 2 + 33x + 30 = 0 - это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x 2 + 11x + 10 = 0.
    Решаем по теореме Виета: x 1 + x 2 = −11; x 1 · x 2 = 10 ⇒ корни: −10 и −1;
  4. −7x 2 + 77x − 210 = 0 - снова коэффициент при x 2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x 2 − 11x + 30 = 0.
    По теореме Виета: x 1 + x 2 = −(−11) = 11; x 1 · x 2 = 30; из этих уравнений легко угадать корни: 5 и 6.

Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений ») нам не потребовался.

Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

  1. Квадратное уравнение является приведенным, т.е. коэффициент при x 2 равен 1;
  2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 - по сути, мы изначально предполагаем, что это неравенство верно.

Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x 2 отличен от 1), это легко исправить - взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

  1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
  2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
  3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
  4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

Задача. Решите уравнение: 5x 2 − 35x + 50 = 0.

Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x 2 − 7x + 10 = 0.

Все коэффициенты квадратного уравнения целочисленные - попробуем решить по теореме Виета. Имеем: x 1 + x 2 = −(−7) = 7; x 1 · x 2 = 10. В данном случае корни угадываются легко - это 2 и 5. Считать через дискриминант не надо.

Задача. Решите уравнение: −5x 2 + 8x − 2,4 = 0.

Смотрим: −5x 2 + 8x − 2,4 = 0 - это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x 2 − 1,6x + 0,48 = 0 - уравнение с дробными коэффициентами.

Лучше вернуться к исходному уравнению и считать через дискриминант: −5x 2 + 8x − 2,4 = 0 ⇒ D = 8 2 − 4 · (−5) · (−2,4) = 16 ⇒ ... ⇒ x 1 = 1,2; x 2 = 0,4.

Задача. Решите уравнение: 2x 2 + 10x − 600 = 0.

Для начала разделим все на коэффициент a = 2. Получится уравнение x 2 + 5x − 300 = 0.

Это приведенное уравнение, по теореме Виета имеем: x 1 + x 2 = −5; x 1 · x 2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно - лично я серьезно «завис», когда решал эту задачу.

Придется искать корни через дискриминант: D = 5 2 − 4 · 1 · (−300) = 1225 = 35 2 . Если вы не помните корень из дискриминанта, просто отмечу, что 1225: 25 = 49. Следовательно, 1225 = 25 · 49 = 5 2 · 7 2 = 35 2 .

Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x 1 = 15; x 2 = −20.

Последние материалы раздела:

Все, что нужно знать о бактериях
Все, что нужно знать о бактериях

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10...

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...