Квадратичное приближение. Среднеквадратичное приближение

Квадратичное приближение

Если точечный график похож на параболу, то эмпирическую формулу ищем в виде квадратного трехчлена. Предположим, что приближающаяся кривая похожа на параболу , симметричную относительно оси ординат. Тогда парабола примет более простой вид

(4.4)

Возьмем полуквадратичную систему координат. Это такая система координат, у которой по оси абсцисс шкала квадратичная, т. е. значения делений откладываются согласно выражению , здесь m – масштаб в каких-либо единицах длины, например, в см.

По оси ординат откладывается линейная шкала в соответствии с выражением

Нанесем на эту систему координат опытные точки. Если точки этого графика располагаются приблизительно по прямой, то это подтверждает наше предположение, что зависимость y от x хорошо выражается функцией вида (4.4). Для отыскания коэффициентов a и b можно теперь применить один из рассмотренных выше способов: способ натянутой нити, способ выбранных точек или способ средней.

Способ натянутой нити применяется также, как и для линейной функции.

Способ выбранных точек можем применить так. На прямолинейном графике возьмем две точки (далекие друг от друга). Координаты этих точек обозначим и (x, y ). Тогда можем записать

Из приведенной системы двух уравнений найдем a и b и подставим их в формулу (4.4) и получим окончательный вид эмпирической формулы.

Можно и не строить прямолинейного графика, а взять числа , (x,y ) прямо из таблицы. Однако полученная при таком выборе точек формула будет менее точна.

Процесс преобразования криволинейного графика в прямолинейный называется выравниванием.

Способ средней . Он применяется аналогично как в случае с линейной зависимостью. Разбиваем опытные точки на две группы с одинаковым (или почти одинаковым) числом точек в каждой группе. Равенство (4.4) перепишем так

(4.5)

Находим сумму невязок для точек первой группы и приравниваем нулю. То же делаем для точек второй группы. Получим два уравнения с неизвестными a и b . Решая систему уравнений, найдем a и b .

Заметим, что при применении этого способа не требуется строить приближающую прямую. Точечный график в полуквадратичной системе координат нужен только для проверки того, что функция вида (4.4) подходит для эмпирической формулы.

Пример. При исследовании влияния температуры на ход хронометра получены следующие результаты:

z -20 -15,4 -9,0 -5,4 -0,6 +4,8 +9,4
2,6 2,01 1,34 1,08 0,94 1,06 1,25

При этом нас интересует не сама температура, а ее отклонение от . Поэтому за аргумент примем , где t – температура в градусах Цельсия обычной шкалы.

Нанеся на декартову систему координат соответствующие точки, замечаем, что за приближающую кривую можно принять параболу с осью, параллельной оси ординат (рис.4). Возьмем полуквадратичную систему координат и нанесем на нее опытные точки. Видим, что эти точки достаточно хорошо укладываются на прямой. Значит, эмпирическую формулу

можно искать в виде (4.4).

Определим коэффициенты a и b по методу средней. Для этого разобьем опытные точки на две группы: в первой группе – первые три точки, во второй – остальные четыре точки. Используя равенство (4.5) находим сумму невязок по каждой группе и приравниваем каждую сумму нулю.

В предыдущей главе подробно рассмотрен один из самых распространенных способов приближения функций – интерполирование. Но этот способ не единственный. При решении разнообразных прикладных задач и построении вычислительных схем нередко используют и другие способы. В этой главе мы рассмотрим способы получения среднеквадратических приближений. Название приближений связано с метрическими пространствами, в которых рассматривается задача приближения функции. В главе 1 мы ввели понятия «метрическое линейное нормированное пространство» и «метрическое евклидово пространство» и увидели, что погрешность приближения определяется метрикой пространства, в котором рассматривается задача приближения. В разных пространствах понятие погрешности имеет разный смысл. Рассматривая погрешность интерполяции, мы не акцентировали на этом внимание. А в этой главе нам придется этим вопросом заняться более подробно.

5.1. Приближения тригонометрическими многочленами и многочленами Лежандра Пространство l2

Рассмотрим множество функций , интегрируемых с квадратом по Лебегу на отрезке
, то есть таких, что должен существовать интеграл
.

Поскольку выполняется очевидное неравенство , из интегрируемости с квадратом функций
и
должна следовать и интегрируемость с квадратом любой их линейной комбинации
, (где
и
 любые вещественные числа), а также интегрируемость произведения
.

Введем на множестве функций, интегрируемых с квадратом по Лебегу на отрезке
, операцию скалярного произведения

. (5.1.1)

Из свойств интеграла следует, что введенная операция скалярного произведения обладает почти всеми свойствами скалярного произведения в евклидовом пространстве (см. параграф 1.10, с. 57):


Только первое свойство выполняется не до конца, то есть не будет выполнено условие.

В самом деле, если
, то отсюда не следует, что
на отрезке
. Для того чтобы введенная операция обладала этим свойством, в дальнейшем договоримся не различать (считать эквивалентными) функции
и
,
для которых

.

С учетом последнего замечания, мы убедились, что множество интегрируемых с квадратом по Лебегу функций (точнее множество классов эквивалентных функций) образует евклидово пространство, в котором определена операция скалярного произведения по формуле (5.1.1). Это пространство называют пространством Лебега и обозначают
или короче.

Поскольку всякое евклидово пространство автоматически является и нормированным и метрическим, пространство
также является нормированным, и метрическим пространством. Норма (величина элемента) и метрика (расстояние между элементами) в нем обычно вводятся стандартным способом:


(5.1.2)


(5.1.3)

Свойства (аксиомы) нормы и метрики приведены в параграфе 1.10. Элементами пространства
являются не функции, а классы эквивалентных функций. Функции, принадлежащие одному классу, могут иметь разные значения на любом конечном или даже счетном подмножестве
. Поэтому приближения в пространстве
определяются неоднозначно. Эта неприятная особенность пространства
окупается удобствами использования скалярного произведения.

Для того чтобы сгладить дискретные функции Альтмана, и тем самым внести в теорию идею непрерывности, применялось среднеквадратичное интегральное приближение многочленом разных степеней.

Известно, что последовательность интерполяционных многочленов по равноотстоящим узлам не обязательно сходится к функции, если даже функция бесконечно дифференцируема. Для приближаемой функций с помощью подходящего расположения узлов удаётся снизить степень полинома. . Структура функций Альтмана такова, что удобнее использовать приближение функции не с помощью интерполяции, а с построением наилучшего среднеквадратичного приближения в нормированном линейном пространстве. Рассмотрим основные понятия и сведения при построении наилучшего приближения . Задачи приближения и оптимизации ставятся в линейных нормированных пространствах.

Метрические и линейные нормированные пространства

К наиболее широким понятиям математики относятся "множество" и "отображение". Понятие "множество", "набор", "совокупность", "семейство", "система", "класс" в нестрогой теории множеств считаются синонимами.

Термин "оператор" тождествен термину "отображение". Термины "операция", "функция", "функционал", "мера" - частные случаи понятия "отображение" .

Термины "структура", "пространство" при аксиоматическом построении математических теорий также приобрёл в настоящее время основополагающую значимость. К математическим структурам принадлежат теоретико-множественные структуры (упорядоченные и частично упорядоченные множества); абстрактно-алгебраические структуры (полугруппы, группы, кольца, тела, поля, алгебры, решетки); дифференциальные структуры (внешние дифференциальные формы, расслоенные пространства) , , , , , , .

Под структурой понимается конечный набор, состоящий из множеств носителя (основное множество), числового поля (вспомогательное множество) и отображение, заданных на элементах носителя и числах поля. Если в качестве носителя взято множество комплексных чисел, то оно играет роль и основного, и вспомогательного множества. Термин "структура" тождественен понятию "пространство" .

Чтобы задать пространство, необходимо прежде всего задать множество-носителя со своими элементами (точками), обозначаемых латинскими и греческими буквами

В качестве носителя могут выступать множества элементов действительных (или комплексных): чисел; векторов, ; Матриц, ; Последовательностей, ; Функций;

В качестве элементов носителя могут выступать также множества: действительной оси, плоскости, трёхмерного (и многомерного) пространства, перестановки, движения; абстрактные множества.

Определение. Метрическое пространство есть структура, образующая тройку, где отображение есть неотрицательная действительная функция двух аргументов для любых x и y из M и удовлетворяющая трём аксиомам.

  • 1-- неотрицательность; , при.
  • 2- - симметричность;
  • 3- - аксиома рефлексивности.

где - это расстояния между элементами.

В метрическом пространстве задаётся метрика и формируется понятие о близости двух элементов из множества носителя.

Определение. Действительное линейное (векторное) пространство есть структура, где отображение - аддитивная операция сложения элементов, принадлежащих, а отображение - операция умножения числа на элемент из.

Операция означает, что для любых двух элементов однозначно определен третий элемент, называемый их суммой и обозначаемый через, причем выполняются следующие аксиомы.

Коммутативное свойство.

Ассоциативное свойство.

В существует особый элемент, обозначаемый через такой, что для любого выполняется.

для любого существует, такой, что.

Элемент называется противоположным к и обозначается через.

Операция означает, что для любого элемента и любого числа определен элемент, обозначаемый через и выполняется аксиомы:

Элемент (точки) линейных пространства называется также векторами. Аксиомами 1 - 4 задаётся группа (аддитивная), называемая модулем и представляющая собой структуру.

Если операция в структуре не подчиняется никакими аксиомам, то такую структуру называют группоидом. Эта структура предельно бедна; в ней нет ни одной аксиоме ассоциативности, то структура называется моноидом (полугруппа).

В структуре с помощью отображения и аксиомами 1-8 задаётся свойство линейности.

Итак, линейное пространство является групповым модулем, в структуру которого добавлена еще одна операция - умножения элементов носителя на число с 4 аксиомами. Если вместо операции задать наряду с еще одну групповую операцию умножения элементов с 4 аксиомами и постулировать аксиому дистрибутивности, то возникает структуру, называемая полем.

Определение. Линейное нормированное пространство есть структура, в которой отображение удовлетворяет следующие аксиомами:

  • 1. причём тогда и только тогда, когда.
  • 2. , .
  • 3. , .

И так в всего 11 аксиом.

Например, если в структуру поля вещественных чисел, где - действительные числа, добавить модуль, обладающий всеми тремя свойствами нормы, то поле вещественных чисел становится нормированным пространством

Распространены два способа введения нормы: либо путём явного задания интервального вида однородно-выпуклого функционала , , либо путём задания скалярного произведение , .

Пусть, тогда вид функционала можно задать бесчисленным количеством способов, меняя величину:

  • 1. , .
  • 2. , .

………………..

…………….

Второй распространённый способ приём задания состоит в том, что в структуру пространства вводится ещё одного отображение (функция двух аргументов, обычно обозначаемое через и называемое скалярным произведением).

Определение. Евклидово пространство есть структура в которой скалярное произведение содержит норму и удовлетворяет аксиомам:

  • 4. , причём тогда и только тогда, когда

В евклидовом пространстве норма порождается формулой

Из свойств 1 - 4 скалярного произведения следует, что выполняются все аксиомы нормы. Если скалярное произведение в виде, то норма будет вычисляться по формуле

Норму пространства невозможно задать с помощью скалярного произведения , .

В пространствах со скалярным произведением появляются такие качества, которые отсутствуют в линейных нормированных пространствах (ортогональность элементов, равенство параллелограмма, теорема Пифагора, тожество Аполлония, неравенство Птолемея . Введение скалярного произведения даёт способы более эффективного решения задач аппроксимации.

Определение. Бесконечная последовательность элементов в линейном нормированном пространстве называется сходящейся по норме (просто сходящейся или имеющей предел в), если существует такой элемент, что для любого найдется номер, зависящий от такой, что при выполняется

Определение. Последовательность элементов в называется фундаментальной, если для любого существует номер, зависящий от, что любого и выполняются (Треногин Колмогоров, Канторович, с 48)

Определение. Банаховым пространством называется такая структура, в которой любая фундаментальная последовательность сходится по норме.

Определение. Гильбертовым пространством называется такая структура в которой любая фундаментальная последовательность сходится по норме, порождённой скалярным произведением.

ЛАБОРАТОРНАЯ РАБОТА

СРЕДНЕКВАДРАТИЧНОЕ ПРИБЛИЖЕНИЕ ТАБЛИЧНО ЗАДАННЫХ ФУНКЦИЙ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

Цель : Ознакомление студентов с основными методами интерполяции и аппроксимации таблично заданных функций. Закрепление на практике полученных знаний в области аппроксимации таких функций.

Задача : Научить студентов практическому применению полученных теоретических знаний при решении задач сглаживания результатов эксперимента полиномами, как при алгоритмизации таких задач, так и при их программировании.

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Интерполяция и аппроксимация

В практике часто встречается ситуация, когда некоторая функция f (x ) задана таблицей ее значений в отдельных точках х = x 0 , x 1 , … , x n [a , b ], например, дискретные показания прибора во времени, а следует вычислить функцию f (x ) в некоторых промежуточных точках. Эту задачу можно решить приближенно, заменяя функцию f (x ) более простой непрерывной функцией F (x ). Существуют два основных способа такой замены: интерполяция и аппроксимация .

Суть интерполирования – в построении такой легко вычисляемой функции F (x ), которая совпадает с функцией f (x ) в точках х = x 0 , x 1 , … , x n . Иными словами, график функции F (x ) в плоскости Оху должен проходить через точки х = x 0 , x 1 , … , x n , в которых задана функция f (x ). При этом, точки х = x 0 , x 1 , … , x n называют узлами интерполирования, а функцию F (x ) – интерполяционной. В качестве интерполяционной функции в большинстве случаев выбирают полиномы. Так, линейная интерполяция состоит в простом последовательном соединении точек (x 0 , f (x 0)), (x 1 , f (x 1)), … ,

(x n , f (x n )) отрезками прямых, т.е. в построении n полиномов первой степени. Значение функции f (x ) в точке х *, где х * (x i ,x i +1), i = 0, 1, … , n – 1, вычисляется в этом случае достаточно просто:

f (x *) = f (x i ) + · (х *–x i ).

Квадратичная интерполяция состоит в соединении последовательных троек узлов интерполяции параболами. Кубическая интерполяция – четверок – кубическими параболами и т.д. Интерполяционные полиномы степени (n – 1)есть гладкие функции, проходящие через все узлы интерполяции. При наложении дополнительных условий на соединение функции F (x )в точках (x 1 , f (x 1)), (x 2 , f (x 2)), … , (x n -1 , f (x n -1)) получим т.н. сплайн-интерполяцию. Для построения интерполяционных многочленов разработано множество методов: Ньютона, Стирлинга, Лагранжа и др.

Во многих случаях, имея значения функции в n + 1 узлах, удобно вместо интерполяционного многочлена находить полином степени m <n , который бы хорошо приближал (аппроксимировал) рассматриваемую функцию. При этом требование совпадения функций f (x ) иF (x ) в точках (x 0 , f (x 0)), (x 1 , f (x 1)), … , (x n , f (x n )) заменяется на требование минимизации суммарного отклонения между значениями функций f (x ) и F (x ) в точках х = x 0 , x 1 , … , x n .

Одним из основных методов построения аппроксимизационного полинома является метод наименьших квадратов, по которому требуется, чтобы сумма квадратов отклонений между значениями функции и значениями приближающей функции в узлах должна быть минимальной. Почему квадратов? Потому что сами отклонения между значениями функций может быть как положительными, так и отрицательными, и их сумма не дает истинного представления о различии между функциями за счет компенсации положительныхи отрицательных значений. Можно взять модули отклонений, однако положительные квадраты этих отклонений более удобны в работе.

Среднеквадратическое приближение таблично заданных функций

(метод наименьших квадратов)

Пусть в узлах x 0 , x 1 , … , x n имеем значения у 0 , у 1 , … , у n функции f (x ). Среди полиномов m -й степени (m <n )

P m (x ) = a 0 + a 1 x + a 2 x 2 + … + a m x m (1)

найти такой, который доставляет минимум выражению

S = .(2)

Неизвестными являются коэффициенты полинома (1). Сумма (2) представляет собой квадратичную форму от этих коэффициентов. Кроме того, формула (2) показывает, что функция S = S (a 0 , a 1 , … , a m ) не может принимать отрицательных значений. Следовательно, минимум функции S существует.

Применяя необходимые условия экстремума функции S = S (a 0 , a 1 , … , a m ), получаем систему линейных алгебраических уравнений для определения коэффициентов a 0 , a 1 , … , a m :

, (k = 0, 1, 2, … , m )(3)

Полагая с p = , d p = , запишем систему (3) в матричном виде

С a = d , (4)

С = – матрица системы, а = {a 0 , a 1 , … , a m } T – вектор неизвестных, d = {d 0 , d 1 , … , d m } T – вектор правых частей системы.

Если среди узлов x 0 , x 1 , … , x n нет совпадающих и m n , то система (4) имеет единственное решение a 0 = ,a 1 = , … , a m = . Тогда полином

= + x + x 2 + … + x m

является единственным полиномом степени m , обладающим минимальным квадратичным отклонением S * = S min.

Погрешность среднеквадратического приближения функции характеризуется величиной δ = .

Самый простой и наиболее часто используемый вид аппроксимации (среднеквадратического приближения) функции – линейная. Приближение данных (x i , y i ) осуществляется линейной функцией y (х )= ax + b . На координатной плоскости (x , y ) линейная функция, как известно, представляется прямой линией.

Пример . Сгладить систему точек прямойy = ax + b .

х –1 0 1 2 3 4
у 0 2 3 3,5 3 4,5

Строим рабочую таблицу .

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...