Количество теплоты: понятие, расчеты, применение. Количество теплоты

>>Физика: Расчет количества теплоты необходимого для нагревания тела и выделяемого им при охлаждении

Чтобы научиться рассчитывать количество теплоты, которое необходимо для нагревания тела, установим сначала, от каких величин оно зависит.
Из предыдущего параграфа мы уже знаем, что это количество теплоты зависит от рода вещества, из которого состоит тело (т.е. его удельной теплоемкости):
Q зависит от с
Но это еще не все.

Если мы хотим подогреть воду в чайнике так, чтобы она стала лишь теплой, то мы недолго будем нагревать ее. А для того чтобы вода стала горячей, мы будем нагревать ее дольше. Но чем дольше чайник будет соприкасаться с нагревателем, тем большее количество теплоты он от него получит.

Следовательно, чем сильнее при нагревании изменяется температура тела, тем большее количество теплоты необходимо ему передать.

Пусть начальная температура тела равна tнач, а конечная температура - tкон. Тогда изменение температуры тела будет выражаться разностью:

Наконец, всем известно, что для нагревания , например, 2 кг воды требуется большее время (и, следовательно, большее количество теплоты), чем для нагревания 1 кг воды. Это означает, что количество теплоты, необходимое для нагревания тела, зависит от массы этого тела:

Итак, для расчета количества теплоты нужно знать удельную теплоемкость вещества, из которого изготовлено тело, массу этого тела и разность между его конечной и начальной температурами.

Пусть, например, требуется определить, какое количество теплоты необходимо для нагревания железной детали массой 5 кг при условии, что ее начальная температура равна 20 °С, а конечная должна стать равной 620 °С.

Из таблицы 8 находим, что удельная теплоемкость железа с = 460 Дж/(кг°С). Это означает, что для нагревания 1 кг железа на 1 °С требуется 460 Дж.
Для нагревания 5 кг железа на 1 °С потребуется в 5 раз больше количества теплоты, т.е. 460 Дж * 5 = 2300 Дж.

Для нагревания железа не на 1 °С, а на A t = 600°С потребуется еще в 600 раз больше количества теплоты, т. е. 2300 Дж Х 600=1 380 000 Дж. Точно такое же (по модулю) количество теплоты выделится и при остывании этого железа от 620 до 20 °С.

Итак, чтобы найти количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

??? 1. Приведите примеры, показывающие, что количество теплоты, получаемое телом при нагревании, зависит от его массы и изменения температуры. 2. По какой формуле рассчитывается количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении ?

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Задание и ответы с физики по классам, скачать рефераты физики , планирование уроков физики 8 класс, все школьнику для подготовки к урокам, план конспектов уроков по физике, физика тесты онлайн, домашние задание и работа

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На практике часто пользуются тепловыми расчётами. Например, при строительстве зданий необходимо учитывать, какое количество теплоты должна отдавать зданию вся система отопления. Следует также знать, какое количество теплоты будет уходить в окружающее пространство через окна, стены, двери.

Покажем на примерах, как нужно вести простейшие расчёты.

Итак, необходимо узнать, какое количество теплоты получила при нагревании медная деталь. Её масса 2 кг, а температура увеличивалась от 20 до 280 °С. Вначале по таблице 1 определим удельную теплоёмкость меди с м = 400 Дж / кг °С). Это означает, что на нагревание детали из меди массой 1 кг на 1 °С потребуется 400 Дж. Для нагревания медной детали массой 2 кг на 1 °С необходимо в 2 раза большее количество теплоты - 800 Дж. Температуру медной детали необходимо увеличить не на 1 °С, а на 260 °С, значит, потребуется в 260 раз большее количество теплоты, т. е. 800 Дж 260 = 208 000 Дж.

Если обозначить массу m, разность между конечной (t 2) и начальной (t 1) температурами - t 2 - t 1 получим формулу для расчёта количества теплоты:

Q = cm(t 2 - t 1).

Пример 1 . В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100 °С?

При решении задачи нужно учесть, что оба тела - и котёл, и вода - будут нагреваться вместе. Между ними происходит теплообмен. Их температуры можно считать одинаковыми, т. е. температура котла и воды изменяется на 100 °С - 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми. Ведь их массы и удельные теплоёмкости различны.

Нагревание воды в котелке

Пример 2 . Смешали воду массой 0,8 кг, имеющую температуру 25 °С, и воду при температуре 100 °С массой 0,2 кг. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислите, какое количество теплоты отдала горячая вода при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Запишем условие задачи и решим её.



Мы видим, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой,равны между собой. Это не случайный результат. Опыт показывает, что если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

При проведении опытов обычно получается, что отданная горячей водой энергия больше энергии, полученной холодной водой. Это объясняется тем, что часть энергии передаётся окружающему воздуху, а часть энергии - сосуду, в котором смешивали воду. Равенство отданной и полученной энергий будет тем точнее, чем меньше потерь энергии допускается в опыте. Если подсчитать и учесть эти потери, то равенство будет точным.

Вопросы

  1. Что нужно знать, чтобы вычислить количество теплоты, полученное телом при нагревании?
  2. Объясните на примере, как рассчитывают количество теплоты, сообщённое телу при его нагревании или выделяющееся при его охлаждении.
  3. Напишите формулу для расчёта количества теплоты.
  4. Какой вывод можно сделать из опыта по смешиванию холодной и горячей воды? Почему на практике эти энергии не равны?

Упражнение 8

  1. Какое количество теплоты требуется для нагревания воды массой 0,1 кг на 1 °С?
  2. Рассчитайте количество теплоты, необходимое для нагревания: а) чугунного утюга массой 1,5 кг для изменения его температуры на 200 °С; б) алюминиевой ложки массой 50 г от 20 до 90 °С; в) кирпичного камина массой 2 т от 10 до 40 °С.
  3. Какое количество теплоты выделилось при остывании воды, объём которой 20 л, если температура изменилась от 100 до 50 °С?

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как . Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

где – удельная теплоемкость тела, m – масса тела, - молярная теплоемкость, – молярная масса вещества, – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты (), которое получает тело при увеличении его температуры на величину можно вычислить как:

где t 2 , t 1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности () в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты () равное:

где – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура одной массы воды t 1 =10С, второй массы воды t 2 =60С?

Решение. Запишем уравнение теплового баланса в виде:

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q 1 =cm 1 t 1 - количество теплоты части воды температурой t 1 и массой m 1 ; Q 2 =cm 2 t 2 - количество теплоты части воды температурой t 2 и массой m 2 .

Из уравнения (1.1) следует:

При объединении холодной (V 1) и горячей (V 2) частей воды в единый объем (V) можно принять то, что:

Так, мы получаем систему уравнений:

Решив ее получим:

Понятие о количестве теплоты сформировалось на ранних стадиях развития современной физики, когда еще не существовало внятных представлений о внутреннем строении вещества, о том, что такое энергия, о том какие формы энергии существуют в природе и об энергии, как форме движения и превращения материи.

Под количеством теплоты понимается физическая величина эквивалентная переданной материальному телу энергии в процессе теплового обмена.

Устаревшей единицей количества теплоты является калория, равная 4.2 Дж, сегодня данная единица практически не применяется, а ее место занял джоуль.

Изначально предполагалось, что переносчиком тепловой энергии является некая совершенно невесомая среда, имеющая свойства жидкости. Многочисленные физические задачи теплопереноса решались и до сих пор решаются исходя из такой предпосылки. Существование гипотетического теплорода было положено в основу множества правильных в сущности построений. Считалось, что теплород выделяется и поглощается в явлениях нагрева и остывания, плавления и кристаллизации. Верные уравнения процессов теплообмена были получены исходя из неверных физических концепций. Известен закон, согласно которому количество теплоты прямо пропорционально массе тела, участвующего в теплообмене, и градиенту температуры:

Где Q – количество теплоты, m масса тела, а коэффициент с – величина, получившая название удельной теплоемкости. Удельная теплоемкость – есть характеристика вещества участвующего в процессе.

Работа в термодинамике

В результат тепловых процессов может совершаться чисто механическая работа. Например, нагреваясь, газ увеличивает свой объем. Возьмем ситуацию, как на рисунке ниже:

В данном случае механическая работа окажется равной силе давления газа на поршень умноженной на путь, проделанный поршнем под давлением. Разумеется, это простейший случай. Но даже в нем можно заметить одну сложность: сила давления будет зависеть от объема газа, а, значит, мы имеем дело не с константами, а с переменными величинами. Поскольку все три переменные: давление, температура и объем связаны друг с другом, то подсчет работы существенно усложняется. Выделяют некоторые идеальные, бесконечно-медленные процессы: изобарный, изотермический, адиабатный и изохорный – для которых такие расчеты можно выполнить относительно просто. Строится график зависимости давления от объема и работа вычисляется как интеграл вида.

Что быстрее нагреется на плите - чайник или ведро воды? Ответ очевиден - чайник. Тогда второй вопрос - почему?

Ответ не менее очевиден - потому что масса воды в чайнике меньше. Отлично. А теперь вы можете проделать самостоятельно самый настоящий физический опыт в домашних условиях. Для этого вам понадобится две одинаковые небольшие кастрюльки, равное количество воды и растительного масла, например, по пол-литра и плита. На одинаковый огонь ставите кастрюльки с маслом и водой. А теперь просто наблюдайте, что быстрее будет нагреваться. Если есть градусник для жидкостей, можно применить его, если нет, можно просто пробовать температуру время от времени пальцем, только осторожно, чтобы не обжечься. В любом случае вы вскоре убедитесь, что масло нагревается значительно быстрее воды. И еще один вопросик, который тоже можно реализовать в виде опыта. Что быстрее закипит - теплая вода или холодная? Все снова очевидно - теплая будет на финише первой. К чему все эти странные вопросы и опыты? К тому, чтобы определить физическую величину, называемую «количеством теплоты».

Количество теплоты

Количество теплоты - это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании - поглощать. А ответы на наши вопросы показали нам, от чего зависит количество теплоты? Во-первых, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус. Во-вторых, количество теплоты, необходимое для нагревания тела, зависит от того вещества, из которого оно состоит, то есть от рода вещества. И в-третьих, разность температур тела до и после теплопередачи также важна для наших расчетов. Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:

где Q - количество теплоты,
m - масса тела,
(t_2-t_1) - разность между начальной и конечной температурами тела,
c - удельная теплоемкость вещества, находится из соответствующих таблиц.

По этой формуле можно произвести расчет количества теплоты, которое необходимо, чтобы нагреть любое тело или которое это тело выделит при остывании.

Измеряется количество теплоты в джоулях (1 Дж), как и всякий вид энергии. Однако, величину эту ввели не так давно, а измерять количество теплоты люди начали намного раньше. И пользовались они единицей, которая широко используется и в наше время - калория (1 кал). 1 калория - это такое количество теплоты, которое потребуется для нагреванияь 1 грамма воды на 1 градус Цельсия. Руководствуясь этими данными, любители подсчитывать калории в съедаемой пище, могут ради интереса подсчитать, сколько литров воды можно вскипятить той энергией, которую они потребляют с едой в течение дня.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....