Каково строение и функции митохондрий. Функции митохондрии и их строение

Важную роль в жизнедеятельности каждой клетки играют особые структуры - митохондрии. Строение митохондрий позволяет работать органелле в полуавтономном режиме.

Общая характеристика

Митохондрии были обнаружены в 1850 году. Однако понять строение и функциональное назначение митохондрий стало возможно только в 1948 году.

За счёт своих довольно крупных размеров органеллы хорошо различимы в световом микроскопе. Максимальная длина - 10 мкм, диаметр не превышает 1 мкм.

Митохондрии присутствуют во всех эукариотических клетках. Это двумембранные органоиды обычно бобовидной формы. Также встречаются митохондрии сферической, нитевидной, спиралевидной формы.

Количество митохондрий может значительно варьировать. Например, в клетках печени их насчитывается около тысячи, а в ооцитах - 300 тысяч. Растительные клетки содержат меньше митохондрий, чем животные.

ТОП-4 статьи которые читают вместе с этой

Рис. 1. Нахождение митохондрий в клетке.

Митохондрии пластичны. Они меняют форму и перемещаются в активные центры клетки. Обычно митохондрий больше в тех клетках и частях цитоплазмы, где выше потребность в АТФ.

Строение

Каждая митохондрия отделена от цитоплазмы двумя мембранами. Наружная мембрана гладкая. Строение внутренней мембраны более сложное. Она образует многочисленные складки - кристы, которые увеличивают функциональную поверхность. Между двумя мембранами находится пространство в 10-20 нм, заполненное ферментами. Внутри органеллы располагается матрикс - гелеобразное вещество.

Рис. 2. Внутреннее строение митохондрий.

В таблице “Строение и функции митохондрии” подробно описаны компоненты органеллы.

Состав

Описание

Функции

Внешняя мембрана

Состоит из липидов. Содержит большое количество белка порина, который образует гидрофильные канальцы. Вся наружная мембрана пронизана порами, через которые в митохондрию попадают молекулы веществ. Также содержит ферменты, участвующие в синтезе липидов

Защищает органеллу, способствует транспорту веществ

Располагаются перпендикулярно оси митохондрии. Могут иметь вид пластинок или трубочек. Количество крист варьирует в зависимости от типа клеток. В клетках сердца их в три раза больше, чем в клетках печени. Содержат фосфолипиды и белки трёх типов:

Катализирующие - участвуют в окислительных процессах;

Ферментативные - участвуют в образовании АТФ;

Транспортные - переносят молекулы из матрикса наружу и обратно

Осуществляет вторую стадию дыхания с помощью дыхательной цепи. Происходит окисление водорода, образование 36 молекул АТФ и воды

Состоит из смеси ферментов, жирных кислот, белков, РНК, митохондриальных рибосом. Здесь находится собственная ДНК митохондрий

Осуществляет первую стадию дыхания - цикл Кребса, в результате которого образуется 2 молекулы АТФ

Главная функция митохондрии - генерация энергии клетки в виде молекул АТФ за счёт реакции окислительного фосфорилирования - клеточного дыхания.

Помимо митохондрий в клетках растений присутствуют дополнительные полуавтономные органеллы - пластиды.
В зависимости от функционального назначения различают три вида пластид:

  • хромопласты - накапливают и хранят пигменты (каротины) разных оттенков, придающих окраску цветков растений;
  • лейкопласты - запасают питательные вещества, например, крахмал, в виде зерён и гранул;
  • хлоропласты - наиболее важные органеллы, содержащие зелёный пигмент (хлорофилл), придающий окраску растениям, и осуществляющие фотосинтез.

Рис. 3. Пластиды.

Что мы узнали?

Рассмотрели особенности строения митохондрий - двумембранных органелл, осуществляющих клеточное дыхание. Наружная мембрана состоит из белков и липидов и производит транспорт веществ. Внутренняя мембрана образует складки - кристы, на которых происходит окисление водорода. Кристы окружает матрикс - гелеобразное вещество, в котором протекает часть реакций клеточного дыхания. В матриксе находятся митохондриальные ДНК и РНК.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 82.

Двумембранная органелла - митохондрия - характерна для клеток эукариот. От функций митохондрий зависит работа организма в целом.

Строение

Митохондрии состоят из трёх взаимосвязанных компонентов:

  • наружной мембраны;
  • внутренней мембраны;
  • матрикса.

Внешняя гладкая мембрана состоит из липидов, между которых находятся гидрофильные белки, образующие канальцы. Сквозь эти канальцы проходят молекулы при транспорте веществ.

Наружная и внутренняя мембраны находятся на расстоянии 10-20 нм. Межмембранное пространство заполнено ферментами. В отличие от ферментов лизосом, участвующих в расщеплении веществ, ферменты межмембранного пространства переносят остатки фосфорной кислоты к субстрату с затратой АТФ (процесс фосфорилирования).

Внутренняя мембрана упакована под внешней мембраной в виде многочисленных складок - крист.
Они образованы:

  • липидами, проницаемыми только для кислорода, углекислого газа, воды;
  • ферментными, транспортными белками, участвующими в окислительных процессах и транспорте веществ.

Здесь за счёт дыхательной цепи происходит вторая стадия клеточного дыхания и образование 36 молекул АТФ.

ТОП-4 статьи которые читают вместе с этой

Между складками находится полужидкое вещество - матрикс.
В состав матрикса входят:

  • ферменты (сотни разных видов);
  • жирные кислоты;
  • белки (67 % белков митохондрий);
  • митохондриальная кольцевая ДНК;
  • митохондриальные рибосомы.

Наличие рибосом и ДНК свидетельствует о некоторой автономности органоида.

Рис. 1. Строение митохондрий.

Ферментативные белки матрикса участвуют в окислении пирувата - пировиноградной кислоты в ходе клеточного дыхания.

Значение

Основная функция митохондрий в клетке - синтез АТФ, т.е. генерация энергии. В результате клеточного дыхания (окисления) образуется 38 молекул АТФ. Синтез АТФ происходит на основе окисления органических соединений (субстрата) и фосфорилирования АДФ. Субстратом для митохондрий являются жирные кислоты и пируват.

Рис. 2. Образование пирувата в результате гликолиза.

Общее описание процесса дыхания представлено в таблице.

Где происходит

Вещества

Процессы

Цитоплазма

В результате гликолиза разлагается на две молекулы пировиноградной кислоты, которые поступают в матрикс

Отщепляется ацетильная группа, которая присоединяется к коферменту А (КоА), образуя ацетил-кофермент-А (ацетил-КоА), и выделяется молекула углекислого газа. Ацетил-КоА также может формироваться из жирных кислот в отсутствии синтеза углеводов

Ацетил-КоА

Вступает в цикл Кребса или цикл лимонной кислоты (цикл трикарбоновых кислот). Начинается цикл с образования лимонной кислоты. Далее в результате семи реакций образуется две молекулы углекислого газа, НАДН и ФАДН2

НАДН и ФАДН2

Окисляясь, НАДН разлагается на НАД + , два высокоэнергетических электрона (е –) и два протона Н + . Электроны передаются в дыхательную цепь, содержащую три ферментных комплекса, на внутренней мембране. Прохождение электрона по комплексам сопровождается выделением энергии. Одновременно протоны высвобождаются в межмембранное пространство. Свободные протоны стремятся вернуться в матрикс, что создаёт электрический потенциал. При нарастании напряжения Н + устремляются внутрь через АТФ-синтазу - специальный белок. Энергия протонов используется для фосфорилирования АДФ и синтеза АТФ. Соединяясь с кислородом, Н + образует воду

Рис. 3. Процесс клеточного дыхания.

Митохондрии - органеллы, от которых зависит работа целого организма. Признаками нарушения функций митохондрий являются снижение скорости потребления кислорода, увеличение проницаемости внутренней мембраны, набухание митохондрии. Эти изменения происходят вследствие токсического отравления, инфекционного заболевания, гипоксии.

Что мы узнали?

Из урока биологии узнали об особенностях строения митохондрий, кратко рассмотрели функции и процесс клеточного дыхания. Благодаря работе митохондрий пировиноградная кислота, образованная в процессе гликолиза, и жирные кислоты окисляются до углекислого газа и воды. В результате клеточного дыхания высвобождается энергия, которая тратится на жизнедеятельность организма.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 67.

МИТОХОНДРИИ (mitochondria ; греч, mitos нить + chondrion зернышко) - органоиды, присутствующие в цитоплазме клеток животных и растительных организмов. М. принимают участие в процессах дыхания и окислительного фосфорилирования, продуцируют энергию, необходимую для функционирования клетки, представляя, таким образом, ее «силовые станции».

Термин «митохондрии» был предложен в 1894 г. Бендой (С. Benda). В середине 30-х гг. 20 в. удалось впервые выделить М. из клеток печени, что позволило исследовать эти структуры биохим, методами. В 1948 г. Хогебумом (G. Hogeboom) были получены окончательные доказательства того, что М. действительно являются центрами клеточного дыхания. Значительные успехи в изучении этих органоидов были сделаны в 60-70 гг. в связи с применением методов электронной микроскопии и молекулярной биологии.

Форма М. варьирует от почти круглых до сильно вытянутых, имеющих вид нитей (рис. 1), Размер их колеблется от 0,1 до 7 мкм. Количество М. в клетке зависит от типа ткани и функционального состояния организма. Так, в сперматозоидах число М. невелико - ок. 20 (на клетку), в клетках эпителия почечных канальцев млекопитающих их содержится до 300 в каждой, а у гигантской амебы (Chaos chaos) обнаружено 500 000 митохондрий, В одной клетке печени крысы ок. 3000 М., однако в процессе голодания животного число М. может сократиться до 700. Обычно М. распределяются в цитоплазме достаточно равномерно, однако в клетках нек-рых тканей М. могут быть постоянно локализованы в участках, особенно нуждающихся в энергии. Напр., в скелетной мышце М. часто находятся в контакте с контрактильными участками миофибрилл, образуя правильные трехмерные структуры. В сперматозоидах М. образуют спиральный футляр вокруг осевой нити хвоста, что, вероятно, связано с возможностью использовать энергию АТФ, синтезируемую в М., для движений хвоста. В аксонах М. концентрируются вблизи синаптических окончаний, где происходит процесс передачи нервных импульсов, сопровождающийся энергозатратой. В клетках эпителия почечных канальцев М. связаны с выпячиваниями базальной клеточной мембраны. Это вызвано необходимостью постоянного и интенсивного снабжения энергией процесса активного переноса воды и растворенных в ней веществ, протекающего в почках.

Электронно-микроскопически установлено, что М. содержит две мембраны - наружную и внутреннюю. Толщина каждой мембраны ок. 6 нм, расстояние между ними - 6-8 нм. Наружная мембрана гладкая, внутренняя образует сложные выросты (кристы), вдающиеся в полость митохондрии (рис. 2). Внутреннее пространство М. носит название матрикса. Мембраны представляют собой пленку из компактно уложенных молекул белков и липидов, в то время как матрикс подобен гелю и содержит в своем составе растворимые белки, фосфаты и другие хим. соединения. Обычно матрикс выглядит гомогенным, лишь в нек-рых случаях в нем можно обнаружить тонкие нити, трубочки и гранулы, содержащие ионы кальция и магния.

Из особенностей строения внутренней мембраны необходимо отметить наличие в ней сферических частиц ок. 8-10 нм в поперечнике, сидящих на короткой ножке и иногда выступающих в матрикс. Эти частицы были открыты в 1962 г. Фернандес-Мораном (H. Fernandez-Moran). Они состоят из белка, обладающего АТФ-азной активностью, получившего обозначение F1. Белок прикрепляется к внутренней мембране только со стороны, обращенной к матриксу. Частицы F1 располагаются на расстоянии 10 нм друг от друга, а в каждой М. содержится 10 4 -10 5 , таких частиц.

В кристах и внутренних мембранах М. содержится большинство дыхательных ферментов (см.), дыхательные ферменты организованы в компактные ансамбли, распределенные с правильными промежутками в кристах М. на расстоянии 20 нм друг от друга.

М. почти всех типов клеток животных и растений построены по единому принципу, однако возможны отклонения в деталях. Так, кристы могут располагаться не только поперек длинной оси органоида, но и продольно, напр, в М. синаптической зоны аксона. В ряде случаев кристы могут ветвиться. В М. простейших организмов, нек-рых насекомых и в клетках клубочковой зоны надпочечников кристы имеют форму трубочек. Число крист различно; так, в М. клеток печени и половых клеток крист очень мало и они короткие, в то время как матрикс обилен; в М. мышечных клеток кристы многочисленны, а матрикса мало. Существует мнение, что число крист коррелирует с окислительной активностью М.

Во внутренней мембране М. осуществляются параллельно три процесса: окисление субстрата цикла Кребса (см. Трикарбоновых кислот цикл), перенос освободившихся при этом электронов и накопление энергии путем образования макроэргических связей аденозинтрифосфата (см. Аденозинфосфорные кислоты). Основной функцией М. является сопряжение синтеза АТФ (из АДФ и неорганического фосфора) и аэробного процесса окисления (см. Окисление биологическое). Накопленная в молекулах АТФ энергия может трансформироваться в механическую (в мышцах), электрическую (нервная система), осмотическую (почки) и т. д. Процессы аэробного дыхания (см. Окисление биологическое) и сопряженного с ним окислительного фосфорилирования (см.) являются основными функциями М. Кроме того, в наружной мембране М. может происходить окисление жирных к-т, фосфолипидов и нек-рых других соединений.

В 1963 г. Насс и Насс (М. Nass, S. Nass) установили, что в М. содержится ДНК (одна или несколько молекул). Все исследованные до сих пор митохондриальные ДНК из животных клеток состоят из ковалентно замкнутых колец диам. ок. 5 нм. У растений митохондриальная ДНК значительно длиннее и не всегда имеет форму кольца. Митохондриальная ДНК во многих отношениях отличается от ядерной. Репликация ДНК происходит при помощи обычного механизма, однако не совпадает во времени с репликацией ядерной ДНК. Количество генетической информации, заключенной в молекуле митохондриальной ДНК, по-видимому, недостаточно для кодирования всех белков и ферментов, содержащихся в М. Митохондриальные гены кодируют в основном структурные белки мембран и белки, участвующие в морфогенезе митохондрий. М. имеют свои транспортные РНК и синтетазы, содержат все компоненты, необходимые для синтеза белка; их рибосомы меньше цитоплазматических и более похожи на рибосомы бактерий.

Продолжительность жизни М. сравнительно невелика. Так, время обновления половины количества М. составляет для печени 9,6-10,2 сут., для почки - 12,4 сут. Пополнение популяции М. происходит, как правило, из предсуществующих (материнских) М. путем их деления или почкования.

Давно высказывалось предположение, что в процессе эволюции М. возникли, вероятно, путем эндосимбиоза примитивных ядросодержащих клеток с бактериоподобными организмами. Имеется большое число доказательств этому: наличие собственной ДНК, более сходной с ДНК бактерий, чем с ДНК ядра клетки; присутствие в М. рибосом; синтез ДНК-зависимой РНК; чувствительность митохондриальных белков к антибактериальному препарату - хлорамфениколу; сходство с бактериями в реализации дыхательной цепи; морфол., биохим, и физиол, различия между внутренней и наружной мембраной. Согласно симбиотической теории клетка-хозяин рассматривается как анаэробный организм, источником энергии для к-рого является гликолиз (протекающий в цитоплазме). В «симбионте» же реализуется цикл Кребса и дыхательная цепь; он способен к дыханию и окислительному фосфорилированию (см.).

М. являются весьма лабильными внутриклеточными органоидами, раньше других реагирующими на возникновение каких-либо патол, состояний. Возможны изменения числа М. в клетке (вернее, в их популяциях) или изменения их структуры. Напр., при голодании, действии ионизирующего облучения число М. уменьшается. Структурные изменения обычно состоят в набухании всего органоида, просветлении матрикса, разрушении крист, нарушении целостности наружной мембраны.

Набухание сопровождается значительным изменением объема М. В частности, при ишемии миокарда объем М. увеличивается в 10 раз и более. Различают два типа набухания: в одном случае оно связано с изменением осмотического давления внутри клетки, в других случаях - с изменениями клеточного дыхания, сопряженного с ферментативными реакциями и первичными функциональными расстройствами, вызывающими изменения водного обмена. Помимо набухания, может происходить вакуолизация М.

Независимо от причин, вызывающих патол, состояние (гипоксия, гиперфункция, интоксикация), изменения М. довольно стереотипны и неспецифичны.

Наблюдаются такие изменения структуры и функции М., к-рые, по-видимому, становились причиной возникновения болезни. В 1962 г. Луфт (R. Luft) описал случай «митохондриальной болезни». Больному с резко повышенной интенсивностью обмена веществ (при нормальной функции щитовидной железы) была сделана пункция скелетной мышцы и найдено повышенное число М., а также нарушение структуры крист. Дефектные митохондрии в клетках печени наблюдались и при выраженном тиреотоксикозе. Виноград (J. Vinograd) с сотр. (с 1937 по 1969) обнаружил, что у больных с определенными формами лейкемии митохондриальные ДНК из лейкоцитов заметно отличались от нормальных. Они представляли собой открытые кольца или группы сцепленных колец. Частота этих аномальных форм снижалась в результате химиотерапии.

Библиография: Гаузе Г. Г. Митохондриальная ДНК, М., 1977,библиогр.; Д e P о-бертис Э., Новинский В. и С а э с Ф. Биология клетки, пер. с англ., М., 1973; Озернюк Н. Д. Рост и воспроизведение митохондрий, М., 1978, библиогр.; Поликар А. и Бесси М. Элементы патологии клетки, пер. с франц., М., 1970; РудинД. и Уилки Д. Биогенез митохондрий, пер. с англ., М., 1970, библиогр.; Серов В. В. и Пауков В. С. Ультраструктурная патология, М., 1975; С э д ж e р Р. Цитоплазматические гены и органеллы, пер. с англ., М., 1975.

Т. А. Залетаева.

О СЛОЖНОМ ПРОСТЫМ ЯЗЫКОМ.

Тема эта сложная и комплексная, затрагивающая сразу же огромное количество биохимических процессов происходящих в нашем организме. Но давайте все таки попробуем разобраться, что же такое митохондрии и как они работают.

И так, митохондрии это одна из самых важных составляющих живой клетки. Если говорить простым языком то можно сказать, что это энергетическая станция клетки. Их деятельность основана на окисление органических соединений и генерации электрического потенциала (энергии освободившейся при распаде молекулы АТФ) для осуществления мышечного сокращения.

Все мы знаем, что работа нашего организма происходит в строгом соответствии с первым законом термодинамики. Энергия не создается в нашем организме, а лишь превращается. Организм только выбирает форму трансформации энергии, не производя ее, от химической к механической и тепловой. Основным источником всей энергии на планете Земля является Солнце. Приходя к нам в форме света, энергия поглощается хлорофиллом растений, там она возбуждает электрон атома водорода и таким образом дает энергию живой материи.

Своей жизнью мы обязаны энергии маленького электрона.

Работа митохондрии заключается в ступенчатом переносе энергии электрона водорода между атомами металлов, присутствующих в группах белковых комплексов дыхательной цепи (электронно-транспортной цепи белков), где каждый последующий комплекс обладает более высоким сродством к электрону притягивая его, чем предыдущий, до тех пор, пока электрон не соединиться с молекулярным кислородом, обладающим наибольшим сродством к электрону.

Каждый раз при передачи электрона по цепи высвобождается энергия которая аккумулируется в виде электрохимического градиента и затем реализовывается в виде мышечного сокращения и выделения тепла.

Серия окислительных процессов в митохондрии позволяющая перенести энергетический потенциал электрона называется «внутриклеточным дыханием» или часто «дыхательной цепью», так как электрон по цепочки передается от атома к атому до тех пор пока не достигнет своей конечной цели атома кислорода.

Митохондриям нужен кислород для переноса энергии в процессе окисления.

Митохондрии потребляют до 80% кислорода который мы вдыхаем.

Митохондрия представляет из себя постоянную структуру клетки, расположенную в ее цитоплазме. Размер митохондрии обычно составляет от 0,5 до 1 мкм в диаметре. По форме она имеет зернистую структуру и может занимать до 20% объема клетки. Такая постоянная органическая структура клетки называется органелла. К органеллам относятся и миофибриллы – сократительные единицы мышечной клетки; и ядро клетки это тоже органелла. Вообще, любая постоянная структура клетки является органоидом-органеллой.

Открыл митохондрии и впервые описал немецкий анатом и гистолог Рихард Альтман в 1894 году, а название этой органелле дал другой немецкий гистолог К. Бенд в 1897 году. Но только в 1920 году, опять же немецкий биохимик Отто Вагбург, доказал, что с митохондриями связаны процессы клеточного дыхания.

Существует теория, согласно которой митохондрии появились в результате захвата примитивными клетками, клетками которые сами не могли использовать кислород для генерации энергии, бактерий протогенотов, которые могли это делать. Именно потому, что митохондрия ранее представляла из себя отдельный живой организм она и по сей день обладает собственным ДНК.

Митохондрии ранее представляли из себя самостоятельный живой организм.

В ходе эволюции прогеноты предали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру и перестали быть самостоятельными организмами. Митохондрии присутствуют во всех клетках. Даже в сперматозоиде есть митохондрии.

Именно благодаря им приводится в движение хвостик сперматозоида осуществляющий его движение. Но особенно много митахондрий в тех местах, где необходима энергия для любых жизненных процессов. И это конечно прежде всего мышечные клетки.

В мышечных клетках митохондрии могут объединяться в группы гигантских разветвленных митохондрий, связанных друг с другом с помощью межмитохондриальных контактов, в которых они создают согласованную работающую кооперативную систему. Пространство в такой зоне имеет повышенную электронную плотность. Новые митохондрии образуются путем простого деления предыдущих органелл. Наиболее «простой» и доступный всем клеткам механизм энергетического обеспечения чаще всего называют общим понятием гликолиз.

Это процесс последовательного разложения глюкозы до пировиноградной кислоты. Если этот процесс происходит без участия молекулярного кислорода или с недостаточным его присутствием, то он называется анаэробный гликолиз. При этом глюкоза расщепляется не до конечных продуктов, а до молочной и пировиноградной кислоты которая далее претерпевает дальнейшие превращения в ходе брожения. Поэтому высвобождающейся энергии бывает меньше, но и скорость получения энергии быстрее. В результате анаэробного гликолиза из одной молекулы глюкозы клетка получает 2 молекулы АТФ и 2 молекулы молочной кислоты. Такой «базовый» энергетический процесс может протекать внутри любой клетки без участия митохондрий.

В присутствии молекулярного кислорода внутри митохондрий осуществляется аэробный гликолиз в рамках «дыхательной цепи». Пировиноградная кислота в аэробных условиях вовлекается в цикл трикарбоновых кислот или цикл Кребса. В результате этого многостадийного процесса из одной молекулы глюкозы образуется 36 молекул АТФ. Сравнение энергетического баланса клетки, имеющей развитые митохондрии и клетки, где они не развиты показывает (при достаточном количестве кислорода) различие в полноте использования энергии глюкозы внутри клетки почти в 20 раз!

У человека, волокна скелетных мышц можно условно разделить на три типа исходя из механических и метаболических свойств: — медленные окислительные; — быстрые гликолитические; — быстрые окислительно-гликолитические.

Быстрые мышечные волокна предназначены для выполнения быстрой и тяжелой работы. Для своего сокращения они используют в основном быстрые источники энергии, а именно криатинфосфот и анаэробный гликолиз. Содержание митохондрий в таких типах волокон значительно меньше чем в медленных мышечных волокнах.

Медленные мышечные волокна выполняют медленные сокращения, но способны работать длительное время. В качестве энергии они используют аэробный гликолиз и синтез энергии из жиров. Это дает гораздо больше энергии чем анаэробный гликолиз, но требует в замен больше времени, так как цепочка деградации глюкозы более сложная и требует присутствия кислорода, транспортировка которого к месту преобразования энергии тоже занимает время. Медленные мышечные волокна называют красными из-за миоглобина – белка, ответственный за доставку кислорода внутрь волокна. Медленные мышечные волокна содержат значительное количество митохондрий.

Возникает вопрос, каким образом и с помощью каких упражнений можно развить в мышечных клетках разветвленную сеть митохондрий? Существуют различные теории и методики тренировок и о них в материале по ссылке.

Характеристика, роль и строение митохондрий

Функции митохондрий как органелл аэробных эукариотических клеток – синтез молекул АТФ (аденозинтрифосфата) из АДФ. Поскольку АТФ является универсальным источником энергии для всех процессов в клетке, идущих с потреблением энергии, то говорят, что митохондрии выполняют функцию энергообеспечения, или энергообразования .

Из цитоплазмы в митохондрии поступают промежуточные продукты окисления органических веществ, кислород, АДФ, фосфорная кислота. Обратно выделяются углекислый газ, вода и молекулы АТФ.

Молекулы АТФ образуются не только в митохондриях. Небольшое их количество синтезируется в цитоплазме в процессе гликолиза, который наблюдается во всех клетках живого. В результате гликолиза молекула глюкозы разлагается на две молекулы пирувата. У аэробных прокариот далее он окисляется в присутствии кислорода на впячиваниях цитоплазматической мембраны. У эукариот же пируват поступает в митохондрии.

Здесь пируват, отдает свою ацетильную группу, содержащую два атома углерода, коферменту А. При этом выделяется первая молекула CO2. Кофермент А превращается в ацетил-кофермент-А (ацетил-КоА).

Ацетил-КоА получается не только из пирувата, но и жирных кислот, а также аминокислот. Так что не важно, какое исходное органическое вещество будет «сжигаться» в митохондриях для выработки энергии. Их функционирование в любом случае универсально.

В матриксе митохондрий ацетил-КоА вступает в цикл Кребса , или цикл трикарбоновых кислот, где ацетильная группа окисляется и разлагается до еще двух молекул CO2. Ее атомы водорода присоединяются к коферментам НАД+ и ФАД+, с образованием их восстановленных форм - НАД · H + Н+ и ФАД · H + Н+. Именно их последующее окисление приведет к синтезу АТФ.

Хотя в цикле Кребса кислород не используется, при его отсутствии митохондрия перестает выполнять свою функцию уже на этом этапе, так как накапливаются продукты реакции.

На кристах митохондрий происходит разделение электронов и протонов водорода. Электроны от НАД и ФАД передаются по мембране через цепь ферментов и коферментов, которую называют дыхательной цепью . Протоны же в начале пути перебрасываются в межмембранное пространство, на внешнюю сторону крист.

Электроны в конечном итоге передаются на молекулу кислорода, она превращается в отрицательно заряженный ион. Между внешней и внутренней сторонами крист создается электрический потенциал, так как одна заряжена положительно, а другая – отрицательно. Когда достигается критическое значение H+ устремляются через каналы АТФ-синтетазы и другие ферменты на внутреннюю сторону, где соединяются с O2- с образованием воды.

АТФ-синтетаза – это фермент, синтезирующий АТФ. В митохондриях он встроен в мембрану крист и использует энергию перемещающихся протонов для фосфорилирования АДФ.

Цикл Кребса и дыхательная цепь - это сложные многоступенчатые процессы, обеспечивающиеся целым рядом ферментов и коферментов. Каждый требует отдельного рассмотрения. В общих чертах же функции митохондрий сводятся к синтезу ацетил-КоА, использованию атомов водорода ацетильной группы для восстановления НАД и ФАД, раздельному переносу электронов и протонов водорода на кислород, использованию энергии электрохимического градиента протонов для синтеза АТФ.

Связанные статьи:Строение митохондрии, Этапы энергетического обмена

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше. Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм. Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.

Согласно гипотезе симбиогенезамитохондрии произошли от аэробных бактерий, внедрившихся в другую прокариотическую клетку . Эти бактерии начали снабжать клетку дополнительным количеством молекул АТФ, а получать от нее питательные вещества. В процессе эволюции они потеряли автономность, передав часть своих генов в ядро и став таким образом клеточной органеллой.

В клетках новые митохондрии появляются в основном путем деления ранее существующих, т. е. они не синтезируются заново, что напоминает процесс размножения и говорит в пользу симбиогенеза.

Строение и функции митохондрии

Митохондрия состоит из

    двух мембран - внешней и внутренней ,

    межмембранного пространства ,

    внутреннего содержимого - матрикса ,

    крист , представляющих собой выросты в матрикс внутренней мембраны,

    собственной белок-синтезирующей системы: ДНК, рибосом, РНК ,

    белков и их комплексов, в том числе большого количества ферментов и коферментов,

    других молекул и гранул различных веществ, находящихся в матриксе.

Внешняя и внутренняя мембраны выполняют разные функции, поэтому различается их химический состав. Расстояние между мембранами составляет до 10 нм. Внешняя мембрана митохондрий по строению схожа с плазмалеммой, окружающей клетку, и выполняет в основном барьерную функцию, отграничивая содержимое органоида от цитоплазмы. Через нее проникают мелкие молекулы, транспорт крупных избирателен. В некоторых местах внешняя мембрана соединена с ЭПС, каналы которой открываются в митохондрию.

На внутренней мембране, в основном ее выростах - кристах, располагаются ферменты, образуя мультиферментативные системы. Поэтому по химическому составу здесь преобладают белки, а не липиды. Количество крист варьирует в зависимости от интенсивности процессов. Так в митохондриях мышц их очень много.

В некоторых местах внешняя и внутренняя мембрана соединяются между собой.

У митохондрий, также как у хлоропластов, есть своя белоксинтезирующая система - ДНК, РНК и рибосомы. Генетический аппарат представляет собой кольцевую молекулу – нуклеоид, как у бактерий. Рибосомы митохондрий растений схожи с бактериальными, у животных митохондриальные рибосомы мельче не только цитоплазматических, но и бактериальных. Часть необходимых белков митохондрии синтезируют сами, другую часть получают из цитоплазмы, так как эти белки кодируются ядерными генами.

Главная функция митохондрий - снабжать клетку энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений и запасается в АТФ. Часть реакций идет с участием кислорода, в других выделяется углекислый газ. Реакции идут как в матриксе (цикл Кребса), так и на кристах (окислительное фосфорилирование).

Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза. Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют активный транспорт АДФ и АТФ.

В структуре крист выделяют элементарные частицы, состоящие из головки, ножки и основания. На головках, состоящих из фермента АТФазы , происходит синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи.

Компоненты дыхательной цепи находятся в основании элементарных частиц в толще мембраны.

В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот.

В результате активности электротранспортной дыхательной цепи ионы водорода поступают в нее из матрикса, а высвобождаются на наружной стороне внутренней мембраны. Это осуществляют определенные мембранные ферменты.

Митохондрия

Разница в концентрации ионов водорода по разные стороны мембраны приводит к возникновению градиента pH.

Энергию для поддержания градиента поставляет перенос электронов по дыхательной цепи. Иначе ионы водорода диффундировали бы обратно.

Энергия градиента pH используется для синтеза АТФ из АДФ:

АДФ + Ф = АТФ + H2O (реакция обратима)

Образующаяся вода ферментативно удаляется. Это, наряду с другими факторами, облегчает протекание реакции слева направо.

Митохондрии

Пластиды и митохондрии растительной клетки: структура, функции, особенности строения в связи с биологическими функциями.

Митохондрии растительной клетки. Их структура и функции

Форма − округлые или гантелевидные тельца.

Размеры − длина 1-5 мкм, диаметром 0,4-0,5 мкм.

Количество в клетке − от десятков до 5 000.

Структура . Состоят в основном из белка (60-65 %) и липидов (30 %). Это двухмембранные органоиды. Толщина наружной и внутренней мембран − 5-6 нм каждая. Перимитохондриальное пространство (промежуток между мемранами) заполнено жидкостью типа сыворотки. Внутренняя мембрана образует различной формы складки − кристы . На внутренней поверхности внутренней мембраны расположены грибовидные частицы − оксисомы, содержащие окислительные ферменты. Внутреннее содержимое митохондрий − матрикс . В матриксе содержатся рибосомы и митохондриальная ДНК (0,5 %), которая имеет кольцевое строение и отвечает за синтез белков митохондрий. Митохондрии имеют все типы РНК (1 %), делятся независимо от деления ядра, в клетке образуются от предсуществующих митохондрий путем деления или почкования. Полупериод жизни митохондрий − 5−10 дней.

Функции . Митохондрии являются центрами энергетической активности клеток. В митохондриях функционируют системы аэробного дыхания и окислительного фосфорелирования. Во внутренней мембране митохондрий локализованы компоненты электронтранспортной цепи и АТФ-синтетазные комплексы, осуществляющие транспорт электронов и протонов и синтез АТФ. В матриксе располагаются системы окисления ди- и трикарбоновых кислот, ряд систем синтеза липидов, аминокислот и др.

Митохондрии способны передвигаться к местам усиленного потребления энергии. Они могут ассоциировать друг с другом путем тесного сближения или при помощи тяжей. При анаэробном дыхании митохондрии исчезают.

Митохондрии имеют округлую и продолговатую форму диаметром 0,4–0,5 мкм и длиной 1–5 мкм (рис. 1.3).

Количество митохондрий варьирует от единиц до 1 500–2 000 на растительную клетку.

Митохондрии ограничены двумя мембранами: наружной и внутренней, толщина каждой из них 5–6 нм. Наружная мембрана выглядит растянутой, а внутренняя образует складки, называемые гребнями (кристами), различной формы. Пространство между мембранами, в состав которого входит также внутреннее пространство крист, называется межмембранным (перимитохондриальным) пространством. Оно служит средой для внутренней мембраны и матрикса митохондрий.

Митохондрии в целом содержат 65–70 % белка, 25–30 % липидов и небольшое количество нуклеиновых кислот. 70 % от общего содержания липидов составляют фосфолипиды (фосфатидилхолин и фосфатидилэтаноламин). Жирнокислотный состав характеризуется высоким содержанием насыщенных жирных кислот, обеспечивающих «жесткость» мембраны.

В митохондриях локализованы системы аэробного дыхания и окислительного фосфорилирования. В результате дыхания расщепляются органические молекулы, и высвобождается энергия с передачей ее на молекулу АТФ.

Митохондрии содержат белки, РНК, тяжи ДНК, рибосомы, сходные с бактериальными, и различные растворенные вещества. ДНК существует в виде кольцевых молекул, располагающихся в одном или нескольких нуклеотидах.

Пластиды, наряду с вакуолями и клеточной оболочкой – характерные компоненты растительных клеток. Каждая пластида окружена собственной оболочкой, состоящей из двух элементарных мембран. Внутри пластид различают мембранную систему и более или менее гомогенное вещество – строму. Внутренняя структура хлоропласта довольно сложна. Строма пронизана развитой системой мембран, имеющих форму плоских пузырьков, называемых тилакоидами.Тилакоиды собраны в стопки – граны, напоминающие столбики монет.

Хлоропласты, в которых протекает фотосинтез, содержат хлорофиллы и каротиноиды. Размер – 4–5 мкм. В одной клетке мезофилла листа может содержаться 40–50 хлоропластов, в мм2 листа – около 500 000. В цитоплазме хлоропласты обычно располагаются параллельно клеточной оболочке.

Хлорофиллы и каротиноиды встроены в тилакоидные мембраны. Хлоропласты зеленых растений и водорослей часто содержат зерна крахмала и мелкие липидные (жировые) капли. Крахмальные зерна – это временные хранилища продуктов фотосинтеза. Они могут исчезнуть из хлоропластов, находящихся в темноте всего лишь 24 ч и появиться вновь уже через 3–4 ч после переноса растений на свет.

В изолированных хлоропластах осуществляется синтез РНК, который обычно контролируется только хромосомной ДНК. Образование хлоропластов и синтез находящихся в них пигментов в значительной степени контролируется хромосомной ДНК, малопонятным образом взаимодействующей с ДНК хлоропластов. Тем не менее, в отсутствие собственной ДНК хлоропласты не формируются.

23. Ультраструктура митохондрий, функции

Они участвуют в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Хромопласты (от греческого сhroma – цвет) – пигментированные пластиды. Многообразные по форме хромопласты не содержат хлорофилла, но синтезируют и накапливают каротиноиды, которые придают желтую, оранжевую и другую окраску. Корнеплоды моркови, плоды томатов окрашены пигментами, которые находятся в хромопластах.

Лейкопласты являются местом накопления запасного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут преобразовываться в хлоропласты (клубни картофеля зеленеют). Осенью хлоропласты преобразуются в хромопласты и зеленые листья, и плоды желтеют и краснеют.

Митохондрии есть у всех типов эукариотных клеток (рис. 1). Они имеют вид либо округлых телец, либо палочек, реже - нитей. Их размеры колеблются от 1 до 7 мкм. Число митохондрий в клетке составляет от нескольких сотен до десятков тысяч (у крупных простейших).

Рис . 1. Митохондрии. Вверху - митохондрии (?) в мочевых канальцах, видимые в световом микроскопе. Внизу - трехмерная модель организации митохондрии: 1 - кристы; 2 - внешняя мембрана; 3 - внутренняя мембрана; 4 - матрикс

Митохондрия образована двумя мембранами - внешней и внутренней , между которыми расположено межмембранное пространство . Внутренняя мембрана образует множество впячиваний - крист, представляющих собой либо пластины, либо трубочки. Такая ее организация обеспечивает огромную площадь внутренней мембраны. На ней располагаются ферменты, обеспечивающие преобразование энергии, заключенной в органических веществах (углеводах, липидах), в энергию АТФ, необходимую для жизнедеятельности клетки. Следовательно, функция митохондрий - участие в энергетических клеточных процессах. Именно поэтому большое количество митохондрий присуще, например, мышечным клеткам, выполняющим большую работу.

Пластиды . В растительных клетках обнаруживаются особые органоиды - пластиды, имеющие чаще веретеновидную или округлую форму, иногда более сложную. Различают три вида пластид - хлоропласты (рис. 2), хромопласты и лейкопласты.

Хлоропласты отличаются зеленым цветом, который обусловлен пигментом - хлорофиллом , обеспечивающим процесс фотосинтеза , т. е. синтеза органических веществ из воды (Н 2 О) и углекислого газа (СО 2) с использованием энергии солнечного света. Хлоропласты содержатся преимущественно в клетках листьев (у высших растений). Они сформированы двумя параллельно расположенными друг другу мембранами, окружающими содержимое хлоропластов - строму . Внутренняя мембрана образует многочисленные уплощенные мешочки - тилакоиды , которые сложены в стопки (наподобие стопки монет) - граны - и лежат в строме. Именно в тила-коидах и содержится хлорофилл.

Хромопласты определяют желтый, оранжевый и красный цвет многих цветков и плодов, в клетках которых присутствуют в большом количестве. Основными пигментами в их составе являются каротины . Функциональное назначение хромопластов состоит в цветовом привлечении животных, обеспечивающих опыление цветков и распространение семян.

Рис. 2. Пластиды: а - хлоропласты в клетках листа элодеи, видимые в световом микроскопе; б - схема внутреннего строения хлоропласта с гранами, представляющими собой стопки плоских мешочков, расположенных перпендикулярно поверхности хлоропласта; в - более подробная схема, на которой видны анастомозирующие трубочки, соединяющие отдельные камеры гран

Лейкопласты - это бесцветные пластиды, содержащиеся в клетках подземных частей растений (например, в клубнях картофеля), семян и сердцевины стеблей. В лейкопластах, главным образом, происходит образование из глюкозы крахмала и накапливание его в запасающих органах растений.

Пластиды одного вида могут превращаться в другой. Например, при осеннем изменении цвета листьев хлоропласты превращаются в хромопласты.

Последние материалы раздела:

Презентация земля, ее развитие как планеты Презентация на тему возникновения земли
Презентация земля, ее развитие как планеты Презентация на тему возникновения земли

Слайд 2 В одной галактике насчитывается около 100 миллиардов звезд, а всего в нашей Вселенной, предполагают учёные, существует 100 млрд...

Скачать Тесты по психологии на андроид v
Скачать Тесты по психологии на андроид v

– приложение на андроид с развлекательным характером. С его помощью пользователь узнает свои стороны личности, а также познакомится ос страхами и...

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...