Как узнать молярный объем вещества. Молярная масса и молярный объем вещества

: V = n*Vm, где V – объем газа (л), n – количество вещества (моль), Vm - молярный объем газа (л/моль), при нормальных (н.у.) является стандартной величиной и равен 22,4 л/моль. Бывает так, что в условии нет количества вещества, но есть масса определенного вещества, тогда поступаем так: n = m/M, где m – масса вещества (г), M – молярная масса вещества (г/моль). Молярную массу находим по таблице Д.И. Менделеева: под каждым элементом его атомная масса, складываем все массы и получаем необходимую нам. Но такие задачи встречаются довольно редко, обычно в задачи присутствует . Решение таких задач по этом немного изменяется. Рассмотрим на примере.

Какой объем водорода выделится при нормальных условиях, если растворить алюминий массой 10,8 г в избытке соляной .

Если мы имеем дело с газовой системой, то имеет место такая формула: q(x) = V(x)/V, где q(x)(фи) – доля компонента, V(x) – объем компонента (л), V – объем системы (л). Для нахождения объема компонента получаем формулу: V(x) = q(x)*V. А если необходимо найти объем системы, то: V = V(x)/q(x).

Обратите внимание

Существуют и другие формулы для нахождения объема, но если необходимо найти объем газа подойдут только формулы, приведенные в этой статье.

Источники:

  • "Пособие по химии", Г.П. Хомченко, 2005.
  • как найти объем работ
  • Найти объем водорода при электролизе раствора ZnSO4

Идеальным считают газ, в котором взаимодействие между молекулами пренебрежимо мало. Помимо давления, состояние газа характеризуется температурой и объемом. Соотношения между этими параметрами отображены в газовых законах.

Инструкция

Давление газа прямо пропорционально его температуре, количеству вещества, и обратно пропорционально объему сосуда, занимаемого газом. Коэффициентом пропорциональности служит универсальная газовая постоянная R, приблизительно равная 8,314. Она измеряется в джоулях, разделенных на моль и на .

Это положение формирует математическую зависимость P=νRT/V, где ν – количество вещества (моль), R=8,314 – универсальная газовая постоянная (Дж/моль К), T – температура газа, V – объем. Давление выражается в . Его можно выразить и , при этом 1 атм = 101,325 кПа.

Рассмотренная зависимость – следствие из уравнения Менделеева-Клапейрона PV=(m/M) RT. Здесь m – масса газа (г), M – его молярная масса (г/моль), а дробь m/M дает в итоге количество вещества ν, или количество молей. Уравнение Менделеева-Клапейрона справедливо для всех газов, которые допустимо считать . Это физико- газовый закон.

Прежде чем решать задачи, следует занть формулы и правила того, как найти объем газа. Следует вспомнить закон Авогадро. А сам объем газа можно вычислить при помощи нескольких формул, выбрав из них подходящую. При подборе необходимой формулы, большое значение имеют условия среды, в частности температура и давление.

Закон Авогадро

В нем говорится, что при одинаковом давлении и одинаковой температуре, в одних и тех же объемах разных газов, будет содержаться одинаковое число молекул. Количество молекул газа, содержащихся в одном моле, это есть число Авогадро. Из этого закона следует, что: 1 Кмоль (киломоль) идеального газа, причем любого, при одинаковом давлении и температуре (760 мм рт.ст. и t = 0*С) всегда занимает один объем = 22,4136 м3.

Как определить объем газа

  • Формулу V=n*Vm чаще всего можно встретить в задачах. Здесь объем газа в литрах - V, Vm – объем газа молярный (л/моль), который при нормальных условиях = 22,4 л/моль, а n – количество вещества в молях. Когда в условиях нет количества вещества, но при этом есть масса вещества, тогда поступаем таким образом: n=m/M. Здесь М – г/моль (молярная масса вещества), а масса вещества в граммах - m. В таблице Менделеева она написана под каждым элементом, как его атомная масса. Сложим все массы и получим искомую.
  • Итак, как рассчитать объем газа. Вот задача: в соляной кислоте растворить 10 г алюминия. Вопрос: сколько водорода может выделиться при н. у.? Уравнение реакции выглядит так: 2Al+6HCl(изб.)=2AlCl3+3H2. В самом начале находим алюминий (количество), вступивший в реакцию по формуле: n(Al)=m(Al)/M(Al). Массу алюминия (молярную) возьмем из таблицы Менделеева M(Al)=27г/моль. Подставим: n(Al)=10/27=0,37моль. Из химического уравнения видно, 3 моли водорода образовались при растворении 2-х молей алюминия. Следует рассчитать, а сколько же водорода выделится из 0,4 моли алюминия: n(H2)=3*0,37/2=0,56моль. Подставим данные в формулу и найдем объем этого газа. V=n*Vm=0,56*22,4=12,54л.

Газы являются наиболее простым объектом для исследования, поэтому их свойства и реакции между газообразными веществами изучены наиболее полно. Для того, чтобы нам было легче разобрать правила решения расчетных задач, исходя из уравнений химических реакций, целесообразно рассмотреть эти законы в самом начале систематического изучения общей химии

Французский ученый Ж.Л. Гей-Люссак установил законобъемный отношений:

Например, 1 л хлора соединяется с 1 л водорода , образуя 2 л хлороводорода ; 2 л оксида серы (IV) соединяются с 1 л кислорода, образуя 1 л оксида серы (VI).

Этот закон позволил итальянскому ученому предположить, что молекулы простых газов (водорода, кислорода, азота, хлора и др. ) состоят из двух одинаковых атомов . При соединении водорода с хлором их молекулы распадаются на атомы, а последние образуют молекулы хлороводорода. Но поскольку из одной молекулы водорода и одной молекулы хлора образуются две молекулы хлороводорода, объем последнего должен быть равен сумме объемов исходных газов.
Таким образом, объемные отношения легко объясняются, если исходить из представления о двухатомности молекул простых газов (Н2, Сl2, O2, N2 и др. )- Это служит, в свою очередь, доказательством двухатомности молекул этих веществ.
Изучение свойств газов позволило А. Авогадро высказать гипотезу, которая впоследствии была подтверждена опытными данными, а потому стала называться законом Авогадро:

Из закона Авогадро вытекает важное следствие: при одинаковых условиях 1 моль любого газа занимает одинаковый объем.

Этот объем можно вычислить, если известна масса 1 л газа. При нормальных условиях, (н.у.) т. е. температуре 273К (О°С) и давлении 101 325 Па (760 мм рт. ст.) , масса 1 л водорода равна 0,09 г, молярная масса его равна 1,008 2 = 2,016 г/моль . Тогда объем, занимаемый 1 моль водорода при нормальных условиях, равен 22,4 л

При тех же условиях масса кислорода 1,492г ; молярная 32г/моль . Тогда объем кислорода при (н.у.), тоже равен 22,4 моль.

Следовательно:

Молярным объем газа - это отношение объема вещества к количеству этого вещества:

где V m - молярный объем газа (размерность л/моль ); V - объем вещества системы; n - количество вещества системы. Пример записи: V m газа (н.у.) =22,4 л/моль.

На основании закона Авогадро определяют молярные массы газообразных веществ. Чем больше масса молекул газа, тем больше масса одного и того же объема газа. В равных объемах газов при одинаковых условиях содержится одинаковое число молекул, а следовательно, и молей газов. Отношение масс равных объемов газов равно отношению их молярных масс:

где m 1 - масса определенного объема первого газа; m 2 — масса такого же объема второго газа; M 1 и M 2 - молярные массы первого и второго газов.

Обычно плотность газа определяют по отношению к самому легкому газу - водороду (обозначают D H2 ). Молярная масса водорода равна 2г/моль . Поэтому получаем.

Молекулярная масса вещества в газообразном состоянии равна его удвоенной плотности по водороду.

Часто плотность газа определяют по отношению к воздуху (D B ) . Хотя воздух является смесью газов, все же говорят о его средней молярной массе. Она равна 29г/моль. В этом случае молярная масс определяется выражением М = 29D B .

Определение молекулярных масс показало, что молекулы простых газов состоят из двух атомов (Н2, F2,Cl2, O2 N2) , а молекулы инертных газов - из одного атома(He, Ne, Ar, Kr, Xe, Rn). Для благородных газов «молекула» и «атом» равнозначны.

Закон Бойля - Мариотта: при постоянной температуре объем данного количества газа обратно пропорционален давлению, под которым он находится .Отсюда pV = const ,
где р — давление, V - объем газа.

Закон Гей-Люссака: при постоянном давлении и изменение объема газа прямо пропорционально температуре, т.е.
V/T = const,
где Т — температура по шкале К (кельвина)

Объединенный газовый закон Бойля - Мариотта и Гей-Люссака:
pV/T = const.
Эта формула обычно употребляется для вычисления объема газа при данных условиях, если известен его объем при других условиях. Если осуществляется переход от нормальных условий (или к нормальным условиям), то эту формулу записывают следующим образом:
pV/T = p 0 V 0 /T 0 ,
где р 0 ,V 0 ,T 0 -давление, объем газа и температура при нормальных условиях (р 0 = 101 325 Па , Т 0 = 273 К V 0 =22,4л/моль) .

Если известны масса и количество газа, а надо вычислить его объем, или наоборот, используют уравнение Менделеева-Клайперона:

где n - количество вещества газа, моль; m — масса, г; М - молярная масса газа, г/иоль ; R — универсальная газовая постоянная. R = 8,31 Дж/(моль*К)

Названия кислот образуются от русского названия центрального атома кислоты с добавлением суффиксов и окончаний. Если степень окисления центрального атома кислоты соответствует номеру группы Периодической системы, то название образуется с помощью простейшего прилагательного от названия элемента: H 2 SO 4 – серная кислота, HMnO 4 – марганцовая кислота. Если кислотообразующие элементы имеют две степени окисления, то промежуточная степень окисления обозначается суффиксом –ист-: H 2 SO 3 – сернистая кислота, HNO 2 – азотистая кислота. Для названий кислот галогенов, имеющих много степеней окисления, применяются различные суффиксы: типичные примеры – HClO 4 – хлорн ая кислота, HClO 3 – хлорноват ая кислота, HClO 2 – хлорист ая кислота, HClO – хлорноватист ая кислота (бескислородная кислота HCl называется хлороводородной кислотой – обычно соляной кислотой). Кислоты могут различаться числом молекул воды, гидратирующей оксид. Кислоты, содержащие наибольшее число атомов водорода, называются ортокислотами: H 4 SiO 4 – ортокремниевая кислота, H 3 PO 4 – ортофосфорная кислота. Кислоты, содержащие 1 или 2 атома водорода, называются метакислотами: H 2 SiO 3 – метакремниевая кислота, HPO 3 – метафосфорная кислота. Кислоты, содержащие два центральных атома, называются ди кислотами: H 2 S 2 O 7 – дисерная кислота, H 4 P 2 O 7 – дифосфорная кислота.

Названия комплексных соединенийобразуются так же, как названия солей , но комплексному катиону или аниону дается систематическое название, то есть оно читается справа налево: K 3 – гексафтороферрат(III) калия, SO 4 – сульфат тетраамминмеди(II).

Названия оксидов образуются с помощью слова «оксид» и родительного падежа русского названия центрального атома оксида с указанием, в случае необходимости, степени окисления элемента:Al 2 O 3 – оксид алюминия,Fe 2 O 3 – оксид железа(III).

Названия оснований образуются с помощью слова «гидроксид» и родительного падежа русского названия центрального атома гидроксида с указанием, в случае необходимости, степени окисления элемента: Al(OH) 3 – гидроксид алюминия, Fe(OH) 3 – гидроксид железа(III).

Названия соединений с водородом образуются в зависимости от кислотно-основных свойств этих соединений. Для газообразных кислотообразующих соединений с водородом применяются названия:H 2 S– сульфан (сероводород),H 2 Se– селан (селеноводород),HI– иодоводород; их растворы в воде называются соответственно сероводородной, селеноводородной и иодоводородной кислотами. Для некоторых соединений с водородом применяются специальные названия:NH 3 – аммиак,N 2 H 4 – гидразин,PH 3 – фосфин. Соединения с водородом, имеющим степень окисления –1, называются гидридами:NaH– гидрид натрия,CaH 2 –гидрид кальция.

Названия солей образуются от латинского названия центрального атома кислотного остатка с добавлением префиксов и суффиксов. Названия бинарных (двухэлементных) солей образуются с помощью суффикса –ид : NaCl – хлорид натрия, Na 2 S – сульфид натрия. Если центральный атом кислородсодержащего кислотного остатка имеет две положительные степени окисления, то высшая степень окисления обозначается суффиксом –ат : Na 2 SO 4 – сульфат натрия, KNO 3 – нитрат калия, а низшая степень окисления – суффиксом –ит : Na 2 SO 3 – сульфит натрия, KNO 2 – нитрит калия. Для названия кислородсодержащих солей галогенов пользуются префиксами и суффиксами: KClO 4 – пер хлорат калия, Mg(ClO 3) 2 – хлорат магния, KClO 2 – хлорит калия, KClO – гипо хлорит калия.

Насыщаемость ковалентн ых связ ей – проявляется в том, что в соединениях s- и p-элементов нет неспаренных электронов, то есть все неспаренные электроны атомов образуют связывающие электронные пары (исключения составляют NO, NO 2 , ClO 2 и ClO 3).

Неподеленные электронные пары (НЭП) –электроны, которые занимают атомные орбитали парами. Наличие НЭП обусловливает способность анионов или молекул, образовывать донорно-акцепторные связи в качестве доноров электронных пар.

Неспаренные электроны– электроны атома, содержащиеся по одному в орбитали. Для s- и p-элементов число неспаренных электронов определяет, сколько связывающих электронных пар может образовать данный атом с другими атомами по обменному механизму. В методе валентных связей исходят из того, что число неспаренных электронов может быть увеличено за счет неподеленных электронных пар, если в пределах валентного электронного уровня есть вакантные орбитали. В большинстве соединенийs- иp-элементов неспаренных электронов нет, так как все неспаренные электроны атомов образуют связи. Однако молекулы с неспаренными электронами существуют, например, NO, NO 2 , они обладают повышенной реакционной способностью и имеют тенденцию образовывать димеры типа N 2 O 4 за счет неспаренных электронов.

Нормальная концентрация – это число молей эквивалентов в 1 л раствора.

Нормальные условия - температура 273K (0 o C), давление 101,3 кПа (1 атм).

Обменный и донорно-акцепторный механизмы образования химической связи . Образование ковалентных связей между атомами может происходить двояко. Если образование связывающей электронной пары происходит за счет неспаренных электронов обоих связанных атомов, то такой способ образования связывающей электронной пары носит название обменного механизма – атомы обмениваются электронами, притом связывающие электроны принадлежат обоим связанным атомам. Если же связывающая электронная пара образуется за счет неподеленной электронной пары одного атома и вакантной орбитали другого атома, то такое образование связывающей электронной пары является донорно-акцепторным механизмом (см. метод валентных связей).

Обратимые ионные реакции – это такие реакции, в которых образуются продукты, способные образовывать исходные вещества (если иметь ввиду написанное уравнение, то про обратимые реакции можно сказать, что они могут протекать в ту и другую стороны с образованием слабых электролитов или малорастворимых соединений). Обратимые ионные реакции часто характеризуются неполнотой превращения; так как в течение обратимой ионной реакции образуются молекулы или ионы, которые вызывают смещение в сторону исходных продуктов реакции, то есть как бы «тормозят» реакцию. Обратимые ионные реакции описываются с помощью знака ⇄, а необратимые – знака →. Примером обратимой ионной реакции может служить реакция H 2 S + Fe 2+ ⇄ FeS + 2H + , а примером необратимой – S 2- + Fe 2+ → FeS.

Окислители вещества, у которых при окислительно-восстановительных реакциях степени окисления некоторых элементов уменьшаются.

Окислительно-восстановительная двойственность – способность веществ выступать в окислительно-восстановительных реакциях в качестве окислителя или восстановителя в зависимости от партнера (например, H 2 O 2 , NaNO 2).

Окислительно-восстановительные реакции (ОВР) – это химические реакции, в течение которых изменяются степени окисления элементов реагирующих веществ.

Окислительно-восстановительный потенциал – величина, характеризующая окислительно-восстановительную способность (силу) и окислителя, и восстановителя, составляющих соответствующую полуреакцию. Так, окислительно-восстановительный потенциал пары Cl 2 /Cl - , равный 1,36 В, характеризует молекулярный хлор как окислитель и хлорид-ион как восстановитель.

Оксиды – соединения элементов с кислородом, в которых кислород имеет степень окисления, равную –2.

Ориентационные взаимодействия – межмолекулярные взаимодействия полярных молекул.

Осмос – явление переноса молекул растворителя на полупроницаемой (проницаемой только для растворителя) мембране в сторону меньшей концентрации растворителя.

Осмотическое давление – физико-химическое свойство растворов, обусловленное способностью мембран пропускать только молекулы растворителя. Осмотическое давление со стороны менее концентрированного раствора уравнивает скорости проникновения молекул растворителя в обе стороны мембраны. Осмотическое давление раствора равно давлению газа, в котором концентрация молекул такая же, как концентрация частиц в растворе.

Основания по Аррениусу – вещества, которые в процессе электролитической диссоциации отщепляют гидроксид-ионы.

Основания по Бренстеду – соединения (молекулы или ионы типа S 2- , HS -), которые могут присоединять ионы водорода.

Основания по Льюису (льюисовы основания ) соединения (молекулы или ионы), с неподеленными электронными парами, способными образовывать донорно-акцепторные связи. Самым обычным льюисовым основанием являются молекулы воды, которые обладают сильными донорными свойствами.

Одной из основных единиц в Международной системе единиц (СИ) является единица количества вещества – моль.

Моль это такое количество вещества, которое содержит столько структурных единиц данного вещества (молекул, атомов, ионов и др.), сколько атомов углерода содержится в 0,012 кг (12 г) изотопа углерода 12 С .

Учитывая, что значение абсолютной атомной массы для углерода равно m (C) = 1,99 · 10  26 кг, можно рассчитать число атомов углерода N А , содержащееся в 0,012 кг углерода.

Моль любого вещества содержит одно и то же число частиц этого вещества (структурных единиц). Число структурных единиц, содержащихся в веществе количеством один моль равно 6,02·10 23 и называется числом Авогадро (N А ).

Например, один моль меди содержит 6,02·10 23 атомов меди (Cu), а один моль водорода (H 2) – 6,02·10 23 молекул водорода.

Молярной массой (M) называется масса вещества, взятого в количестве 1 моль.

Молярная масса обозначается буквой М и имеет размерность [г/моль]. В физике пользуются размерностью [кг/кмоль].

В общем случае численное значение молярной массы вещества численно совпадает со значением его относительной молекулярной (относительной атомной) массы.

Например, относительная молекулярная масса воды равна:

Мr(Н 2 О) = 2Аr (Н) + Аr (O) = 2∙1 + 16 = 18 а.е.м.

Молярная масса воды имеет ту же величину, но выражена в г/моль:

М (Н 2 О) = 18 г/моль.

Таким образом, моль воды, содержащий 6,02·10 23 молекул воды (соответственно 2·6,02·10 23 атомов водорода и 6,02·10 23 атомов кислорода), имеет массу 18 граммов. В воде, количеством вещества 1 моль, содержится 2 моль атомов водорода и один моль атомов кислорода.

1.3.4. Связь между массой вещества и его количеством

Зная массу вещества и его химическую формулу, а значит и значение его молярной массы, можно определить количество вещества и, наоборот, зная количество вещества, можно определить его массу. Для подобных расчетов следует пользоваться формулами:

где ν – количество вещества, [моль]; m – масса вещества, [г] или [кг]; М – молярная масса вещества, [г/моль] или [кг/кмоль].

Например, для нахождения массы сульфата натрия (Na 2 SO 4) количеством 5 моль найдем:

1) значение относительной молекулярной массы Na 2 SO 4 , представляющую собой сумму округленных значений относительных атомных масс:

Мr(Na 2 SO 4) = 2Аr(Na) + Аr(S) + 4Аr(O) = 142,

2) численно равное ей значение молярной массы вещества:

М(Na 2 SO 4) = 142 г/моль,

3) и, наконец, массу 5 моль сульфата натрия:

m = ν · M = 5 моль · 142 г/моль = 710 г.

Ответ: 710.

1.3.5. Связь между объемом вещества и его количеством

При нормальных условиях (н.у.), т.е. при давлении р , равном 101325 Па (760 мм. рт. ст.), и температуре Т, равной 273,15 К (0 С), один моль различных газов и паров занимает один и тот же объем, равный 22,4 л.

Объем, занимаемый 1 моль газа или пара при н.у., называется молярным объемом газа и имеет размерность литр на моль.

V мол = 22,4 л/моль.

Зная количество газообразного вещества (ν) и значение молярного объема (V мол) можно рассчитать его объем (V) при нормальных условиях:

V = ν · V мол,

где ν – количество вещества [моль]; V – объем газообразного вещества [л]; V мол = 22,4 л/моль.

И, наоборот, зная объем (V ) газообразного вещества при нормальных условиях, можно рассчитать его количество (ν):

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....