Как сменить предел с 1 на 0. Методы решения пределов

Элементарные функции и их графики.

Основными элементарными функциями считаются: степенная функция, показательная функция, логарифмическая функция, тригонометрические функции и обратные тригонометрические функции, а также многочлен и рациональная функция, которая представляет собой отношение двух многочленов.

К элементарным функциям относятся и те функции, которые получаются из элементарных путем применения основных четырех арифметических действий и образования сложной функции.

Графики элементарных функций

Прямая линия - график линейной функции y = ax + b . Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т. 0 (y = ax - прямая пропорциональность)
Парабола - график функции квадратного трёхчлена у = ах 2 + bх + с . Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax 2 + bx +с =0
Гипербола - график функции . При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х(а > 0) или у - - х(а < 0).
Показательная функция. Экспонента (показательная функция по основанию е) у = е x . (Другое написание у = ехр(х) ). Асимптота - ось абсцисс.
Логарифмическая функция y = log a x (a > 0)
у = sinx. Синусоида - периодическая функция с периодом Т = 2π

Предел функции.

Функция y=f(x) имеет число А пределом при стремлении х к а, если для любого числа ε › 0 найдется такое число δ › 0, что | y – A | ‹ ε если |х - а| ‹ δ,

или lim у = A

Непрерывность функции.

Функция y=f(x) непрерывна в точке х = а, если lim f(x) = f(а), т.е.

предел функции в точке х = а равен значению функции в данной точке.

Нахождение пределов функций.

Основные теоремы о пределах функций.

1. Предел постоянной величины равен этой постоянной величине:

2. Предел алгебраической суммы равен алгебраической сумме пределов этих функций:

lim (f + g - h) = lim f + lim g - lim h

3. Предел произведения нескольких функций равен произведению пределов этих функций:

lim (f * g* h) = lim f * lim g * lim h

4. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен 0:

lim ------- = ----------

Первый замечательный предел: lim --------- = 1

Второй замечательный предел: lim (1 + 1/x) x = e (e = 2, 718281..)

Примеры нахождения пределов функций.

5.1. Пример:

Любой предел состоит из трех частей:

1) Всем известного значка предела .

2) Записи под значком предела . Запись читается «икс стремится к единице». Чаще всего – именно х, хотя вместо «икса» может быть любая другая переменная. На месте единицы может находиться совершенно любое число, а также бесконечность 0 или .

3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Очень важный вопрос – а что значит выражение «икс стремится к единице»? Выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают.

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан предел, надо сначала просто подставить число в функцию.

5.2. Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает.

Итак: если , то функция стремится к минус бесконечности:

Согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ.

5.3. Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции.
Вывод: прифункциянеограниченно возрастает

5.4. Серия примеров:

Попытайтесь самостоятельно мысленно проанализировать нижеследующие примеры и решить простейшие виды пределов:

, , , , , , , , ,

Что нужно запомнить и понять из вышесказанного?

Когда дан любой предел, сначала просто подставить число в функцию. При этом Вы должны понимать и сразу решать простейшие пределы, такие как, , и т.д.

6. Пределы с неопределенностью видаи метод их решения.

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены.

6.1. Пример:

Вычислить предел

Согласно нашему правилу попы таемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что = 1, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенностьнеобходимо разделить числитель и знаменатель на в старшей степени.



Таким образом, ответ , а вовсе не 1.

Пример

Найти предел

Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3

Максимальная степень в знаменателе: 4

Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .

Пример

Найти предел

Максимальная степень «икса» в числителе: 2

Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

нужно разложить числитель и знаменатель на множители

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Пример

Вычислить предел

Сначала «дубовый» вариант решения, подставим х=2:

Разложим числитель и знаменатель на множители.

Числитель:

Знаменатель:



,

Решение задач на нахождение пределов При решении задач на отыскание пределов следует помнить некоторые пределы, чтобы каждый раз не вычислять их заново. Комбинируя эти известные пределы, будем находить при помощи свойств, указанных в § 4, новые пределы. Для удобства приведем наиболее часто встречающиеся пре делы: Пределы 1 lim х - а х а 2 lim 1 = 0 3 lim х- ± со X ± 00 4 lim -L, = оо Х->о\Х\ 5 lim sin*-l X -о X 6 lim f(x) = f(a), если f (x) непрерывна x a Если известно, что функция непрерывна, то вместо нахождения предела вычисляем значение функции. Пример 1. Найти lim (х*-6л:+ 8). Так как много- Х->2 член-функция непрерывная, то lim (х*-6x4- 8) = 2*-6-2 + 8 = 4. х-+2 х*_2х 4-1 Пример 2. Найти lim -г. . Сначала находим пре- Х-+1 х ~гъх дел знаменателя: lim [хг-\-Ъх)= 12 + 5-1 =6; он не равен Х-У1 нулю, значит, можно применить свойство 4 § 4, тогда x™i *" + &* ~~ lim {х2 Ъх) - 12 + 5-1 ""6 1 . Предел знаменателя X X равен нулю, поэтому свойство 4 § 4 применить нельзя. Так как числитель-постоянное число, а знаменатель [х2х)->-0 при х--1, то вся дробь неограниченно возрастает по абсолютной величине, т. е. lim " 1 Х-*- - 1 х* + х Пример 4. Найти lim \-ll*"!"» « Предел знаменателя равен нулю: lim (хг-6лг+ 8) = 2*-6-2 + 8 = 0, поэтому X свойство 4 § 4 неприменимо. Но предел числителя тоже равен нулю: lim (х2 - 5д; + 6) = 22 - 5-2-f 6 = 0. Итак, пре- делы числителя и знаменателя одновременно равны нулю. Однако число 2 является корнем и числителя и знаменателя, поэтому дробь можно сократить на разность х-2 (по теореме Безу). В самом деле, х*-5х + 6 (х-2) (х-3) х-3 х"-6х + 8~ (х-2) (х-4) ~~ х-4 " следовательно, хг--f- 6 г х-3 -1 1 Пример 5. Найти lim хп (п целое, положительное). X со Имеем хп = X* X . . X, п раз Так как каждый множитель неограниченно растет, то и произведение также неограниченно растет, т. е. lim хп=оо. х оо Пример 6. Найти lim хп(п целое, положительное). X -> - СО Имеем хп = х х... х. Так как каждый множитель растет по абсолютной величине, оставаясь отрицательным, то в случае четной степени произведение будет неограниченно расти, оставаясь положительным, т. е. lim *п= + оо (при п четном). *-* -со В случае нечетной степени абсолютная величина произведения растет, но оно остается отрицательным, т. е. lim хп =- оо (при п нечетном). п -- 00 Пример 7. Найти lim . х х-*- со * Если т>пу то можно написать: m = n + kt где k>0. Поэтому хт Ь lim -=- = lim -=-= lim x . уП Yn х -х> А х ю Пришли к примеру 6. Если же ти уТЛ xm I lim lim lim т. X - О х-* ю Л X ->со Здесь числитель остается постоянным, а знаменатель растет по абсолютной величине, поэтому lim -ь = 0. Х-*оо X* Результат этого примера рекомендуется запомнить в следующем виде: Степенная функция растет тем быстрее, чем больше показатель степени. $хв_Зхг + 7 Пример 8. Найти lim g L -г-=.В этом примере х-*® «J* "Г ЬХ -ох-о и числитель и знаменатель неограниченно возрастают. Разделим и числитель и знаменатель на старшую степень х, т. е. на хв, тогда 3 7_ Пример 9. Найти lira . Совершая преобразова- * г ^ ния, получим lira . . ^ = lim X СО + 3 7 3 Так как lim -5 = 0, lim -, = 0, то предел знаменателя раде-*® Х X-+-CD Х вен нулю, в то время как предел числителя равен 1. Следовательно, вся дробь неограниченно возрастает, т. е. t. 7х hm Х-+ ю Пример 10. Найти lim Вычислим предел S знаменателя, помня, что cos*-функция непрерывная: lira (2 +cos x) = 2 + cosy =2. Тогда х->- S lim (l-fsin*) Пример 15. Найдем lim *<*-e>2 и lim е"(Х"а)\ Поло- Х-+ ± со X ± СО жим (л: - a)2 = z; так как (л;-а)2 всегда неотрицательно и неограниченно растет вместе с х, то при х- ±оо новое переменное z-*ос. Поэтому получаем цт £<*-«)* = X -> ± 00 s=lim ег = оо (см. замечание к §5). г -*■ со Аналогично lim е~(Х-а)2 = lim e~z=Q, так как х ± оо г м - (х- а)г неограниченно убывает при х->±оо (см. замечание к §

Предел функции - число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a .

Или другими словами, число A является пределом функции y = f (x) в точке x 0 , если для всякой последовательности точек из области определения функции , не равных x 0 , и которая сходится к точке x 0 (lim x n = x0) , последовательность соответствующих значений функции сходится к числу A .

График функции, предел которой при аргументе, который стремится к бесконечности, равен L :

Значение А является пределом (предельным значением) функции f (x) в точке x 0 в случае, если для всякой последовательности точек , которая сходится к x 0 , но которая не содержит x 0 как один из своих элементов (т.е. в проколотой окрестности x 0 ), последовательность значений функции сходится к A .

Предел функции по Коши.

Значение A будет являться пределом функции f (x) в точке x 0 в случае, если для всякого вперёд взятого неотрицательного числа ε будет найдено соответствующее ему неотрицательно число δ = δ(ε) такое, что для каждого аргумента x , удовлетворяющего условию 0 < | x - x0 | < δ , будет выполнено неравенство | f (x) A | < ε .

Будет очень просто, если вы понимаете суть предела и основные правила нахождения его. То, что предел функции f (x) при x стремящемся к a равен A , записывается таким образом:

Причем значение, к которому стремится переменная x , может быть не только числом, но и бесконечностью (∞), иногда +∞ или -∞, либо предела может вообще не быть.

Чтоб понять, как находить пределы функции , лучше всего посмотреть примеры решения.

Необходимо найти пределы функции f (x) = 1/ x при:

x → 2, x → 0, x ∞.

Найдем решение первого предела. Для этого можно просто подставить вместо x число, к которому оно стремится, т.е. 2, получим:

Найдем второй предел функции . Здесь подставлять в чистом виде 0 вместо x нельзя, т.к. делить на 0 нельзя. Но мы можем брать значения, приближенные к нулю, к примеру, 0,01; 0,001; 0,0001; 0,00001 и так далее, причем значение функции f (x) будет увеличиваться: 100; 1000; 10000; 100000 и так далее. Т.о., можно понять, что при x → 0 значение функции, которая стоит под знаком предела, будет неограниченно возрастать, т.е. стремиться к бесконечности. А значит:

Касаемо третьего предела. Такая же ситуация, как и в прошлом случае, невозможно подставить в чистом виде. Нужно рассмотреть случай неограниченного возрастания x . Поочередно подставляем 1000; 10000; 100000 и так далее, имеем, что значение функции f (x) = 1/ x будет убывать: 0,001; 0,0001; 0,00001; и так далее, стремясь к нулю. Поэтому:

Необходимо вычислить предел функции

Приступая к решению второго примера, видим неопределенность . Отсюда находим старшую степень числителя и знаменателя - это x 3 , выносим в числителе и знаменателе его за скобки и далее сокращаем на него:

Ответ

Первым шагом в нахождении этого предела , подставим значение 1 вместо x , в результате чего имеем неопределенность . Для её решения разложим числитель на множители , сделаем это методом нахождения корней квадратного уравнения x 2 + 2 x - 3 :

D = 2 2 - 4*1*(-3) = 4 +12 = 16 D = √16 = 4

x 1,2 = (-2 ± 4) / 2 x 1 = -3; x 2 = 1.

Таким образом, числитель будет таким:

Ответ

Это определение его конкретного значения или определенной области, куда попадает функция, которая ограничена пределом.

Чтобы решить пределы, следуйте правилам:

Разобравшись в сути и основных правилах решения предела , вы получите базовое понятие о том, как их решать.

Продолжаем разбирать готовые ответы по теории пределов и сегодня остановимся только на случае, когда переменная в функции или номер в последовательности стремится к бесконечности. Инструкция по вычислению предела при переменной стремящейся к бесконечности приведена ранее, здесь только остановимся на отдельных случаях, которые не являются всем очевидными и простыми.

Пример 35. Имеем последовательность в виде дроби, где в числителе и знаменателе находятся корневые функции.
Нужно найти предел при номере стремящемся к бесконечности.
Здесь раскрывать иррациональности в числителе не нужно, а только внимательно проанализировать корни и найти где содержится более высокая степень номера.
В первом корни числителя имеем множителем n^4 , то есть n^2 можем вынести за скобки.
Тоже самое проделаем со знаменателем.
Далее оцениваем значение подкоренных выражений при предельном переходе.

Получили деления на ноль, что является неправильно в школьном курсе, но в предельном переходе это допустимо.
Только с поправкой, "чтобы оценить куда стремится функция".
Поэтому приведенную запись не все преподаватели могут трактовать правильной, хотя и понимают, что результирующий преде от этого не изменится.
Давайте рассмотрим ответ, составленный по требованиям преподавателей согласно теорией.
Для упрощения оценим только главные доданки под корнем

Далее в числителе степень равен 2, в знаменателе 2/3 , следовательно числитель быстрее растет, а значит предел стремится к бесконечности.
Его знак зависит от множителей при n^2, n^(2/3) , поэтому он положительный.

Пример 36. Рассмотрим пример предела на деление показательных функций. Таких примеров на практических рассматривается мало, поэтому не все студенты с легкостью видят, как раскрывать неопределенности, что возникают.
Максимальный множитель для числителя и знаменателя равен 8^n , на него и упрощаем

Далее оцениваем вклад каждого слагаемого
Слагаемые 3/8 стремятся к нулю при переменной направляюейся к бесконечности, поскольку 3/8<1 (свойство степенно-показательной функции).

Пример 37. Предел последовательности с факториалами раскрывается розписанням факториала к наибольшему общему множителю для числителя и знаменателя.
Далее на него сокращаем и оцениваем лимит по значению показателей номера в числителе и знаменателе.
В нашем примере знаменатель быстрее растет, поэтому предел равен нулю.


Здесь использована следующее

свойство факториала.

Пример 38. Не применяя правила Лопиталя сравниваем максимальные показатели переменной в числителе и знаменателе дроби.
Так как знаменатель содержит старший показатель переменной 4>2 то и растет он быстрее.
Отсюда делаем вывод, что предел функции стремится к нулю.

Пример 39. Раскрываем особенность вида бесконечность разделить на бесконечность методом вынесения x^4 с числителя и знаменателя дроби.
В результате предельного перехода получим бесконечность.

Пример 40. Имеем деление полиномов, нужно определить предел при переменной стремящейся к бесконечности.
Старший степень переменной в числителе и знаменателе равен 3, это значит что граница существует и равна сталой.
Вынесем x^3 и выполним предельный переход

Пример 41. Имеем особенность типа единица в степени бесконечность.
А это значит, что выражение в скобках и сам показатель надо свести под вторую важную границу.
Распишем числитель, чтобы выделить в нем выражение идентичное знаменателе.
Далее переходим к выражению, содержащем единицу плюс слагаемое.
В степени нужно выделить множителем 1/(слагаемое).
Таким образом получим экспоненту в степени предела дробной функции.

Для раскрития особенности использовали второй предел:

Пример 42. Имеем особенность типа единица в степени бесконечность.
Для ее раскрытия следует свести функцию под второй замечатеьный предел.
Как это сделать подробно показано в приведенной далее формуле


Подобных задач Вы можете найти очень много. Их суть в том, чтобы в показателе получить нужный степень, а он равен обратному значению слагаемого в скобках при единицы.
Таким методом получаем экспоненту. Дальнейшее вычисление сводится к вичислению предела степени экспоненты.

Здесь экспоненциальная функция стремится к бесконечности , поскольку значение больше единицы e=2.72>1.

Пример 43 В знаменателе дроби имеем неопределенность типа бесконечность минус бесконечность, фактически равное делению на ноль.
Чтобы избавиться корня домножим на сопряженное выражение, а дальше по формуле разности квадратов перепишем знаменатель.
Получим неопределенность бесконечность разделить на бесконечность, поэтому выносим переменную в наибольшей степени и сокращаем на нее.
Далее оцениваем вклад каждого слагаемого и находим предел функции на бесконечности

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы . Их можно найти на странице . Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел , Второй замечательный предел . Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Первый замечательный предел

Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений ) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

Данный математический факт носит название Первого замечательного предела . Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях .

Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:

– тот же самый первый замечательный предел.

Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю .

Примеры:
, , ,

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому что многочлен не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Хммм… Пишу эти строки, и пришла в голову очень важная мысль – все-таки «халявные» математические определения и формулы вроде лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ».
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики .

Готово. Окончательный ответ:

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел

Пример 2

Найти предел

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел

Подставляем ноль в выражение под знаком предела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле (кстати, с котангенсом делают примерно то же самое, см. методический материал Горячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы ).

В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов .

Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела .

Справка: – это иррациональное число.

В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности .

Пример 6

Найти предел

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений .

Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:


Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель :

Пример 7

Найти предел

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать .

Последние материалы раздела:

Все, что нужно знать о бактериях
Все, что нужно знать о бактериях

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10...

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...