Как найти площадь криволинейной трапеции. Определенный интеграл

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование : маркерная доска, компьютер, мультимедиа-проектор

Тип урока : урок-лекция

Цели урока :

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные : сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

Ход урока

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1 )

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м. ), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b ] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3 )

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b ]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5) . Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b ], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b ] на n частей точками х 0 =а, х1,… ,хn = b. Длину k- го обозначим через хk = xk – xk-1 . Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м .)

Суммы вида называются интегральными суммами для функции f . (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b ] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5 )

2. Составить интегралы по чертежу (проверяем по слайду 6 )

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7 )

Нахождение площадей плоских фигур (слайд 8 )

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.) . Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  1. Построить графики функций
  2. Спроецировать точки пересечения графиков на ось абсцисс
  3. Заштриховать фигуру, полученную при пересечении графиков
  4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  5. Вычислить площадь каждой из них
  6. Найти разность или сумму площадей

Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

Список литературы

  1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Находим точки пересечения заданных линий. Для этого решаем систему уравнений:

Для нахождения абсцисс точек пересечения заданных линий решаем уравнение:

Находим: x 1 = -2, x 2 = 4.

Итак, данные линии, представляющие собой параболу и прямую, пересекаются в точках A (-2; 0), B (4; 6).

Эти линии образуют замкнутую фигуру, площадь которой вычисляем по указанной выше формуле:

По формуле Ньютона-Лейбница находим:

Найти площадь области, ограниченной эллипсом .

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t , dx = a cos t dt . Новые пределы интегрирования t = α и t = β определяются из уравнений 0 = a sin t , a = a sin t . Можно положить α = 0 и β = π /2.

Находим одну четвертую искомой площади

Отсюда S = πab .

Найти площадь фигуры, ограниченной линиями y = - x 2 + x + 4 и y = - x + 1.

Решение.

Найдем точки пересечения линий y = -x 2 + x + 4, y = -x + 1, приравнивая ординаты линий: -x 2 + x + 4 = -x + 1 или x 2 - 2x - 3 = 0. Находим корни x 1 = -1, x 2 = 3 и соответствующие им ординаты y 1 = 2, y 2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x 2 + 1 и прямой x + y = 3.

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x 1 = -2 и x 2 = 1.

Полагая y 2 = 3 - x и y 1 = x 2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r 2 = a 2 cos 2 φ .

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f (φ ) и двумя полярными радиусами φ 1 = ʅ и φ 2 = ʆ , выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2 .

Вычислить длину дуги астроиды x 2/3 + y 2/3 = a 2/3 .

Решение.

Запишем уравнение астроиды в виде

(x 1/3) 2 + (y 1/3) 2 = (a 1/3) 2 .

Положим x 1/3 = a 1/3 cos t , y 1/3 = a 1/3 sin t .

Отсюда получаем параметрические уравнения астроиды

x = a cos 3 t , y = a sin 3 t , (*)

где 0 ≤ t ≤ 2π .

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L , соответствующую изменению параметра t от 0 до π /2.

Получаем

dx = -3a cos 2 t sin t dt , dy = 3a sin 2 t cos t dt .

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π /2, получаем

Отсюда L = 6a .

Найти площадь, ограниченную спиралью Архимеда r = и двумя радиусами-векторами, которые соответствуют полярным углам φ 1 и φ 2 (φ 1 < φ 2 ).

Решение.

Площадь, ограниченная кривой r = f (φ ) вычисляется по формуле , где α и β - пределы изменения полярного угла.

Таким образом, получаем

(*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ 1 = 0; φ 2 = 2π ):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ 1 = 2π ; φ 2 = 4π ):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x 2 и x = y 2 .

Решение.

Решим систему уравнений

и получим x 1 = 0, x 2 = 1, y 1 = 0, y 2 = 1, откуда точки пересечения кривых O (0; 0), B (1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA :

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) ; б) .

Решение.

а) На отрезке функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x , находим

б) На отрезке , функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок разделить на два и [π , 2π ], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [π , 2π ] площадь берется со знаком минус.

В итоге, искомая площадь равна

Определить объем тела, ограниченного поверхностью, полученной от вращения эллипса вокруг большой оси a .

Решение.

Учитывая, что эллипс симметричен относительно осей координат, то достаточно найти объем, образованный вращением вокруг оси Ox площади OAB , равной одной четверти площади эллипса, и полученный результат удвоить.

Обозначим объем тела вращения через V x ; тогда на основании формулы имеем , где 0 и a - абсциссы точек B и A . Из уравнения эллипса находим . Отсюда

Таким образом, искомый объем равен . (При вращении эллипса вокруг малой оси b , объем тела равен )

Найти площадь, ограниченную параболами y 2 = 2 px и x 2 = 2 py .

Решение.

Сначала найдем координаты точек пересечения парабол, чтобы определить отрезок интегрирования. Преобразуя исходные уравнения, получаем и . Приравнивая эти значения, получим или x 4 - 8p 3 x = 0.

x 4 - 8p 3 x = x (x 3 - 8p 3) = x (x - 2p )(x 2 + 2px + 4p 2) = 0.

Находим корни уравнений:

Учитывая то факт, что точка A пересечения парабол находится в первой четверти, то пределы интегрирования x = 0 и x = 2p .

Искомую площадь находим по формуле

Мы разобрались с нахождением площади криволинейной трапеции G . Вот полученные формулы:
для непрерывной и неотрицательной функции y=f(x) на отрезке ,
для непрерывной и неположительной функции y=f(x) на отрезке .

Однако при решении задач на нахождение площади очень часто приходится иметь дело с более сложными фигурами.

В этой статье мы поговорим о вычислении площади фигур, границы которых заданы функциями в явном виде, то есть, как y=f(x) или x=g(y) , и подробно разберем решение характерных примеров.

Навигация по странице.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y) .

Теорема.

Пусть функции и определены и непрерывны на отрезке , причем для любого значения x из . Тогда площадь фигуры G , ограниченной линиями x=a , x=b , и вычисляется по формуле .

Аналогичная формула справедлива для площади фигуры, ограниченной линиями y=c , y=d , и : .

Доказательство.

Покажем справедливость формулы для трех случаев:

В первом случае, когда обе функции неотрицательные, в силу свойства аддитивности площади сумма площади исходной фигуры G и криволинейной трапеции равна площади фигуры . Следовательно,

Поэтому, . Последний переход возможен в силу третьего свойства определенного интеграла .

Аналогично, во втором случае справедливо равенство . Вот графическая иллюстрация:

В третьем случае, когда обе функции неположительные, имеем . Проиллюстрируем это:

Теперь можно переходить к общему случаю, когда функции и пересекают ось Ox .

Обозначим точки пересечения . Эти точки разбивают отрезок на n частей , где . Фигуру G можно представить объединением фигур . Очевидно, что на своем интервале попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как

Следовательно,

Последний переход справедлив в силу пятого свойства определенного интеграла.

Графическая иллюстрация общего случая.

Таким образом, формула доказана.

Пришло время перейти к решению примеров на нахождение площади фигур, ограниченных линиями y=f(x) и x=g(y) .

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y) .

Решение каждой задачи будем начинать с построения фигуры на плоскости. Это нам позволит сложную фигуру представить как объединение более простых фигур. При затруднениях с построением обращайтесь к статьям: ; и .

Пример.

Вычислить площадь фигуры, ограниченной параболой и прямыми , x=1 , x=4 .

Решение.

Построим эти линии на плоскости.

Всюду на отрезке график параболы выше прямой . Поэтому, применяем полученную ранее формулу для площади и вычисляем определенный интеграл по формуле Ньютона-Лейбница :

Немного усложним пример.

Пример.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

В чем здесь отличие от предыдущих примеров? Ранее у нас всегда были две прямых, параллельных оси абсцисс, а сейчас только одна x=7 . Сразу возникает вопрос: где взять второй предел интегрирования? Давайте для этого взглянем на чертеж.

Стало понятно, что нижним пределом интегрирования при нахождении площади фигуры является абсцисса точки пересечения графика прямой y=x и полу параболы . Эту абсциссу найдем из равенства:

Следовательно, абсциссой точки пересечения является x=2 .

Обратите внимание.

В нашем примере и по чертежу видно, что линии и y=x пересекаются в точке (2;2) и предыдущие вычисления кажутся излишними. Но в других случаях все может быть не так очевидно. Поэтому рекомендуем всегда аналитически вычислять абсциссы и ординаты точек пересечения линий.

Очевидно, график функции y=x расположен выше графика функции на интервале . Применяем формулу для вычисления площади:

Еще усложним задание.

Пример.

Вычислить площадь фигуры, ограниченной графиками функций и .

Решение.

Построим график обратной пропорциональности и параболы .

Прежде чем применять формулу для нахождения площади фигуры, нам нужно определиться с пределами интегрирования. Для этого найдем абсциссы точек пересечения линий, приравняв выражения и .

При отличных от нуля значениях x равенство эквивалентно уравнению третьей степени с целыми коэффициентами. Можете обратиться к разделу чтобы вспомнить алгоритм его решения.

Легко проверить, что x=1 является корнем этого уравнения: .

Разделив выражение на двучлен x-1 , имеем:

Таким образом, оставшиеся корни находятся из уравнения :

Теперь из чертежа стало видно, что фигура G заключена выше синей и ниже красной линии на интервале . Таким образом, искомая площадь будет равна

Рассмотрим еще один характерный пример.

Пример.

Вычислить площадь фигуры, ограниченной кривыми и осью абсцисс.

Решение.

Сделаем чертеж.

Это обычная степенная функция с показателем одна треть, график функции можно получить из графика отобразив его симметрично относительно оси абсцисс и подняв на единицу вверх.

Найдем точки пересечения всех линий.

Ось абсцисс имеет уравнение y=0 .

Графики функций и y=0 пересекаются в точке (0;0) так как x=0 является единственным действительным корнем уравнения .

Графики функций и y=0 пересекаются в точке (2;0) , так как x=2 является единственным корнем уравнения .

Графики функций и пересекаются в точке (1;1) , так как x=1 является единственным корнем уравнения . Это утверждение не совсем очевидно, но - функция строго возрастающая, а - строго убывающая, поэтому, уравнение имеет не более одного корня.

Единственное замечание: в этом случае для нахождения площади придется использовать формулу вида . То есть, ограничивающие линии нужно представить в виде функций от аргумента y , а черной линией .

Определим точки пересечения линий.

Начнем с графиков функций и :

Найдем точку пересечения графиков функций и :

Осталось найти точку пересечения прямых и :


Как видите, значения совпадают.

Подведем итог.

Мы разобрали все наиболее часто встречающиеся случаи нахождения площади фигуры, ограниченной явно заданными линиями. Для этого нужно уметь строить линии на плоскости, находить точки пересечения линий и применять формулу для нахождения площади, что подразумевает наличие навыков вычисления определенных интегралов.

У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры . Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости некоторую кривую (её можно всегда при желании начертить), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно , с техникой поточечного построения можно ознакомиться в справочном материале .

Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):

Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке график функции расположен над осью , поэтому:

Ответ:

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений .

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями , , и осью

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью ?

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью , то её площадь можно найти по формуле:
В данном случае:

Внимание! Не следует путать два типа задач:

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .
Этим способом лучше, по возможности, не пользоваться.

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справкеГрафики и свойства элементарных функций . Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».

А теперь рабочая формула: Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь соответствующей фигуры можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.

Ответ:

На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен ниже оси , то

А сейчас пара примеров для самостоятельного решения

Пример 5

Пример 6

Найти площадь фигуры, ограниченной линиями , .

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры , именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:

Пример 7

Вычислить площадь фигуры, ограниченной линиями , , , .

Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

Пример 8

Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде , и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что . Или корень. А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:

Следовательно, .

Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.

На отрезке , по соответствующей формуле:

Ну, и в заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями , ,

Решение: Изобразим данную фигуру на чертеже.

Для поточечного построения чертежа необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций ), а также некоторые значения синуса, их можно найти в тригонометрической таблице . В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции расположен над осью , поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на урокеИнтегралы от тригонометрических функций . Это типовой прием, отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной , тогда:

Новые переделы интегрирования:

У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле . Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений . Пример 5: Решение: , поэтому:

Ответ:

Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества .

Последние материалы раздела:

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...