Как найти общий делитель трех чисел. Наименьшее общее кратное

Делимое, которое делится на данный делитель без остатка, иначе называют кратным . Например, 48 кратно 8, число 48 - кратное, число 8 - делитель.

Число может быть кратно не одному, а сразу нескольким числам, такое число называют общим кратным . Например, число 77 общее кратное чисел: 1, 7, 11, 77.

Ещё пример. Числу 3 кратны числа 12, 15 , 24, 27, 30 и т. д. Числу 5 кратны числа 10, 15 , 25, 30 , 35 и т. д. Числа 3 и 5 имеют общие кратные 15 и 30.

Найти общее кратное нескольких чисел довольно просто, можно просто перемножить данные числа, в результате, произведение этих чисел и будет их общим кратным.

НОК

Из всех общих кратных для данных чисел, особый интерес представляет наименьшее общее кратное.

Наименьшим общим кратным (сокращённо НОК) нескольких данных чисел называется самое маленькое число, которое делится нацело на каждое из данных чисел.

Например, для трёх чисел: 3, 5 и 12 наименьшим общим кратным является число 60, так как никакое другое число меньше 60 не делится нацело на 3, на 5 и на 12.

Обычно наименьшее общее кратное записывают так: НОК (a , b , ...) = x .

Согласно этому, запишем наименьшее общее кратное чисел 3, 5 и 12:

НОК (3, 5, 12) = 60.

Калькулятор НОК

Данный калькулятор поможет вам найти наименьшее общее кратное чисел. Просто введите числа через пробел или запятую и нажмите кнопку Вычислить НОК.

Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют наибольшим общим делителем (НОД) этих чисел.

Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель - число 1. Такие числа называют взаимно простыми .

Определение. Натуральные числа называют взаимно простыми , если их наибольший общий делитель (НОД) равен 1.

Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.

Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа (т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36. Так же находят наибольший общий делитель трёх и более чисел.

Чтобы найти наибольший общий делитель

2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.

Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.

Наименьшее общее кратное (НОК)

Определение. Наименьшим общим кратным (НОК) натуральных чисел а и b называют наименьшее натуральное число, которое кратно и a и b. Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.

Так же находят наименьшее общее кратное для трёх и более чисел.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.

Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.

Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные числа - 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое - 8128 - стало известно в I в. н. э. Пятое - 33 550 336 - было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде произведения простых чисел, т. е. простые числа - это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно - в одних частях ряда их больше, в других - меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались невычеркнутыми только простые числа.

Рассмотрим два основных метода нахождения НОД двумя основными способами: с использованием алгоритма Евклида и путем разложения на простые множители. Применим оба метода для двух, трех и большего количества чисел.

Алгоритм Евклида для нахождения НОД

Алгоритм Евклида позволяет с легкостью вычислить наибольший общий делитель для двух положительных чисел. Формулировки и доказательство алгоритма Евклида мы привели в разделе «Наибольший общий делитель: определитель, примеры».

Суть алгоритма заключается в том, чтобы последовательно проводить деление с остатком, в ходе которого получается ряд равенств вида:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Мы можем закончить деление тогда, когда r k + 1 = 0 , при этом r k = НОД (a , b) .

Пример 1

64 и 48 .

Решение

Введем обозначения: a = 64 , b = 48 .

На основе алгоритма Евклида проведем деление 64 на 48 .

Получим 1 и остаток 16 . Получается, что q 1 = 1 , r 1 = 16 .

Вторым шагом разделим 48 на 16 , получим 3 . То есть q 2 = 3 , а r 2 = 0 . Таким образом число 16 – это наибольший общий делитель для чисел из условия.

Ответ: НОД (64 , 48) = 16 .

Пример 2

Чему равен НОД чисел 111 и 432 ?

Решение

Делим 432 на 111 . Согласно алгоритму Евклида получаем цепочку равенств 432 = 111 · 3 + 99 , 111 = 99 · 1 + 12 , 99 = 12 · 8 + 3 , 12 = 3 · 4 .

Таким образом, наибольший общий делитель чисел 111 и 432 – это 3 .

Ответ: НОД (111 , 432) = 3 .

Пример 3

Найдите наибольший общий делитель чисел 661 и 113 .

Решение

Проведем последовательно деление чисел и получим НОД (661 , 113) = 1 . Это значит, что 661 и 113 – это взаимно простые числа. Мы могли выяснить это до начала вычислений, если бы обратились к таблице простых чисел.

Ответ: НОД (661 , 113) = 1 .

Нахождение НОД с помощью разложения чисел на простые множители

Для того, чтобы найти наибольший общий делитель двух чисел методом разложения на множители, необходимо перемножить все простые множители, которые получаются при разложении этих двух чисел и являются для них общими.

Пример 4

Если мы разложим числа 220 и 600 на простые множители, то получим два произведения: 220 = 2 · 2 · 5 · 11 и 600 = 2 · 2 · 2 · 3 · 5 · 5 . Общими в этих двух произведениях будут множители 2 , 2 и 5 . Это значит, что НОД (220 , 600) = 2 · 2 · 5 = 20 .

Пример 5

Найдите наибольший общий делитель чисел 72 и 96 .

Решение

Найдем все простые множители чисел 72 и 96 :

72 36 18 9 3 1 2 2 2 3 3

96 48 24 12 6 3 1 2 2 2 2 2 3

Общими для двух чисел простые множители: 2 , 2 , 2 и 3 . Это значит, что НОД (72 , 96) = 2 · 2 · 2 · 3 = 24 .

Ответ: НОД (72 , 96) = 24 .

Правило нахождения наибольшего общего делителя двух чисел основано на свойствах наибольшего общего делителя, согласно которому НОД (m · a 1 , m · b 1) = m · НОД (a 1 , b 1) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Независимо от количества чисел, для которых нам нужно найти НОД, мы будем действовать по одному и тому же алгоритму, который заключается в последовательном нахождении НОД двух чисел. Основан этот алгоритм на применении следующей теоремы: НОД нескольких чисел a 1 , a 2 , … , a k равен числу d k , которое находится при последовательном вычислении НОД (a 1 , a 2) = d 2 , НОД (d 2 , a 3) = d 3 , НОД (d 3 , a 4) = d 4 , … , НОД (d k - 1 , a k) = d k .

Пример 6

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение

Введем обозначения: a 1 = 78 , a 2 = 294 , a 3 = 570 , a 4 = 36 .

Начнем с того, что найдем НОД чисел 78 и 294: d 2 = НОД (78 , 294) = 6 .

Теперь приступим к нахождению d 3 = НОД (d 2 , a 3) = НОД (6 , 570) . Согласно алгоритму Евклида 570 = 6 · 95 . Это значит, что d 3 = НОД (6 , 570) = 6 .

Найдем d 4 = НОД (d 3 , a 4) = НОД (6 , 36) . 36 делится на 6 без остатка. Это позволяет нам получить d 4 = НОД (6 , 36) = 6 .

d 4 = 6 , то есть, НОД (78 , 294 , 570 , 36) = 6 .

Ответ:

А теперь давайте рассмотрим еще один способ вычисления НОД для тех и большего количества чисел. Мы можем найти НОД, перемножив все общие простые множители чисел.

Пример 7

Вычислите НОД чисел 78 , 294 , 570 и 36 .

Решение

Произведем разложение данных чисел на простые множители: 78 = 2 · 3 · 13 , 294 = 2 · 3 · 7 · 7 , 570 = 2 · 3 · 5 · 19 , 36 = 2 · 2 · 3 · 3 .

Для всех четырех чисел общими простыми множителями будут числа 2 и 3 .

Получается, что НОД (78 , 294 , 570 , 36) = 2 · 3 = 6 .

Ответ: НОД (78 , 294 , 570 , 36) = 6 .

Нахождение НОД отрицательных чисел

Если нам приходится иметь дело с отрицательными числами, то для нахождения наибольшего общего делителя мы можем воспользоваться модулями этих чисел. Мы можем так поступить, зная свойство чисел с противоположными знаками: числа n и - n имеют одинаковые делители.

Пример 8

Найдите НОД отрицательных целых чисел − 231 и − 140 .

Решение

Для выполнения вычислений возьмем модули чисел, данных в условии. Это будут числа 231 и 140 . Запишем это кратко: НОД (− 231 , − 140) = НОД (231 , 140) . Теперь применим алгоритм Евклида для нахождения простых множителей двух чисел: 231 = 140 · 1 + 91 ; 140 = 91 · 1 + 49 ; 91 = 49 · 1 + 42 ; 49 = 42 · 1 + 7 и 42 = 7 · 6 . Получаем, что НОД (231 , 140) = 7 .

А так как НОД (− 231 , − 140) = НОД (231 , 140) , то НОД чисел − 231 и − 140 равен 7 .

Ответ: НОД (− 231 , − 140) = 7 .

Пример 9

Определите НОД трех чисел − 585 , 81 и − 189 .

Решение

Заменим отрицательные числа в приведенном перечне на их абсолютные величины, получим НОД (− 585 , 81 , − 189) = НОД (585 , 81 , 189) . Затем разложим все данные числа на простые множители: 585 = 3 · 3 · 5 · 13 , 81 = 3 · 3 · 3 · 3 и 189 = 3 · 3 · 3 · 7 . Общими для трех чисел являются простые множители 3 и 3 . Получается, что НОД (585 , 81 , 189) = НОД (− 585 , 81 , − 189) = 9 .

Ответ: НОД (− 585 , 81 , − 189) = 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например :

Число 12 делится на 1, на 2, на 3, на 4, на 6, на 12;

Число 36 делится на 1, на 2, на 3, на 4, на 6, на 12, на 18, на 36.

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа . Делитель натурального числа a - это такое натуральное число, которое делит данное число a без остатка. Натуральное число, которое имеет более двух делителей, называется составным .

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12. Наибольший из делителей этих чисел - 12. Общий делитель двух данных чисел a и b - это число, на которое делятся без остатка оба данных числа a и b .

Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например , числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 - тоже их общие кратные. Среди всех jбщих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК) .

НОК всегда натуральное число, которое должно быть больше самого большого из чисел, для которых оно определяется.

Наименьшее общее кратное (НОК). Свойства.

Коммутативность:

Ассоциативность:

В частности, если и — взаимно-простые числа , то:

Наименьшее общее кратное двух целых чисел m и n является делителем всех других общих кратных m и n . Более того, множество общих кратных m, n совпадает с множеством кратных для НОК(m, n ).

Асимптотики для могут быть выражены через некоторые теоретико-числовые функции.

Так, функция Чебышёва . А также:

Это следует из определения и свойств функции Ландау g(n) .

Что следует из закона распределения простых чисел.

Нахождение наименьшего общего кратного (НОК).

НОК(a, b ) можно вычислить несколькими способами:

1. Если известен наибольший общий делитель , можно использовать его связь с НОК:

2. Пусть известно каноническое разложение обоих чисел на простые множители:

где p 1 ,...,p k — различные простые числа, а d 1 ,...,d k и e 1 ,...,e k — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении).

Тогда НОК (a ,b ) вычисляется по формуле:

Другими словами, разложение НОК содержит все простые множители , входящие хотя бы в одно из разложений чисел a, b , причём из двух показателей степени этого множителя берётся наибольший.

Пример :

Вычисление наименьшего общего кратного нескольких чисел может быть сведено к нескольким последовательным вычислениям НОК от двух чисел:

Правило. Чтобы найти НОК ряда чисел, нужно:

— разложить числа на простые множители;

— перенести во множители искомого произведения самое большое разложение (произведение множителей самого большого числа из заданных), а потом добавить множители из разложения других чисел, которые не встречаются в первом числе или стоят в нем меньшее число раз;

— полученное произведение простых множителей будет НОК заданных чисел.

Любые два и более натуральных чисел имеют свое НОК. Если числа не кратны друг другу или не имеют одинаковых множителей в разложении, то их НОК равно произведению этих чисел.

Простые множители числа 28 (2, 2, 7) дополнили множителем 3 (числа 21), полученное произведение (84) будет наименьшим числом, которое делится на 21 и 28 .

Простые множители наибольшего числа 30 дополнили множителем 5 числа 25, полученное произведение 150 больше самого большого числа 30 и делится на все заданные числа без остатка. Это наименьшее произведение из возможных (150, 250, 300...), которому кратны все заданные числа.

Числа 2,3,11,37 — простые, поэтому их НОК равно произведению заданных чисел.

Правило . Чтобы вычислить НОК простых чисел, нужно все эти числа перемножить между собой.

Еще один вариант:

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел нужно:

1) представить каждое число как произведение его простых множителей, например:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записать степени всех простых множителей:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 2 3 · 3 2 · 7 1 ,

3) выписать все простые делители (множители) каждого из этих чисел;

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;

5) перемножить эти степени.

Пример . Найти НОК чисел: 168, 180 и 3024.

Решение . 168 = 2 · 2 · 2 · 3 · 7 = 2 3 · 3 1 · 7 1 ,

180 = 2 · 2 · 3 · 3 · 5 = 2 2 · 3 2 · 5 1 ,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 2 4 · 3 3 · 7 1 .

Выписываем наибольшие степени всех простых делителей и перемножаем их:

НОК = 2 4 · 3 3 · 5 1 · 7 1 = 15120.

Для нахождения НОД (наибольшего общего делителя) двух чисел необходимо:

2. Найти (подчеркнуть) все общие простые множители в полученных разложениях.

3. Найти произведение общих простых множителей.

Для нахождения НОК (наименьшего общего кратного) двух чисел необходимо:

1. Разложить данные числа на простые множители.

2. Разложение одного из них дополнить теми множителями разложения другого числа, которых нет в разложении первого.

3. Вычислить произведение полученных множителей.

Нахождение НОД

НОД - это наибольший общий делитель.

Чтобы найти наибольший общий делитель нескольких чисел необходимо:

  • определить множители, общие для обоих чисел;
  • найти произведение общих множителей.

Пример нахождения НОД:

Найдем НОД чисел 315 и 245.

315 = 5 * 3 * 3 * 7;

245 = 5 * 7 * 7.

2. Выпишем множители, общие для обоих чисел:

3. Найдем произведение общих множителей:

НОД(315; 245) = 5 * 7 = 35.

Ответ: НОД(315; 245) = 35.

Нахождение НОК

НОК - это наименьшее общее кратное.

Чтобы найти наименьшее общее кратное нескольких чисел необходимо:

  • разложить числа на простые множители;
  • выписать множители, входящие в разложение одного из чисел;
  • допишем к ним недостающие множители из разложения второго числа;
  • найти произведение получившихся множителей.

Пример нахождения НОК:

Найдем НОК чисел 236 и 328:

1. Разложим числа на простые множители:

236 = 2 * 2 * 59;

328 = 2 * 2 * 2 * 41.

2. Выпишем множители, входящие в разложение одного из чисел и допишем к ним недостающие множители из разложения второго числа:

2; 2; 59; 2; 41.

3. Найдем произведение получившихся множителей:

НОК(236; 328) = 2 * 2 * 59 * 2 * 41 = 19352.

Ответ: НОК(236; 328) = 19352.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....