Изменение набора генов. Структурные изменения генов передаваемые по наследству это

Ожидание рождения ребенка - самое прекрасное время для родителей, но также и самое страшное. Многие волнуются, что малыш может родиться с какими-либо недостатками, физическими или умственными отклонениями.

Наука не стоит на месте, есть возможность проверить на маленьких сроках беременности малыша на наличие отклонений в развитии. Практически все эти анализы могут показать, все ли нормально с ребенком.

Почему так происходит, что у одних и тех же родителей могут появиться на свет абсолютно разные дети - здоровый ребенок и ребенок с отклонениями? Это определяют гены. В рождении недоразвитого малыша или ребенка с физическими недостатками влияют генные мутации, связанные с изменением структуры ДНК. Поговорим об этом подробнее. Рассмотрим, как это происходит, какие генные мутации бывают, и их причины.

Что такое мутации?

Мутации - это физиологическое и биологическое изменение клеток в структуре ДНК. Причиной может стать облучение (при беременности нельзя делать снимки рентгеновские, на наличие травм и переломов), ультрафиолетовые лучи (долгое нахождение на солнце во время беременности или нахождение в комнате с включенными лампами ультрафиолетового света). Также такие мутации могут передаться и по наследству от предков. Все они распределяются на типы.

Генные мутации с изменением структуры хромосом или их количества

Это мутации, при которых строение и число хромосом изменены. Хромосомные участки могут выпадать или удваиваться, перемещаться в зону негомологическую, поворачиваться от нормы на сто восемьдесят градусов.

Причины появления такой мутации - это нарушение при кроссенговере.

Генные мутации связаны с изменением структуры хромосом или их количества, являются причиной серьезных расстройств и болезней у малыша. Такие заболевания неизлечимы.

Виды хромосомных мутаций

Всего различаются два вида основных хромосомных мутаций: численные и структурные. Анэуплоидии - это виды по количеству хромосом, то есть когда генные мутации связаны с изменением числа хромосом. Это возникновение дополнительной или нескольких последних, потеря какой-либо из них.

Генные мутации связаны с изменением структуры в том случае, когда хромосомы разрываются, а в дальнейшем воссоединяются, нарушив нормальную конфигурацию.

Виды численных хромосом

По числу хромосом мутации разделяют на анэуплоидии, то есть виды. Рассмотрим основные, выясним разницу.

  • трисомии

Трисомия - это возникновение в кариотипе лишней хромосомы. Самое распространенное явление - это появление двадцать первой хромосомы. Она становится причиной синдрома Дауна, или, как еще называют это заболевание - трисомия двадцать первой хромосомы.

Синдром Патау выявляется по тринадцатой, а по восемнадцатой хромосоме диагностируют Это все аутосомные трисомии. Прочие трисомии не являются жизнеспособными, они погибают в утробе и теряются при самопроизвольных абортах. Те индивидуумы, у которых возникают дополнительные половые хромосомы (X, Y), - жизнеспособны. Клиническое проявление таких мутаций весьма незначительно.

Генные мутации, связанные с изменением числа, возникают по определенным причинам. Трисомии чаще всего могут возникнуть при расхождении в анафазе (мейоз 1). Результатом такого расхождения является то, что обе хромосомы попадают только в одну из двух дочерних клеток, вторая остается пустой.

Реже может возникнуть нерасхождение хромосом. Это явление называют нарушением в расхождении сестринских хроматид. Возникает в мейозе 2. Это именно тот случай, когда две совершенно одинаковые хромосомы селятся в одной гамете, вызывая трисомную зиготу. Нерасхождение происходит в ранние стадии процесса дробления яйцеклетки, которая была оплодотворена. Таким образом, возникает клон клеток-мутантов, который может охватить большую или меньшую часть тканей. Иногда проявляется клинически.

Многие связывают двадцать первую хромосому с возрастом беременной женщины, но этот фактор до сегодняшнего дня не имеет однозначного подтверждения. Причины, по которым не расходятся хромосомы, остаются неизвестными.

  • моносомии

Моносомией называют отсутствие любой из аутосом. Если такое происходит, то в большинстве случаев плод невозможно выносить, случаются преждевременные роды на ранних сроках. Исключение - моносомия по причине двадцать первой хромосомы. Причиной, по которой возникает моносомия, может стать и нерасхождение хромосом, и потеря хромосомы во время ее пути в анафазе к клетке.

По половым хромосомам моносомия приводит к образованию плода, у которого кариотип ХО. Клиническое проявление такого кариотипа - синдром Тернера. В восьмидесяти процентах случаев из ста появление моносомии по Х-хромосоме происходит из-за нарушения мейоза папы ребенка. Это связано с нерасхождением Х и Y хромосом. В основном плод с кариотипом ХО погибает в утробе матери.

По половым хромосомам трисомия разделяется на три вида: 47 XXY, 47 XXX, 47 XYY. является трисомией 47 XXY. С таким кариотипом шансы выносить ребенка делятся пятьдесят на пятьдесят. Причиной такого синдрома может стать нерасхождение хромосом Х или нерасхождение Х и Y сперматогенеза. Второй и третий кариотипы могут возникнуть только у одной из тысячи беременных женщин, они практически не проявляются и в большинстве случаев обнаруживаются специалистами совершенно случайно.

  • полиплоидия

Это генные мутации, связанные с изменением гаплоидного набора хромосом. Эти наборы могут быть утроенными и учетверенными. Триплоидия чаще всего диагностируется уже только тогда, когда произошел спонтанный аборт. Было несколько случаев, когда матери удавалось выносить такого малыша, но все они погибали, не достигнув и месячного возраста. Механизмы генных мутаций в случае триплодии обуславливают полным расхождением и нерасхождением всех хромосомных наборов либо женских, либо мужских половых клеток. Также механизмом может послужить двойное оплодотворение одной яйцеклетки. В этом случае происходит перерождение плаценты. Такое перерождение называют пузырным заносом. Как правило, такие изменения ведут к развитию у малыша умственных и физиологических нарушений, прерыванию беременности.

Какие генные мутации связаны с изменением структуры хромосом

Структурные изменения хромосом являются следствием разрыва (разрушения) хромосомы. В результате эти хромосомы соединяются, нарушив прежний свой вид. Эти видоизменения могут быть несбалансированными и сбалансированными. Сбалансированные не имеют излишка или недостатка материала, поэтому не проявляются. Проявиться они могут только в тех случаях, если на месте разрушения хромосомы был ген, который является функционально важным. У сбалансированного набора могут появиться гаметы несбалансированные. В следствии оплодотворение яйцеклетки такой гаметой может стать причиной появления плода с несбалансированным хромосомным набором. При таком наборе у плода возникает целый ряд пороков развития, появляются тяжелые виды патологии.

Типы структурных видоизменений

Генные мутации происходят на уровне образования гаметы. Предотвратить этот процесс нельзя, равно как нельзя заведомо узнать, могут произойти. Структурных видоизменений есть несколько видов.

  • делеции

Это изменение связано с потерей части хромосомы. После такого разрыва хромосома становится более короткой, а ее оторванная часть теряется при дальнейшем делении клетки. Интерстициальные делеции - это тот случай, когда одна хромосома разрывается сразу в нескольких местах. Такие хромосомы обычно создают нежизнеспособный плод. Но есть и случаи, когда малыши выживали, но у них из-за такого набора хромосом был синдром Вольфа-Хиршхорна, "кошачий крик".

  • дупликации

Эти генные мутации происходят на уровне организации сдвоенных участков ДНК. В основном дупликация не может стать причиной таких патологий, которые вызывают делеции.

  • транслокации

Транслокация возникает из-за переноса генетического материала с одной хромосомы на другие. Если же происходит разрыв одновременно в нескольких хромосомах и они обмениваются сегментами, то это становится причиной возникновения реципроктной транслокации. Кариотип такой транслокации имеет всего сорок шесть хромосом. Сама же транслокация выявляется только при детальном анализе и изучении хромосомы.

Изменение последовательности нуклеотидов

Генные мутации связаны с изменением последовательности нуклеотидов, когда выражаются в видоизменении структур некоторых участков ДНК. По последствиям такие мутации делятся на два типа - без сдвига рамки считывания и со сдвигом. Чтобы точно знать причины изменения участков ДНК, нужно рассмотреть каждый тип отдельно.

Мутация без сдвига рамки

Эти генные мутации связаны с изменением и заменой нуклеотидных пар в структуре ДНК. При таких заменах не теряется длина ДНК, но возможна потеря и замена аминокислот. Есть вероятность того, что структура белка сохранится, этим послужит Рассмотрим детально оба варианта развития: с заменой и без замены аминокислот.

Мутация с заменой аминокислот

Замена остатка аминокислоты в составе полипептидов называют миссенс-мутациями. В гемоглобиновой молекуле человека есть четыре цепи - две "а" (она размещена в шестнадцатой хромосоме) и две "b" (кодировка в одиннадцатой хромосоме). Если "b" - цепь нормальная, и в ее составе есть сто сорок шесть остатков аминокислот, а шестым является глутаминовая, то гемоглобин будет нормальным. В этом случае кислота глутаминовая должна быть закодирована триплетом ГАА. Если за счет мутации ГАА заменен на ГТА, то вместо глутаминовой кислоты в молекуле гемоглобина образуется валин. Таким образом, вместо нормального гемоглобина HbA появится другой гемоглобин HbS. Таким образом, замена одной аминокислоты и одного нуклеотида станет причиной серьезного тяжелого заболевания - анемии серповидноклеточной.

Эта болезнь проявляется тем, что эритроциты становятся по форме, как серп. В таком виде они не способны нормально доставлять кислород. Если на клеточном уровне гомозиготы имеют формулу HbS/HbS, то это ведет к смерти ребенка в самом раннем детстве. Если формула HbA/HbS, то эритроциты имеют слабую форму изменения. Такое слабое изменение имеет полезное качество - устойчивость организма к малярии. В тех странах, где есть опасность заразиться малярией такая же, как в Сибири простудой, это изменение несет полезное качество.

Мутация без замены аминокислот

Замены нуклеотидов без обмена аминокислотами называются сеймсенс-мутациями. Если в участке ДНК, кодирующем "b"- цепь произойдет замена ГАА на ГАГ, то из-за того, что окажется в избытке, замены глутаминовой кислоты не может произойти. Структура цепи не будет изменена, в эритроцитах не будет видоизменений.

Мутации со сдвигом рамки

Такие генные мутации связаны с изменением длины ДНК. Длина может стать меньше или больше, в зависимости от потери или прибавления нуклеотидных пар. Таким образом, будет изменена полностью вся структура белка.

Может произойти внутригенная супрессия. Это явление происходит, когда есть место двум мутациям, компенсирующим друг друга. Это момент присоединения нуклеотидной пары после того, как одна была утеряна, и наоборот.

Нонсенс-мутации

Это особая группа мутаций. Она происходит редко, в ее случае происходит появление стоп-кодонов. Это может случиться как при утрате пар нуклеотидов, так и при их присоединении. Когда появляются стоп-кодоны, синтез полипептидов полностью останавливается. Так могут образоваться нуль-аллели. Этому не будет соответствовать ни один из белков.

Есть такое понятие, как межгенная супрессия. Это такое явление, когда мутация одних генов подавляет мутации в других.

Выявляются ли изменения при беременности?

Генные мутации, связанные с изменением числа хромосом, в большинстве случаев можно определить. Чтобы узнать, есть ли у плода пороки в развитии и патологии, на первых неделях беременности (с десяти до тринадцати недель) назначают скрининг. Это ряд простых обследований: забор на анализы крови из пальца и вены, УЗИ. На ультразвуковом исследовании плод рассматривают в соответствии с параметрами всех конечностей, носа и головы. Эти параметры при сильном несоответствии нормам указывают на то, что у малыша есть пороки в развитии. Подтверждается или опровергается этот диагноз на основании результатов анализа крови.

Также под пристальным наблюдением медиков оказываются будущие мамы, у малышей которых могут возникнуть мутации на генном уровне, передающиеся по наследству. То есть это те женщины, в родне которых были случаи рождения ребенка с умственными или физическими отклонениями, выявленными синдромами Дауна, Патау и прочими генетическими заболеваниями.

Данная брошюра содержит информацию о том, что такое хромосомные нарушения, как они могут наследоваться, и какие проблемы могут быть с ними связаны. Данная брошюра не может заменить Ваше общение с врачом, однако она может помочь Вам при обсуждении интересующих Вас вопросов.

Для того, чтобы лучше понять, что представляют собой хромосомные нарушения, вначале будет полезно узнать, что такое гены и хромосомы.

Что такое гены и хромосомы?

Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.

Гены расположены на нитевидных структурах, называемых хромосомами. В норме в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей - 23 от мамы, и 23 от папы, поэтому мы часто похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.

Рисунок 1: Гены, хромосомы и ДНК

Хромосомы (см. Рисунок 2), пронумерованные от 1 до 22, одинаковые у мужчин и у женщин. Такие хромосомы называют аутосомами. Хромосомы 23-й пары различны у женщин и мужчин, и их называют половыми хромосомами. Есть 2 варианта половых хромосом: Х-хромосома и Y-хромосома. В норме у женщин присутствуют две Х-хромосомы (ХХ), одна из них передается от матери, другая - от отца. В норме у мужчин есть одна X-хромосома и одна Y-хромосома (XY), при этом Х-хромосома передается от матери, а Y-хромосома - от отца. Так, на Рисунке 2 изображены хромосомы мужчины, так как последняя, 23-я, пара представлена сочетанием XY.

Рисунок 2: 23 пары хромосом, распределенные по размеру; хромосома под номером 1 - самая большая. Две последние хромосомы - половые.

Хромосомные изменения

Правильный хромосомный набор является очень важным для нормального развития человека. Это связано с тем, что гены, которые дают «инструкции к действиям» клеткам нашего организма, находятся на хромосомах. Любое изменение количества, размера или структуры наших хромосом может означать изменение количества или последовательности генетической информации. Такие изменения могут привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка.

Хромосомные изменения могут быть унаследованы от родителей. Чаще всего хромосомные изменения возникают на этапе формирования яйцеклетки или сперматозоида, или при оплодотворении (вновь возникшие мутации, или мутации de novo). Эти изменения невозможно контролировать.

Существует два основных типа хромосомных изменений. Изменение числа хромосом. При таком изменении существует увеличение или уменьшение числа копий какой-либо хромосомы. Изменение структуры хромосом. При таком изменении материал какой-либо хромосомы поврежден, или изменена последовательность генов. Возможно появление дополнительного или утрата части исходного хромосомного материала.

В данной брошюре мы рассмотрим хромосомные делеции, дупликации, инсерции, инверсии и кольцевые хромосомы. Если Вас интересует информация о хромосомных транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».

Изменение числа хромосом.

В норме в каждой клетке человека содержится 46 хромосом. Однако, иногда ребенок рождается либо с большим, либо с меньшим числом хромосом. В таком случае возникает, соответственно, либо избыточное, либо недостаточное число генов, необходимых для регуляции роста и развития организма.

Один из наиболее распространенных примеров генетического заболевания, вызванного избыточным числом хромосом, является синдром Дауна. В клетках людей с этим заболеванием находится 47 хромосом вместо обычных 46-ти, так как присутствует три копии 21-ой хромосомы вместо двух. Другими примерами заболеваний, вызванных избыточным числом хромосом являются синдромы Эдвардса и Патау.

Рисунок 3: Хромосомы девочки (последняя пара хромосом ХХ) с синдромом Дауна. Видны три копии 21-ой хромосомы вместо двух.

Изменение структуры хромосом.

Изменения в структуре хромосом происходят, когда материал определенной хромосомы поврежден, или изменена последовательность генов. К структурным изменениям также относятся избыток или утрата части хромосомного материала. Это может происходить несколькими путями, описанными ниже.

Изменения структуры хромосом могут быть очень небольшими, и специалистам в лабораториях бывает сложно их выявить. Однако даже если структурное изменение найдено, часто бывает сложно предсказать влияние этого изменения на здоровье конкретного ребенка. Это может разочаровать родителей, которые хотят получить исчерпывающую информацию о будущем своего ребенка.

Транслокации

Если Вы хотите больше узнать о транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».

Делеции

Термин «хромосомная делеция» означает, что часть хромосомы утрачена или укорочена. Делеция может случиться в любой хромосоме и на протяжении любой части хромосомы. Делеция может быть любого размера. Если утраченный при делеции материал (гены) содержал важную информацию для организма, то у ребенка могут возникать трудности в обучении, задержка развития и другие проблемы со здоровьем. Тяжесть этих проявлений зависит от размеров утраченной части и локализации внутри хромосомы. Примером такого заболевания является синдром Жубер.

Дупликации

Термин «хромосомная дупликация» означает, что часть хромосомы удвоена, и из-за этого возникает избыток генетической информации. Этот избыточный материал хромосомы означает, что организм получает слишком большое число «инструкций», и это может привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка. Примером заболевания, вызванного дупликацией части хромосомного материала является моторно-сенсорная нейропатия типа IA.

Инсерции

Хромосомная инсерция (вставка) означает, что часть материала хромосомы оказалась «не на своем месте» на этой же или на другой хромосоме. Если общее количество хромосомного материала не изменилось, то такой человек, как правило, здоров. Однако если такое перемещение приводит к изменению количества хромосомного материала, то у человека могут возникать трудности в обучении, задержка развития и другие проблемы здоровья ребенка.

Кольцевые хромосомы

Термин «кольцевая хромосома» означает, что концы хромосомы соединились, и хромосома приобрела форму кольца (внорме хромосомы человека имеют линейную структуру). Обычно это происходит, когда оба конца одной и той же хромосомы укорочены. Оставшиеся концы хромосомы становятся «липкими» и соединяются, формируя «кольцо». Последствия формирования кольцевых хромосом для организма зависят от размера делеций на концах хромосомы.

Инверсии

Хромосомная инверсия означает такое изменение хромосомы, при котором часть хромосомы развернута, и гены в этом участке расположены в обратном порядке. В большинстве случаев носитель инверсии здоров.

Если у родителя обнаружена необычная хромосомная перестройка, как это может отразиться на ребенке?

Возможны несколько исходов каждой беременности:

  • Ребенок может получить совершенно нормальный набор хромосом.
  • Ребенок может унаследовать такую же хромосомную перестройку, которая есть у родителя.
  • У ребенка могут быть трудности в обучении, задержка развития или другие проблемы со здоровьем.
  • Возможно самопроизвольное прерывание беременности.

Таким образом, у носителя хромосомной перестройки могут рождаться здоровые дети, и во многих случаях происходит именно так. Так как каждая перестройка уникальна, Вашу конкретную ситуацию следует обсудить с врачом-генетиком. Часто бывает, что ребенок рождается с хромосомной перестройкой, несмотря на то, что хромосомный набор родителей нормальный. Такие перестройки называют вновь возникшими, или возникшими “de novo” (от латинского слова). В этих случаях риск повторного рождения ребенка с хромосомной перестройкой у этих же родителей очень мал.

Диагностика хромосомных перестроек

Возможно проведение генетического анализа для выявления носительства хромосомной перестройки. Для анлиза берется образец крови, и клетки крови исследуют в специализированной лаборатории для выявления хромосомных перестроек. Такой анализ называется кариотипированием. Также возможно проведение теста во время беременности для оценки хромосом плода. Такой анализ называется пренатальной диагностикой, и этот вопрос следует обсудить с врачом-генетиком. Более подробная информация на эту тему представлена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез».

Как это касается других членов семьи

Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ хромосом в клетках крови) для определения носительства хромосомной перестройки. Это может быть особенно важно для родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной перестройки, они не могут передать ее своим детям. Если же они являются носителями, то им может быть предложено пройти обследование во время беременности для анализа хромосом плода.

Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.

Что важно помнить

  • Хромосомная перестройка может как наследоваться от родителей, так и возникать в процессе оплодотворения.
  • Перестройку нельзя исправить - она остается на всю жизнь.
  • Перестройка не заразна, например, ее носитель может быть донором крови.
  • Люди часто испытывают чувство вины в связи с тем, что в их семье есть такая проблема, как хромосомная перестройка. Важно помнить, что это не является чьей-либо виной или следствием чьих-либо действий.
  • Большинство носителей сбалансированных перестроек могут иметь здоровых детей.

Выпускник Чикагского университета доктор Джосайя Зайнер (Josiah Zayner) создал набор из инструментов и материалов, которые позволяют в домашних условиях редактировать геном с помощью методики CRISPR. По мнению ученого, недорогой набор показывает, что сегодня вмешательство в ДНК - это обычное ремесло, а не искусство с непредсказуемым результатом. Сам ученый охотно демонстрирует эту мысль: в его квартире множество чашек Петри с генно-модифицированными бактериями, созданными на кухне с помощью собственного набора.

Биолог Джосайя Зайнер предлагает новый подход к популяризации самой передовой части биологической науки

Инструмент CRISPR для редактирования генома был изобретен три года назад и является простым, быстрым и точным способом вмешательства в ДНК. Однако до сих пор CRISPR применяли лишь квалифицированные специалисты в специализированных лабораториях.


Методика CRISPR позволяет редактировать геном даже на кухне

Джосайя Зайнер первым решился выпустить на рынок упрощенный и доступный для непрофессионалов набор инструментов CRISPR для вмешательства в геном. Это провокационная инициатива, ведь сегодня образ жизни и мышления общества во многом формирует терроризм. В результате генные модификации бактерий в домашних условиях ассоциируются в большинстве случаев с разработкой смертельных штаммов для биотеррористов.

Также ученые опасаются, что непрофессионалы могут случайно создать суперштаммы микроорганизмов, устойчивые к антибиотикам. Даже если такие бактерии и грибки окажутся безопасными для человека, они могут вызвать непредсказуемые изменения в окружающей среде.


Генные модификации в наборе безопасны и позволяют лишь незначительно менять внешние параметры микроорганизмов, например их цвет

Однако, по словам Зайнера, в его наборе лишь безопасные бактерии и дрожжи, которые не могут выжить в суровой внешней среде и живут недолго. Генная модификация с помощью инструментов набора позволяет лишь незначительно менять их свойства, например цвет или запах.


Набор для домашних экспериментов в генной инженерии стоит $120

Джосайя Зайнер считает, что благодаря его набору множество талантливых любознательных людей могут оказать огромную помощь биологии. Интерес к генной инженерии имеет огромную ценность для науки, поэтому дешевый набор Зайнера может сыграть в истории биологии даже большую роль, чем несколько дорогостоящих суперсовременных лабораторий.

Надо отметить, что краудфандинг принес проекту Зайнера более $55 тыс. - на 333% больше, чем планировал разработчик набора для домашнего редактирования генов.

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

В основе практически всех генетических исследований лежит понятие вариации . Это понятие включает в себя все типы изменений последовательностей ДНК (мутаций ), наблюдаемых на хромосомном или генном уровнях. С одной стороны, вариации генома служат объяснением межиндивидульного разнообразия, с другой, мутации могут приводить к патогенным изменениям жизнедеятельности организма, являясь, таким образом, причиной наследственного заболевания. Следует также ввести несколько терминов, использующихся для описания процесса мутационного изменения ДНК: локус - определенный участок хромосомы, содержащий специфические последовательности ДНК или гены, аллель - две или более альтернативных формы гена, расположенных в одном и том же локусе пары гомологичных хромосом. Если различие последовательности ДНК двух аллелей одного локуса наблюдается с частотой более 1% в общей популяции, то данный тип вариации обозначается полиморфизмом . Изменение последовательности ДНК, имеющее меньшую частоту, как правило, называется мутацией . Известно два основных вида мутаций, связанных с наследственной патологией: хромосомные (изменение числа и/или структуры хромосом в клетке) и генные (изменение последовательности ДНК в конкретном гене). Исходя из данной классификации, можно выделить направления генетических исследований нарушений последовательности ДНК, приводящих к наследственным заболеваниям, которые изучает медицинская генетика , а именно, поиск изменений последовательностей нуклеиновых кислот и белков на молекулярном уровне (молекулярная генетика ) и изучение изменений числа, структуры и организации хромосом(медицинская цитогенетика ).

Молекулярно-генетические исследования основаны на современных представлениях об особенностях молекулы ДНК и биохимических процессах транскрипции и трансляции. Основная их цель заключается в выявлении генных мутаций, приводящих к характерным фенотипическим проявлениям. Генные мутации представляют собой изменение расположения, потерю и приобретение ДНК относительно её линейной последовательности, обнаруживаемой в норме. Наиболее частые типы генных мутаций являются замена, потери и/или вставки одного нуклеотида. Последние обозначаются аббревиатурой SNP (single nucleotide polymorphsims) и являются одними из наиболее частых в геноме человека. В среднем, SNP, ведущие к вариации между аллелями у одного индивидуума, встречаются в каждых 1500 пар нуклеотидов. Однако, большинство из них расположены в некодирущих последовательностях и, в основном, не имеют фенотипических последствий. Если изменение последовательности ДНК происходит в гене, кодирующем белок, то оно с высокой долей вероятности будет связано с нарушениями жизнедеятельности организма. Существует следующая классификация генных мутаций:

Миссенс мутации - замена одного нуклеотида на другой или несинонимические изменения последовательности ДНК . Теоретически можно выделить два типа подобных мутаций: консервативные инеконсервативные . Консервативные миссенс мутации приводят к замене одного кодона на равнозначный (кодоны, кодирующие один и тот же аминокислотный остаток) или на кодон другого аминокислотного остатка, который не изменяет физико-химические свойства белка, кодированного соответствующим геном. Неконсервативные миссенс мутации, как правило, изменяют биохимические свойства белка и, следовательно, приводят к нарушению его функциональной активности.

Нонсенс мутации - изменения кодирующей последовательности ДНК, приводящие к образованию стоп-кодона, вследствие чего синтезируется белок, в котором отсутствует какая-то часть его последовательности.

Мутация сдвига рамки считывания - любые изменения последовательности ДНК гена (в основном, потери или вставки нуклеотидов), которые приводят к сдвигу считывания последовательности в ходе транскрипции. Результатом этого является синтез совершенно нового белка или образование матричной РНК, не несущей в себе никакой информации относительно аминокислотной последовательности.

Непатогенные изменения последовательности ДНК - вариации последовательности ДНК, включающие консервативные миссенс мутации, или так называемые синонимические мутации , которые не изменяют закодированную информацию в ДНК гена или не воздействуют на функциональную активность белковых макромолекул.

Мутации также происходят в некодирующих последовательностях ДНК (интронах). Данный тип вариаций, как правило, не имеет фенотипических последствий. Тем не менее, при сдвиге рамки считывания или образовании альтернативных форм белковых макромолекул (альтернативный сплайсинг ), эти вариации могут приводить к нарушению функциональной активности белковых макромолекул и, как следствие, фенотипическим последствиям. В данном контексте сложностью представляется идентификация патогенных мутаций, так как понятие «нормы» в медико-генетических исследованиях достаточно относительно, в силу того, что на молекулярном уровне геном человека является в значительной степени нестабильным. Иными словами, только рекуррентные мутации (наиболее частые повторные мутации, которые выявляются у индивидуумов с известным наследственным заболеванием) могут быть признаны патогенными. В случаях, когда обнаруживается новая мутация, возникает необходимость молекулярно-генетических исследований близких родственников пациента, чтобы определить является ли она причиной заболевания.

Хромосомные мутации (аномалии) связаны либо с различными структурными перестройками хромосом, либо с изменением их числа (n). Численные изменения в наборе хромосом (кариотипе ) могут быть двух типов: полиплоидии - умножение полного хромосомного набора (3n, 4n и т.д.), или генома, кратное гаплоидному числу хромосом (в литературе иногда обозначающиеся, как геномные мутации ); анеуплоидии - увеличение или уменьшение числа хромосом в наборе, некратное гаплоидному. Эти количественные изменения кариотипа обусловлены, как правило, нарушениями мейоза или митоза. Численные хромосомные аномалии в виде анеуплоидии делятся на моносомию (потерю хромосомы или её части - частичная моносомия) и трисомию или полисомию (приобретение одной/нескольких хромосом или её части - частичная трисомия). Данные изменения кариотипа связаны с комплексом врожденных пороков развития и, как правило, с заболеваниями, сопровождающимися умственной отсталостью, или тяжелыми психическими расстройствами. В настоящее время описаны случаи изменений хромосомного набора с участием половых хромосом и некоторых аутосом при шизофрении и аутизме. Например, до 5-15% детей с аутистическими расстройствами имеют хромосомные аномалии. Это позволяет рассматривать хромосомный дисбаланс в организме в качестве одной из возможных причин некоторых случаев психических болезней.

Структурные изменения могут затрагивать всю хромосому, а также сопровождаться изменением количества генетического материала в ядре или его перемещением. Сбалансированные хромосомные аномалии представляют собой перестройки, за счет которых возникают кариотипы с неизмененным набором генов, однако расположение их в пределах хромосом или между хромосомами отличается от нормального. В большинстве случаев носители сбалансированных хромосомных аномалий фенотипически нормальны, но для их потомства возникает большой риск иметь несбалансированный кариотип, но в отдельных случаях носители сбалансированного кариотипа могут иметь различные врожденные пороки и/или микроаномалии, а также нарушения нервно-психического развития. Если при структурных хромосомных мутациях наблюдается потеря или приобретение генетического материала, то они являются несбалансированными хромосомными аномалиями .

Цитогенетически структурные перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков) хромосом.

Большое значение имеет изучение хромосомных мутаций, под действием факторов внешней среды. Показано, что хромосомы человека отличаются высокой чувствительностью к действию радиации и химических веществ, которые принято называть мутагенными факторами (мутагенами ). При анализе воздействия этих факторов следует различать нарушения в соматических и половых клетках. Первые затрагивают непосредственно жизнедеятельность исследуемого организма, тогда как вторые проявляются в последующих поколениях. Мутации хромосом в зародышевых клетках ведут к образованию аберрантных гамет, в результате которых возможны гибель зигот, эмбрионов на ранних стадиях внутриутробного развития, рождение детей со специфическими или неспецифическими хромосомными аномалиями, которые проявляются в виде определенной клинической картины или определенного фенотипа. Мутации хромосом в соматических клетках ведут к образованию неспецифичных хромосомных аномалий в виде хромосомных или хроматидных пробелов, разрывов, обменов в кариотипе, не ведущих к определенному фенотипу, характерному для определенного заболевания. Подобные мутации не наследуются. Следует отметить, что при изучении такого рода воздействия мутагенных факторов представляется возможным оценить качественно и количественно действие ионизирующей радиации, химических веществ, вирусов, но полученные данные не могут быть перенесены на половые клетки, результатом действия на которые являются хромосомные болезни у детей.

Хромосомные аномалии могут проявляться в так называемых мозаичных формах, к которым приводит неправильное деление клеток на различных стадиях эмбрионального и постнатального развития. Это позволяет разделить хромосомные аномалии на мозаичные и регулярные (аномальный кариотип наблюдается во всех клетках организма). Хромосомный мозаицизм представляет собой наличие нескольких популяций клеток с различным друг от друга хромосомным наборам. Как правило, при мозаичных формах хромосомных аномалий наблюдают отсутствие отдельных клинических признаков определенного хромосомного синдрома и более легкое течение заболевания, но некоторые симптомы практически всегда присутствуют. Мозаичные структурные хромосомные аномалии наблюдаются достаточно редко, поэтому, когда речь идет о мозаичных хромосомных аномалиях, имеются в виду, в основном, численные аномалии, мозаичные формы которых имеют достаточно высокую популяционную частоту. Следует также отметить феномен тканеспецифического хромосомного мозаицизма - клетки с аномальным хромосомным набором присутствуют только в определенной ткани организма.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....