История криптографии - учебная и научная деятельность анисимова владимира викторовича.

Которые родственны, но не тождественны криптографии. Шифровальные системы сводились к использованию перестановки или замены букв на различные символы (другие буквы, знаки, рисунки, числа и т.п.). Одни и те же способы шифрования использовались повторно, ключи были короткими, использовались примитивные способы преобразования исходной информации в зашифрованное сообщение. Это позволяло, однажды установив алгоритм шифрования, быстро расшифровывать сообщения.

Рис.2.4. Сцитала

Шифруемый текст писался на пергаментной ленте по длине палочки, после того как длина палочки оказывалась исчерпанной, она поворачивалась и текст писался далее, пока либо не заканчивался текст, либо не исписывалась вся пергаментная лента. В последнем случае использовался очередной кусок пергаментной ленты. Для расшифровки адресат использовал палочку такого же диаметра, на которую он наматывал пергамент, чтобы прочитать сообщение. Античные греки и спартанцы в частности, использовали этот шифр для связи во время военных кампаний. Однако такой шифр может быть легко взломан. Например, метод взлома сциталы был предложен ещё Аристотелем. Он состоит в том, что не зная точного диаметра палочки, можно использовать конус, имеющий переменный диаметр и перемещать пергамент с сообщением по его длине до тех пор, пока текст не начнёт читаться - таким образом дешифруется диаметр сциталы.

Другим широко известным криптографическим устройством защиты информации был «диск Энея» - инструмент для защиты информации, придуманный Энеем Тактиком в IV веке до н. э. Устройство представляло собой диск диаметром 13-15 см и толщиной 1-2 см с проделанными в нём отверстиями, количество которых равнялось числу букв в алфавите. Каждому отверстию ставилась в соответствие конкретная буква. В центре диска находилась катушка с намотанной на неё ниткой .

Рис.2.5. Диск Энея

Механизм шифрования был очень прост. Для того, чтобы зашифровать послание, необходимо было поочерёдно протягивать свободный конец нити через отверстия обозначающие буквы исходного не зашифрованного сообщения. В итоге, сам диск, с продетой в его отверстия ниткой, и являлся зашифрованным посланием. Получатель сообщения последовательно вытягивал нить из каждого отверстия, тем самым получал последовательность букв. Но эта последовательность являлась обратной по отношению к исходному сообщению, то есть он читал сообщение наоборот. Зашифрованное сообщение было доступно к прочтению любому, кто смог завладеть диском. Так как сообщение предавали обычные гонцы, а не воины, Эней предусмотрел возможность быстрого уничтожения передаваемой информации. Для этого было достаточно вытянуть всю нить за один из её концов, либо сломать диск, просто наступив на него. На самом деле «диск Энея» нельзя назвать настоящим криптографическим инструментом, поскольку прочитать сообщение мог любой желающий. Но это устройство стало прародителем первого по истине криптографического инструмента, изобретение которого также принадлежит Энею.

Прибор получил название «Линейка Энея» . Она представляла собой устройство, имеющее отверстия, количество которых равнялось количеству букв алфавита. Каждое отверстие обозначалось своей буквой; буквы по отверстиям располагались в произвольном порядке. К линейке была прикреплена катушка с намотанной на неё ниткой. Рядом с катушкой имелась прорезь. При шифровании нить протягивалась через прорезь, а затем через отверстие, соответствующее первой букве шифруемого текста, при этом на нити завязывался узелок в месте прохождения её через отверстие; затем нить возвращалась в прорезь и аналогично зашифровывалась вторая буква текста и т. д. После окончания шифрования нить извлекалась и передавалась получателю сообщения. Получатель, имея идентичную линейку, протягивал нить через прорезь до отверстий, определяемых узлами, и восстанавливал исходный текст по буквам отверстий. Такой шифр является одним из примеров шифра замены: когда буквы заменяются на расстояния между узелками с учетом прохождения через прорезь. Ключом шифра являлся порядок расположения букв по отверстиям в линейке. Посторонний, получивший нить (даже имея линейку, но без нанесенных на ней букв), не сможет прочитать передаваемое сообщение.

1 Розеттский камень - плита из гранодиорита, найденная в 1799 г. в Египте возле небольшого города Розетта (теперь Рашид), недалеко от Александрии, с выбитыми на ней тремя идентичными по смыслу текстами, в том числе двумя на древнеегипетском языке и одним на древнегреческом языке. Древнегреческий был хорошо известен лингвистам, и сопоставление трёх текстов послужило отправной точкой для расшифровки египетских иероглифов.

2.3. Формальная криптография

Этап формальной криптографии (конец XV – начало XX вв.) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации.

К концу XIV в. между итальянскими городами-государствами в переписке уже применялись 2 (лат. nomen - «имя» и calator - «раб», «слуга»). Они состояли из кодовых обозначений для слогов, слов и имен, а также алфавитов шифрозамен. Вплоть до XIX в. номенклаторы оставались самой широко используемой системой сокрытия содержания сообщений .

Симеоне де Крема (Simeone de Crema) был первым (1401 г.), кто использовал таблицы омофонов для сокрытия частоты появления гласных в тексте при помощи более чем одной шифрозамены ().

Отцом западной криптографии называют учёного эпохи Возрождения Леона Баттисту Альберти. Изучив методы вскрытия использовавшихся в Европе моноалфавитных шифров (), он попытался создать шифр, который был бы устойчив к частотному криптоанализу. Его «Трактат о шифрах» был представлен в папскую канцелярию в 1466 г. и считается первой научной работой по криптографии. Он предложил вместо единственного секретного алфавита, как в моноалфавитных шифрах, использовать два или более, переключаясь между ними по какому-либо правилу.

Рис.2.6. Фрагмент первой страницы «Трактата о шифрах» Леона Баттисто Альберти

Однако флорентийский учёный так и не смог оформить своё открытие в полную работающую систему, что было сделано уже его последователями (Блез Вижинер). Другой работой, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования, является труд «Полиграфия» (1518 г.) немецкого аббата Иоганна Трисемуса (Тритемия). Он же первым заметил, что шифровать можно и по две буквы за раз - биграммами (хотя первый был предложен лишь в XIX веке).

Рис.2.7. Первый печатный труд по криптографии - «Полиграфия» Иоганна Трисемуса [Национальный музей криптографии, США ]

В 1550 г. итальянский математик Джероламо Кардано, состоящий на службе у папы римского, предложил новую технику шифрования - . Этот способ сочетал в себе как стеганографию (искусство скрытого письма), так и криптографию. Затруднение составляло даже понять, что сообщение содержит зашифрованный текст, а расшифровать его, не имея ключа (решётки) в то время было практически невозможно. Решётку Кардано считают первым транспозиционным шифром , или, как ещё называют, геометрическим шифром, основанным на положении букв в шифротексте.

Значительный толчок криптографии дало изобретение телеграфа. Сама передача данных перестала быть секретной, и сообщение, в теории, мог перехватить кто угодно. Интерес к криптографии возрос, в том числе, и среди простого населения, в результате чего многие попытались создать индивидуальные системы шифрования. Преимущество телеграфа было явным и на поле боя, где командующий должен был отдавать немедленные приказы на поле сражения, а также получать информацию с мест событий. Это послужило толчком к развитию полевых шифров.

В 1863 г. Фридрих Касиски (англ. Friedrich Kasiski) опубликовал метод, впоследствии названный его именем, позволявшим быстро и эффективно вскрывать практически любые шифры того времени, в т.ч. . Метод состоял из двух частей - определение периода шифра и дешифровка текста с использованием .

Рис.2.8. Титульный лист «Тайнописи и искусство дешифрования» Фридриха Касиски

В 1883 г. голландец Огюст Керкгоффс 3 опубликовал труд под названием «Военная криптография» (фр. «La Cryptographie Militaire»). В нём он описал шесть требований, которым должна удовлетворять защищённая система. Хотя к некоторым из них стоит относиться с подозрением, стоит отметить труд за саму попытку:

1. шифр должен быть физически, если не математически, невскрываемым;

2. система не должна требовать секретности, на случай, если она попадёт в руки врага;

3. ключ должен быть простым, храниться в памяти без записи на бумаге, а также легко изменяемым по желанию корреспондентов;

4. зашифрованный текст должен (без проблем) передаваться по телеграфу;

5. аппарат для шифрования должен быть легко переносимым, работа с ним не должна требовать помощи нескольких лиц;

6. аппарат для шифрования должен быть относительно прост в использовании, не требовать значительных умственных усилий или соблюдения большого количества правил.

Им же был сформулирован известный «принцип Керкгоффса» - правило разработки криптографических систем, согласно которому в засекреченном виде держится только определённый набор параметров алгоритма, называемый ключом, а сам алгоритм шифрования должен быть открытым. Другими словами, при оценке надёжности шифрования необходимо предполагать, что противник знает об используемой системе шифрования всё, кроме применяемых ключей.

Рис.2.9. Титульный лист брошюры «Военная криптография» Огюста Керкгоффса

В 1920 г. вышла монография американского криптографа российского происхождения Уильяма Ф. Фридмана «Индекс совпадения и его применение в криптографии» (англ. «Index of Coincidence and Its Applications in Cryptography»). Работа вышла в открытой печати, несмотря на то, что была выполнена в рамках военного заказа. Двумя годами позже Фридман ввёл в научный обиход термины и .

Криптография оказала влияние и на литературу . Упоминания о криптографии встречаются ещё во времена Гомера и Геродота, хотя они описывали искусство шифрования в контексте различных исторических событий. Первым вымышленным упоминанием о криптографии можно считать роман «Гаргантюа и Пантагрюэль» французского писателя XVI века Франсуа Рабле, в одной из глав которого описываются попытки чтения зашифрованных сообщений. Упоминание встречается и в «Генрихе V» Шекспира. Впервые как центральный элемент художественного произведения криптография используется в рассказе «Золотой жук» Эдгара Аллана По 1843 г. В нём писатель не только показывает способ раскрытия шифра, но и результат, к которому может привести подобная деятельность - нахождение спрятанного сокровища. Одним из лучших описаний применения криптографии является рассказ 1903 г. Артура Конан Дойля «Пляшущие человечки». В рассказе великий сыщик Шерлок Холмс сталкивается с разновидностью шифра, который не только прячет смысл написанного, но, используя символы, похожие на детские картинки, скрывает сам факт передачи секретного сообщения. В рассказе герой успешно применяет частотный анализ, а также предположения о структуре и содержании открытых сообщений для разгадывания шифра.

Перед началом Второй мировой войны ведущие мировые державы имели электромеханические шифрующие устройства, результат работы которых считался невскрываемым. Эти устройства делились на два типа - роторные машины и машины на цевочных дисках. К первому типу относят «Энигму» , использовавшуюся войсками Германии и её союзников, второго типа - американская M-209 . В СССР производились оба типа машин.

Рис.2.11. Шифровальные устройства [en.wikipedia.org , www.cryptomuseum.com ]

Успешные криптоатаки на подобного рода криптосистемы стали возможны только с появлением ЭВМ.

2 Первоначально номенклатором назывался раб, который обязан был знать и называть своему господину имена граждан города и всех рабов в доме, а также провозглашать названия подаваемых кушаний.

3 Огюст Керкгоффс (Auguste Kerckhoffs, 1835 - 1903 гг.) - голландский лингвист и криптограф, профессор Парижской высшей школы коммерции во второй половине XIX века. В русских источниках встречаются разные переводы фамилии - Керкхофф, Кирхгоф, Керкгоффс, Керхофс, Керкхоффс. Полное имя, полученное при крещении, - Жан Вильгельм Губерт Виктор Франсуа Александр Огюст Керкгоффс фон Ниувенгоф .

2.4. Математическая криптография

После Первой мировой войны правительства стран засекретили все работы в области криптографии. К началу 1930-х годов окончательно сформировались разделы математики, являющиеся основой для будущей науки: общая алгебра, теория вероятностей и математическая статистика. К концу 1940-х годов построены первые программируемые счётные машины, заложены , кибернетики. Тем не менее, в период после Первой мировой войны и до конца 1940-х годов в открытой печати было опубликовано совсем немного работ и монографий, но и те отражали далеко не самое актуальное состояние дел. Наибольший прогресс в криптографии достигается в военных ведомствах.

Ключевой вехой в развитии криптографии является фундаментальный труд Клода Шеннона «Теория связи в секретных системах» (англ. Communication Theory of Secrecy Systems) - секретный доклад, представленный автором в 1945 г., и опубликованный им в «Bell System Technical Journal» в 1949 г. В этой работе, по мнению многих современных криптографов, был впервые показан подход к криптографии в целом как к математической науке.

Рис.2.12. Сборник со статьей «Теория связи в секретных системах» Клода Шеннона

В 1960-х годах начали появляться различные , которые обладали большей криптостойкостью по сравнению с результатом работы роторных машин. Однако они предполагали обязательное использование цифровых электронных устройств - ручные или полумеханические способы шифрования уже не использовались.

В 1967 г. выходит книга Дэвида Кана «Взломщики кодов». Хотя книга не содержала сколько-нибудь новых открытий, она подробно описывала имеющиеся на тот момент результаты в области криптографии, большой исторический материал, включая успешные случаи использования криптоанализа, а также некоторые сведения, которые правительство США полагало всё ещё секретными. Но главное - книга имела заметный коммерческий успех и познакомила с криптографией десятки тысяч людей. С этого момента начали понемногу появляться работы и в открытой печати.

Рис.2.13. Обложка первого издания «Взломщиков кодов» Дэвида Кана

Примерно в это же время Хорст Фейстель переходит из Военно-воздушных сил США на работу в лабораторию корпорации IBM. Там он занимается разработкой новых методов в криптографии и разрабатывает , являющуюся основой многих современных шифров, в том числе шифра Lucifer, ставшего прообразом шифра – бывшего стандарта шифрования США, первого в мире открытого государственного стандарта на шифрование данных. На основе ячейки Фейстеля были созданы и другие блочные шифры, в том числе TEA (1994 г.), Twofish (1998 г.), IDEA (2000 г.), а также бывший () и действующий () российские стандарты шифрования.

В 1976 г. публикуется работа Уитфилда Диффи и Мартина Хеллмана «Новые направления в криптографии» (англ. «New Directions in Cryptography»). Данная работа открыла новую область в криптографии, теперь известную как . Также в работе содержалось описание , позволявшего сторонам сгенерировать общий секретный ключ, используя открытый канал связи.

Рис.2.14. Начало статьи «Новые направления в криптографии» Уитфилда Диффи и Мартина Хеллмана

Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм (названный по имени авторов - Рон Ривест (R. Rivest), Ади Шамир (A. Shamir) и Леонард Адлеман (L. Adleman)). Опубликованная в августе 1977 г., работа позволила сторонам обмениваться секретной информацией, не имея заранее выбранного секретного ключа. Стоит отметить, что и , и были впервые открыты в английских спецслужбах, но не были ни опубликованы, ни запатентованы из-за секретности.

В России для шифрования с открытым ключом стандарт отсутствует, однако для (органически связанной с шифрованием с открытым ключом) принят , использующий .

Создание асимметричных криптосистем подтолкнуло математиков и криптоаналитиков к изучению способов , операций над в конечном поле и т.д.

Относительно новым методом является . Вероятностное шифрование предложили Шафи Гольдвассер (Goldwasser) и Сильвио Микэли (Micali). Шифрование было названо «вероятностным» в связи с тем, что один и тот же исходный текст при шифровании с использованием одного и того же ключа может преобразовываться в совершенно различные шифротексты. При использовании криптосистем с открытым ключом существует возможность подбора открытого текста сопоставлением перехваченного шифротекста с результатом шифрования. Вероятностное шифрование позволяет на порядки увеличить сложность такого вида атаки.

Чарльз Беннет (Charles Bennet) и Жиль Брассард (Gilles Brassard), опираясь на работу Стивена Уиснера (Stephen Wiesner), разработали теорию , которая базируется скорее на квантовой физике, нежели на математике. Процесс отправки и приёма информации выполняется посредством объектов квантовой механики (например, при помощи электронов в электрическом токе, или фотонов в линиях волоконно-оптической связи). Основанная на принципах квантовой механики, эта система, в отличие от обычной криптографии, теоретически позволяет гарантированно защитить информацию от злоумышленника, даже если тот обладает самой современной технологией и неограниченными вычислительными мощностями. На данный момент, разрабатываются только прототипы квантовых криптосистем.

В то же время эффекты квантовой физики, возможно, смогут использоваться и для криптоанализа. Если будут построены квантовые компьютеры, то это поставит под вопрос существование современной криптографии.

Применение криптографии в решении вопросов , передачи конфиденциальной информации по каналам связи и т.п. стало неотъемлемым атрибутом информационных систем. В современном мире криптография находит множество различных применений - она используется в сотовой связи, платном цифровом телевидении, при подключении к Wi-Fi, для защиты билетов от подделок на транспорте, в банковских операциях, в и т.д.

Вопросы для самопроверки

по дисциплине: История математики

по теме: История криптографии

Работа выполнена студентом:

Преподаватель:

1. Введение …………………………………………………………………………3

2. Периоды развития и этапы криптографии……………………………………..4

3. Криптография в древние времена ………...................................................……7

4. Криптография от средних веков до нового времени ……..………………......9

5. Криптография Первой мировой войны…………...…………………………..16

6. Современная криптография…...……………………………………………….17

7. Заключение………….…………………………………………………………..19

8. Биографические справки ……………..………………………………………..20

9. Список литературы……………..……………………………………………...24

Введение.

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была своеобразной криптографической системой, так как в древних обществах ею владели только избранные. Священные книги древнего Египта, древней Индии тому примеры. История человеческой цивилизации стала также историей создания систем безопасной передачи информации. Искусство шифрования и тайной передачи информации было присуще практически всем государствам. Криптография в прошлом использовалась, прежде всего, в военных целях. Однако сейчас, по мере образования информационного общества, криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию, корпоративную безопасность и бесчисленное множество других важных вещей. Практическое применение криптографии стало неотъемлемой частью жизни современного общества - её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других. Очень быстро после распространения компьютеров в деловой сфере практическая криптография сделала в своем развитии огромный скачок, причем сразу по нескольким направлениям:· во-первых, были разработаны стойкие блочные шифры с секретным ключом, предназначенные для решения классической задачи - обеспечения секретности и целостности передаваемых или хранимых данных, они до сих пор остаются "рабочей лошадкой" криптографии, наиболее часто используемыми средствами криптографической защиты;· во-вторых, были созданы методы решения новых, нетрадиционных задач сферы защиты информации, наиболее известными из которых являются задача подписи цифрового документа и открытого распределения ключей.

Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, что нашло отражение в самом названии этой дисциплины, эта защита базируется на использовании "секретного языка", известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития принципиально новых подходов и методов.

Целью этого реферата является углубленный анализ истории криптографии с древних времен до настоящего времени, и определение ее влияние и место в математике в целом.

Были поставлены следующие задачи: выяснить способы периодизации развития криптографии, проанализировать ее методы в разных периодах истории человечества. Также задачей реферата являлась описания самых значимых шифров и их влияние на развитие криптографии.

В историко-математической литературе данная тема достаточно хорошо проработана, так как изучение истории криптографии необходимо для черпания идей и для ее развития в настоящем. С другой стороны, сама информация всегда обладала некоторой конфиденциальностью, и поэтому не всегда и сразу была доступна интересующему читателю.

Материалом для написания реферата послужила, в первую очередь, книга А.П. Алферова, А.Ю. Зубова А.С. Кузьмина и А.В. Черемушкина «Основы криптографии» , в которой дан подробный исторический очерк раннего развития криптографии. Для описания криптографии в нынешнем мире использовалась книга Баричева С.Г., Гончарова В.В. и Серова Р.Е. «Основы современной криптографии» . Статья Жельникова В., «Криптография от папируса до компьютера» послужила источником интересных примеров и неординарного описания проблемы. Биографические справки написаны по электронным ресурсам .

Периоды развития и этапы криптографии.

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования. В данном реферате будем придерживаться такой периодизации.

Первый период (приблизительно с 3-го тысячелетия до н.э.) характеризуется господством моноалфавитных шифров (основной принцип – замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами).

Второй период (хронологические рамки – с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) – до начала XX века) ознаменовался введением в обиход полиалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Четвёртый период – с середины до 70-х годов XX века – период перехода к математической криптографии. В работе Клода Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам – линейному и дифференциальному криптоанализу. Однако до 1975 года криптография оставалась «классической», или же, более корректно, криптографией с секретным ключом.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления – криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается – от разрешения до полного запрета.

Историю криптографии условно можно также разделить на 4 этапа .

1. Наивная криптография.

2. Формальная криптография

3. Научная криптография

4. Компьютерная криптография

Для наивной криптографии (до нач. XVI века) характерно использование любых (обычно примитивных) способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии, которые родственны, но не тождественны криптографии. Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию

, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5x5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

Этап формальной криптографии (кон. XV века - нач. XX века) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти

, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI века Блеза Вижинера , состоял в последовательном «сложении» букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа «Трактат о шифре» считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования является труд «Полиграфия» немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX века Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование ««двойным квадратом». Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX веке голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма. Наконец, последним словом в донаучной криптографии, которое обеспечили еще более высокую криптостойкосить, а также позволило автоматизировать (в смысле механизировать) процесс шифрования стали роторные криптосистемы. Одной из первых подобных систем стала изобретенная в 1790 году Томасом Джефферсоном, будущим президентом США механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет «прошитую» в нем подстановку. Практическое распространение роторные машины получили только в начале XX века. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 году Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orange и Purple2 (Япония). Роторные системы - вершина формальной криптографии так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х годов.

по дисциплине: История математики

по теме: История криптографии

Работа выполнена студентом:

Преподаватель:

1. Введение …………………………………………………………………………3

2. Периоды развития и этапы криптографии……………………………………..4

3. Криптография в древние времена ………...................................................……7

4. Криптография от средних веков до нового времени ……..………………......9

5. Криптография Первой мировой войны…………...…………………………..16

6. Современная криптография…...……………………………………………….17

7. Заключение………….…………………………………………………………..19

8. Биографические справки ……………..………………………………………..20

9. Список литературы……………..……………………………………………...24

Введение.

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была своеобразной криптографической системой, так как в древних обществах ею владели только избранные. Священные книги древнего Египта, древней Индии тому примеры. История человеческой цивилизации стала также историей создания систем безопасной передачи информации. Искусство шифрования и тайной передачи информации было присуще практически всем государствам. Криптография в прошлом использовалась, прежде всего, в военных целях. Однако сейчас, по мере образования информационного общества, криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию, корпоративную безопасность и бесчисленное множество других важных вещей. Практическое применение криптографии стало неотъемлемой частью жизни современного общества - её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других. Очень быстро после распространения компьютеров в деловой сфере практическая криптография сделала в своем развитии огромный скачок, причем сразу по нескольким направлениям:· во-первых, были разработаны стойкие блочные шифры с секретным ключом, предназначенные для решения классической задачи - обеспечения секретности и целостности передаваемых или хранимых данных, они до сих пор остаются "рабочей лошадкой" криптографии, наиболее часто используемыми средствами криптографической защиты;· во-вторых, были созданы методы решения новых, нетрадиционных задач сферы защиты информации, наиболее известными из которых являются задача подписи цифрового документа и открытого распределения ключей.

Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, что нашло отражение в самом названии этой дисциплины, эта защита базируется на использовании "секретного языка", известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития принципиально новых подходов и методов.

Целью этого реферата является углубленный анализ истории криптографии с древних времен до настоящего времени, и определение ее влияние и место в математике в целом.

Были поставлены следующие задачи: выяснить способы периодизации развития криптографии, проанализировать ее методы в разных периодах истории человечества. Также задачей реферата являлась описания самых значимых шифров и их влияние на развитие криптографии.

В историко-математической литературе данная тема достаточно хорошо проработана, так как изучение истории криптографии необходимо для черпания идей и для ее развития в настоящем. С другой стороны, сама информация всегда обладала некоторой конфиденциальностью, и поэтому не всегда и сразу была доступна интересующему читателю.

Материалом для написания реферата послужила, в первую очередь, книга А.П. Алферова, А.Ю. Зубова А.С. Кузьмина и А.В. Черемушкина «Основы криптографии» , в которой дан подробный исторический очерк раннего развития криптографии. Для описания криптографии в нынешнем мире использовалась книга Баричева С.Г., Гончарова В.В. и Серова Р.Е. «Основы современной криптографии» . Статья Жельникова В., «Криптография от папируса до компьютера» послужила источником интересных примеров и неординарного описания проблемы. Биографические справки написаны по электронным ресурсам .

Периоды развития и этапы криптографии.

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования. В данном реферате будем придерживаться такой периодизации.

Первый период (приблизительно с 3-го тысячелетия до н.э.) характеризуется господством моноалфавитных шифров (основной принцип – замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами).

Второй период (хронологические рамки – с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) – до начала XX века) ознаменовался введением в обиход полиалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Четвёртый период – с середины до 70-х годов XX века – период перехода к математической криптографии. В работе Клода Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам – линейному и дифференциальному криптоанализу. Однако до 1975 года криптография оставалась «классической», или же, более корректно, криптографией с секретным ключом.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления – криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается – от разрешения до полного запрета.

Историю криптографии условно можно также разделить на 4 этапа .

1. Наивная криптография.

2. Формальная криптография

3. Научная криптография

4. Компьютерная криптография

Для наивной криптографии (до нач. XVI века) характерно использование любых (обычно примитивных) способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии, которые родственны, но не тождественны криптографии. Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5x5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

Этап формальной криптографии (кон. XV века - нач. XX века) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI века Блеза Вижинера , состоял в последовательном «сложении» букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа «Трактат о шифре» считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования является труд «Полиграфия» немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX века Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование ««двойным квадратом». Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX веке голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма. Наконец, последним словом в донаучной криптографии, которое обеспечили еще более высокую криптостойкосить, а также позволило автоматизировать (в смысле механизировать) процесс шифрования стали роторные криптосистемы. Одной из первых подобных систем стала изобретенная в 1790 году Томасом Джефферсоном, будущим президентом США механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет «прошитую» в нем подстановку. Практическое распространение роторные машины получили только в начале XX века. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 году Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orange и Purple2 (Япония). Роторные системы - вершина формальной криптографии так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х годов.

Главная отличительная черта научной криптографии (30-е - 60-е годы XX века) - появление криптосистем со строгим математическим обоснованием криптостойкости. К началу 30-х годов окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона «Теория связи в секретных системах», где сформулированы теоретические принципы криптографической защиты информации. Шеннон ввел понятия «рассеивание» и «перемешивание», обосновал возможность создания сколь угодно стойких криптосистем. В 60-х годах ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающие практическую реализацию только в виде цифровых электронных устройств. Компьютерная криптография (с 70-х годов XX века) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации критосистем, обеспечивающих при большой скорости шифрования на несколько Примерно в 1900 году до н. э. древние египтяне начали видоизменять и искажать иероглифы, чтобы закодировать определенные сообщения. порядков более высокую криптостойкость, чем «ручные» и «механические» шифры. Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е годы был разработан американский стандарт шифрования DES (принят в 1978 году). Один из его авторов, Хорст Фейстел (сотрудник IBM), описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественный стандарт шифрования ГОСТ 28147-89. С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х годов произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 году под названием «Новые направления в современной криптографии». В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег. В 80-90-е годы появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В 80-90-х годах были разработаны нефейстеловские шифры (SAFER, RC6 и др.), а в 2000 году после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.

Криптография в древние времена.

История криптографии насчитывает не одно тысячелетие. Уже в исторических документах древних цивилизаций – Индии, Египте, Китае, Месопотамии – имеются сведенья о системах и способах составления шифрованного письма. Видимо, первые системы шифрования появились одновременно с письменностью в четвёртом тысячелетии до нашей эры.

В древнеиндийских рукописях приводится более шестидесяти способов письма, среди которых есть и такие, которые можно рассматривать как криптографические. Имеется описание системы замены гласных букв согласными, и наоборот. Один из сохранившихся шифрованных текстов Месопотамии представляют собой табличку, написанную клинописью и содержащую рецепт изготовления глазури для гончарных изделий. В этом тексте использовались редко употребляемые значки, игнорировались некоторые буквы, употреблялись цифры вместо имён. В рукописях Древнего Египта шифровались религиозные тексты и медицинские рецепты. Шифрование использовалось в Библии. Некоторые фрагменты библейских текстов зашифрованы с помощью шифра, который называется атбаш. Правило зашифрования состояло в замене -й буквы алфавита (n-i+1), где n – число букв в алфавита. Происхождение слова атбаш объясняется принципом замены букв. Это слово составлено из букв Алеф, Тае, Бет и Шин, то есть первой и последней, второй и предпоследней букв древнесемитского алфавита.

В Древней Греции криптография уже широко использовалась в разных областях деятельности, в особенности в государственной сфере. Плутарх сообщает, что жрецы, например, хранили в форме тайнописи свои прорицания. В Спарте в 5-6 вв. до Н.Э. использовалось одно из первых шифровальных приспособлений – Сцитала . Это был жезл цилиндрической формы, на который наматывалась лента из пергамента. Кроме жезла могли использоваться рукоятки мечей, кинжалов, копий, и т.д. Вдоль оси цилиндра на пергамент построчно записывался текст, предназначенный для передачи. После записи текста лента сматывалась с жезла и передавалась адресату, который имел точно такую же Сциталу. Ясно, что такой способ шифрования осуществлял перестановку букв сообщения. Ключом шифра служит диаметр Сциталы. Известен также и метод вскрытия такого шифра, приписываемый Аристотелю. Предлагалось заточить на конус длинный брус и, обернув в него ленту, начать сдвигать её по конусу от малого диаметра до самого большого. В том месте, где диаметр конуса совпадал с диаметром Сциталы, буквы текста сочетались в слоги и слова. После этого оставалось лишь изготовить цилиндр нужного диаметра.

Греческий писатель Полибий использовал систему сигнализации, которая была широко принята как метод шифрования . Он записывал буквы алфавита в квадратную таблицу и заменял их координатами: парами чисел (i,j), где i – номер строки, j – номер столбца. Применительно к латинскому алфавиту квадрат Полибия имеет следующий вид:

Пары (i,j) передавались с помощью факелов. Например, для передачи буквы О нужно было взять 3 факела в правую руку и 4 – в левую.

Подобные шифровальные приспособления, с небольшими изменениями просуществовали до эпохи военных походов Юлия Цезаря. Положение меняется в эпоху расцвета Рима, который первоначально представлял собой лишь небольшую гражданскую общину, со временем он разросся, подчинив себе Италию, а затем всё Средиземноморье. Чтобы управлять наместниками в многочисленных провинциях, шифрованная связь для римских органов власти стала жизненно необходимой. Особую роль в сохранении тайны сыграл способ шифрования, предложенный Юлием Цезарем и изложенным им в «Записках о галльской войне» (1 век до Н.Э.) Вот что пишет о нём Гай Светоний «…существуют и его письма к Цицерону и письма к близким о домашних делах: в них, если нужно было сообщить что-то негласно, он пользовался тайнописью, то есть менял буквы так, чтобы из них не складывалось ни одного слова. Чтобы разобрать и прочитать их, нужно читать всякий раз четвёртую букву вместо первой, например, D вместо А и так далее». Таким образом, Цезарь заменял буквы в соответствии с подстановкой, нижняя строка которой представляет собой алфавит открытого текста, сдвинутый циклически на 3 буквы влево.

Криптография от средних веков до нового времени.

Ещё один значительный шаг вперёд криптография сделала благодаря труду Леона Альберти. Известный философ, живописец, архитектор, в 1466 году написал труд о шифрах. В этой работе был предложен шифр, основанный на использовании шифровального диска. Сам Альберти называл его шифром, «достойным королей».

Шифровальный диск представлял собой пару соосных дисков разного диаметра. Больший из них – неподвижный, его окружность разделена на 24 равных сектора, в которые вписаны 20 букв латинского алфавита в их естественном порядке и 4 цифры (от 1 до 4()4 цифрыственном порядке которые вписаны 20 букв латинского алфавитара. о диска. и. __________________________________________). При этом из 24-х буквенного алфавита были удалены 4 буквы, без которых можно обойтись, подобно тому, как в русском языке обходятся без Ъ, Ё, Й. Меньший диск – подвижный, по его окружности, разбитой также на 24 сектора, были вписаны все буквы смешанного латинского алфавита.

Диск Альберти.

Имея два таких прибора, корреспонденты догадывались о первой индексной букве на подвижном диске. При шифровании сообщения отправитель ставил индексную букву против любой буквы большого диска. Он информировал корреспондента о таком положении диска, записывая эту букву внешнего диска в качестве первой буквы шифртекста. Очередная буква открытого текста отыскивалась на неподвижном диске и стоящая против неё буква меньшего диска являлась результатом её зашифрования. После того как были зашифрованы несколько букв текста, положение индексной буквы изменялось, о чём также сообщалось корреспонденту.

Такой шифр имел две особенности, которые делают изобретение Альберти событием в истории криптографии. Во-первых, в отличие от шифров простой замены шифровальный диск использовал не один, а несколько алфавитов для зашифрования. Такие шифры получили название многоалфавитных. Во-вторых, шифровальный диск позволял использовать так называемые коды с перешифрованием, которые получили широкое распространение лишь в конце XIX в., то есть спустя четыре столетия после изобретения Альберти. Для этой цели на внешнем диске имелись цифры. Альберти составил код, состоящий из 336 кодовых групп, занумерованных от 11 до 4444. Каждому кодовому обозначению соответствовала некоторая законченная фраза. Когда такая фраза встречалась в открытом сообщении, она заменялась соответствующим кодовым обозначением, а с помощью диска цифры зашифровы­вались как обычные знаки открытого текста, превращаясь в буквы.

Богатым на новые идеи в криптографии оказался XVI в. Многоалфавитные шифры получили развитие в вышедшей в 1518 г. первой печатной книге по криптографии под названием "Полиграфия" . Автором книги был один из самых знаме­нитых ученых того времени аббат Иоганнес Тритемий. В этой книге впервые в криптографии появляется квадратная таблица. Шифралфавиты записаны в строки таблицы один под дру­гим, причем каждый из них сдвинут на одну позицию влево по сравнению с предыдущим (см. табл. 2).

Тритемий предлагал использовать эту таблицу для многоалфавитного зашифрования самым простым из возможных способов: первая буква текста шифруется первым алфавитом, вторая буква - вторым и т. д. В этой таблице не было отдельного алфавита открытого текста, для этой цели служил алфавит первой строки. Таким образом, открытый текст, начинающийся со слов HUNC CAVETO VIRUM ..., приобретал вид HXPF GFBMCZ FUEIB ... .

Преимущество этого метода шифрования по сравнению с методом Альберти состоит в том, что с каждой буквой задействуется новый алфавит. Альберти менял алфавиты лишь по­сле трех или четырех слов. Поэтому его шифртекст состоял из отрезков, каждый из которых обладал закономерностями открытого текста, которые помогали вскрыть криптограмму. Побуквенное зашифрование не дает такого преимущества. Шифр Тритемия является также первым нетривиальным примером периодического шифра. Так называется многоалфавитный шифр, правило зашифрования которого состоит в использовании периодически повторяющейся последовательности простых замен.

В 1553 г. Джованни Баттиста Белазо предложил использовать для многоалфавитного шифра буквенный, легко запо­минаемый ключ, который он назвал паролем. Паролем могло служить слово или фраза. Пароль периодически записывался над открытым текстом. Буква пароля, расположенная над буквой текста, указывала на алфавит таблицы, который исполь­зовался для зашифрования этой буквы. Например, это мог быть алфавит из таблицы Тритемия, первой буквой которого являлась буква пароля. Однако Белазо, как и Тритемий, использовал в качестве шифралфавитов обычные алфавиты.

Еще одно важное усовершенствование многоалфавитных систем, состоящее в идее использования в качестве ключа текста самого сообщения или же шифрованного текста, при­надлежит Джероламо Кардано и Блезу де Виженеру. Такой шифр был назван самоключом. В книге Виженера "Трактат о шифрах" самоключ представлен следующим образом. В про­стейшем случае за основу бралась таблица Тритемия с добав­ленными к ней в качестве первой строки и первого столбца алфавитами в их естественном порядке. Позже такая таблица стала называться таблицей Виженера. Подчеркнем, что в общем случае таблица Виженера состоит из циклически сдви­гаемых алфавитов, причем первая строка может быть произ­вольным смешанным алфавитом (см. табл. 4).

Первая строка служит алфавитом открытого текста, а первый столбец - алфавитом ключа. Для зашифрования открытого сообщения Виженер предлагал в качестве ключевой последовательности (Г) использовать само сообщение (Т 0) с добавленной к нему в качестве первой буквы(), известной отправителю и получателю (этим идея Виженера отличалась от идеи Кардано, у которого не было начальной буквы и система которого не обеспечивала однозначности расшифрования). Последовательности букв подписывались друг под другом:

При этом пара букв, стоящих друг под другом в Г и, указывала, соответственно, номера строк и столбцов таблицы, на пресечении которых находится знак шифрованного текста (Т ш). Например, фраза HUNC CAVETO VIRUM ..., использованная в предыдущих примерах, и начальная буква Р дают шифртекст YCHP ECUWZHIDAMG.

Во втором варианте Виженер предлагал в качестве ключевой последовательности использовать шифрованный текст:

Самоключ Виженера был незаслуженно забыт на долгое время, а под шифром Виженера до сих пор понимают самый простой вариант с коротким ключевым словом и с таблицей, состоящей из обычных алфавитов.

В истории криптографии XVII - XVIII в. называют эрой "черных кабинетов". В этот период во многих государствах Европы, в первую очередь во Франции, получили развитие дешифровальные подразделения, названные "черными кабинетами". Первый из них образован по инициативе кардинала Ришелье при дворе короля Людовика XIII. Его возглавил первый профессиональный криптограф Франции Антуан Россиньоль. Следует отметить, что некоторые оригинальные идеи, возникшие в криптографии в этот период, связаны с именем самого Ришелье, который использовал, например, для секретной переписки с королем оригинальный шифр перестановки с переменным ключом.

Много новых идей в криптографии принес XIX в. Изобретение в середине XIX в. телеграфа и других технических видов связи дало новый толчок развитию криптографии. Информация передавалась в виде токовых и бестоковых посылок, то есть представлялась в двоичном виде. Поэтому возникла проблема "рационального" представления информа ции, которая решалась с помощью кодов. Коды позволяли передать длинное слово или целую фразу двумя-тремя знаками. Появилась потребность в высокоскоростных способах шифрования и в корректирующих кодах, необходимых в связи с неизбежными ошибками при передаче сообщений.

Во второй половине XIX в. появился весьма устойчивый способ усложнения числовых кодов - гаммирование. Он заключался в перешифровании закодированного сообщения с помощью некоторого ключевого числа, которое и называлось гаммой. Шифрование с помощью гаммы состояло в сложении всех кодированных групп сообщения с одним и тем же ключевым числом. Эту операцию стали называть "наложением гаммы". Например, результатом наложения гаммы 6413 на кодированный текст 3425 7102 8139 являлась числовая последовательность 9838 3515 4552:

Единицы переноса, появляющиеся при сложении между кодовыми группами, опускались. "Снятие гаммы" являлось обратной операцией:

В 1888 г. француз маркиз де Виари в одной из своих научных статей, посвященных криптографии, обозначил греческой буквой X любую букву шифрованного текста, греческой буквой Г любую букву гаммы и строчной буквой С любую букву открытого текста. Он, по сути, доказал, что алгебраическая формула

воспроизводит зашифрование по Виженеру при замене букв алфавита числами согласно следующей таблице:

Тем самым была заложена алгебраическая основа для исследования шифров замены типа шифра Виженера. Используя уравнение шифрования, можно было отказаться от громоздкой таблицы Виженера.

Позже лозунговая гамма стала произвольной последовательностью, а шифр с уравнением шифрования (1) стал называться шифром гаммирования.

Криптография Первой мировой войны .

Первая мировая война оставила свой отпечаток на всех процессах, происходивших в человеческом обществе. Она не могла не сказаться и на развитии криптографии.

В период первой мировой войны в качестве полевых шифров широко использовались ручные шифры, в первую очередь шифры перестановки с различными усложнениями. Это были вертикальные перестановки, усложненные перекодировкой исходного алфавита, а также двойные вертикальные перестановки.

Первая мировая война явилась поворотным пунктом в истории криптографии: если до войны криптография представляла собой достаточно узкую область, то после войны она стала широким полем деятельности. Причина этого состояла в необычайном росте объема шифрпереписки, передаваемой по различным каналам связи. Криптоанализ стал важнейшим элементом разведки.

Прогресс этой области криптографии характеризовался и изменениями в самом криптоанализе. Эта наука переросла методы индивидуальной работы криптоаналитика над криптограммой. Системы секретной связи перестали быть настолько малочисленными и однородными, что один специалист мог овладеть всеми специализациями. Характер используемых шифров потребовал для их вскрытия скрупулезного анализа переписки, поиска ситуаций, благоприятствующих успешному криптоанализу, знания соответствующей обстановки. Кроме того, криптоанализ обогатился большим опытом использования в годы войны ошибок неопытных или ленивых шифровальщиков. Еще Ф. Бэкон писал, что "в результате неловкости и неискусности тех рук, через которые проходят величайшие секреты, эти секреты во многих случаях оказывались обеспеченными слабейшими шифрами". Этот печальный опыт привел к необходимости введения строгой дисциплины среди шифровальщиков.

Несмотря на указанные последствия, первая мировая война не породила никаких новых научных идей в криптографии. Наоборот, полностью исчерпали свои возможности ручное шифрование, с одной стороны, и техническая сторона криптоанализа, состоявшая в подсчете частот встречаемости знаков, с другой.

В тот период проявились таланты целого ряда ставших впоследствии известными криптографов. В их числе был Г. О. Ярдли, который вскоре после вступления США в войну в 1917 г. убедил военное министерство в необходимости создания криптографической службы. В 27 лет он был назначен начальником криптографического отдела (MI-8) разведки военного министерства. При отделе было создано учебное отделение по подготовке криптоаналитиков для американской армии. Отдел MI-8 добился больших успехов в дешифровании дипломатической переписки многих развитых стран. В 1919 г. отдел был преобразован в "черный кабинет" с совместным финансированием от военного министерства и госдепартамента в объеме 100 тыс. долларов в год. Одной из главных задач "черного кабинета" было раскрытие японских кодов, некоторые из которых содержали до 25 тысяч кодовых величин. В период с 1917 по 1929 г. специалистам "черного кабинета" удалось дешифровать более 45 тысяч криптограмм различных стран, в том числе и Японии.

Ярдли, желая упрочить успехи, подготовил докладную записку Президенту США о мерах по укреплению своей службы. Однако ставший в то время Государственным секретарем Г. Стимсон был шокирован, узнав о существовании "черного кабинета", и полностью осудил его деятельность. Ему принадлежит знаменитая фраза: "Джентльмены не читают писем друг друга". Финансирование "черного кабинета" было прекращено, и Ярдли лишился работы. Он написал книгу "Американский черный кабинет", в которой рассказал о многих успехах по дешифрованию. Книга была издана большими тиражами в ряде стран и произвела эффект разорвавшейся бомбы. Позже он написал книгу "Японские дипломатические секреты", в которой приводились многие японские телеграммы. Рукопись этой книги была конфискована по решению суда. Последние годы жизни Ярдли не занимался криптографией. Он умер в 1958 г. и был похоронен с воинскими почестями на Арлингтонском национальном кладбище. В некрологе он был назван "отцом американской криптографии".

Современная криптография.

В семидесятых годах произошло два события, серьезно повлиявших на дальнейшее развитие криптографии. Во-первых, был принят (и опубликован!) первый стандарт шифрования данных (DES), "легализовавший" принцип Керкгоффса в криптографии. Во-вторых, после работы американ­ских математиков У. Диффи и М. Хеллмана родилась "новая криптография"- криптография с открытым клю­чом. Оба этих события были рождены потребностями бурно развивающихся средств коммуникаций, в том числе локаль­ных и глобальных компьютерных сетей, для защиты которых потребовались легко доступные и достаточно надежные крип­тографические средства. Криптография стала широко востребоваться не только в военной, дипломатической, государст­венной сферах, но также в коммерческой, банковской и дру­гих сферах.

Вслед за идеей Диффи и Хеллмана, связанной с гипотетическим понятием однонаправленной (или односторонней) функции с секретом, появились "кандидат" на такую функ­цию и реально осуществленная шифрсистема RSA с откры­тым ключом. Такая система была предложена в 1978 г. Райвестом, Шамиром и Адлеманом. Парадоксальным казалось то, что в RSA для зашифрования и расшифрования используются разные ключи, причем ключ зашифрования может быть от­крытым, то есть всем известным. Вслед за RSA появился целый ряд других систем. В связи с несимметричным исполь­зованием ключей стал использоваться термин асимметричная шифрсистема, в то время как традиционные шифрсистемы стали называться симметричными.

Наряду с идеей открытого шифрования Диффи и Хеллман предложили идею открытого распределения ключей, позво­ляющую избавиться от защищенного канала связи при рас­сылке криптографических ключей. Их идея основывалась на сложности решения задачи дискретного логарифмировании, то есть задачи, являющейся обратной для задачи возведения в степень в конечном поле большого порядка.

Заключение.

Появление в середине двадцатого столетия первых электронно-вычислительных машин кардинально изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров в различные сферы жизни возникла принципиально новая отрасль - информационная индустрия.Проблема обеспечения необходимого уровня защиты информации оказалась (и это предметно подтверждено как теоретическими исследованиями, так и опытом практического решения) весьма сложной, требующей для своего решения не просто осуществления некоторой совокупности научных, научно-технических и организационных мероприятий и применения специфических средств и методов, а создания целостной системы организационных мероприятий и применения специфических средств и методов по защите информации.Объем циркулирующей в обществе информации стабильно возрастает. Популярность всемирной сети Интренет в последние годы способствует удваиванию информации каждый год. Фактически, на пороге нового тысячелетия человечество создало информационную цивилизацию, в которой от успешной работы средств обработки информации зависит благополучие и даже выживание человечества в его нынешнем качестве. Произошедшие за этот период изменения можно охарактеризовать следующим образом: объемы обрабатываемой информации возросли за полвека на несколько порядков; доступ к определенным данным позволяет контролировать значительные материальные и финансовые ценности; информация приобрела стоимость, которую даже можно подсчитать; характер обрабатываемых данных стал чрезвычайно многообразным и более не сводится к исключительно текстовым данным; информация полностью "обезличилась", т.е. особенности ее материального представления потеряли свое значение - сравните письмо прошлого века и современное послание по электронной почте; характер информационных взаимодействий чрезвычайно усложнился, и наряду с классической задачей защиты передаваемых текстовых сообщений от несанкционированного прочтения и искажения возникли новые задачи сферы защиты информации, ранее стоявшие и решавшиеся в рамках используемых "бумажных" технологий - например, подпись под электронным документом и вручение электронного документа "под расписку"; субъектами информационных процессов теперь являются не только люди, но и созданные ими автоматические системы, действующие по заложенной в них программе; вычислительные "способности" современных компьютеров подняли на совершенно новый уровень как возможности по реализации шифров, ранее немыслимых из-за своей высокой сложности, так и возможности аналитиков по их взлому.

Биографические справки.

1. Полибий (Polybios), из Мегалополя в Аркадии, ок. 200-ок. 118 гг. до н. э., греческий историк . Сын Ликорта, влиятельного политика и главы Ахейского союза, с юности принимал участие в военной и политической жизни. В 169 г. во время III Македонской войны стал гиппархом (предводителем конницы). Ездил с посольством к консулу Манлию. После победы под Пидной (168 г. до н. э.) римляне захватили 1000 заложников из самых знатных ахейских семей, в числе которых был и Полибий. В Риме он подружился с сыновьями Эмилия Паула, победителя под Пидной, а в особенности со Сципионом Младшим. Освобожденный вместе с другими заложниками, в 151 г. возвратился на родину, совершал многочисленные путешествия, часто приезжал в Рим по приглашению Сципиона, который использовал его познания в военном деле. В 146 г. до н. э. стал свидетелем взятия Карфагена. В том же году после взятия римлянами Коринфа и его разрушения Полибий. принял на себя посредническую роль в урегулировании отношений в покоренной Греции. По-видимому, Полибий. участвовал и в осаде Нуманция Сципионом в 133 г. до н. э. Последние годы жизни Полибий. провел на родине, умер в возрасте 82 лет, вероятно, вследствие падения с лошади. - Главное произведение Полибия. - История в 40 книгах - является всемирной историей, в которой автиор показал, как в течение 50 лет, от начала II Пунической войны до конца III Македонской, Рим объединил под своей властью почти весь населенный мир того времени. Из греческих историков дело Полибия продолжили Посидоний и Страбон, его использовали Диодор и Плутарх. В византийскую эпоху вышел пересказ произведения.

2. Альберти Леон Батиста - итальянский архитектор и литератор, один из наиболее ярких представителей культуры Возрождения . Обладал обширными познаниями в самых разных областях: был философом и музыкантом, скульптором и математиком, физиком и лингвистом. На протяжении ряда лет он - итальянский ученый, архитектор, теоретик искусства эпохи Раннего Возрождения. Теоретические трактаты («О статуе», 1435, «О живописи», 1435-36, «О зодчестве»; опубликован в 1485) обобщили опыт современного ему искусства и гуманистической науки в области изучения античного наследия. В архитектуре использовал античную ордерную систему (церковь Сант-Андреа в Мантуе, 1472-94, дворец Ручеллаи во Флоренции, 1446-51). В молодости написал на латыни комедию "Любитель славы" (около 1424). Исследованию природы власти посвящен его сатирический роман (тоже на латыни) "Мом" (между 1443 и 1450). Он выступал горячим защитником литературного "народного" языка и основные его сочинения написаны по-итальянски. Это сонеты, элегии и эклоги. Наиболее известная работа - трактат в 4-х книгах "О семье" (1433-1441). Огромное значение имел знаменитый латинский трактат в 10-ти книгах "О зодчестве" (1450). Один из основополжников проективной геометрии.

3. Чарлз Уитстон (Wheatstone) (6.2.1802, Глостер, Англия, - 19.10.1875, Париж), английский физик и изобретатель, член Лондонского королевского общества (1836) . Занимаясь изготовлением музыкальных инструментов, поставил ряд остроумных акустических опытов. В 1833 году объяснил возникновение фигур Хладни. С 1834 года профессор Королевского колледжа (Лондон). Предложил метод измерения продолжительности разрядной искры (1834); показал, что искровые спектры металлов однозначно характеризуют эти металлы (1835). В 1837 году вместе с У. Ф. Куком получил патент на изобретение электромагнитного телеграфа; в 1858 году создал первый практически пригодный автоматический телеграфный аппарат (телеграфный аппарат Уитстона). В 1867 году независимо от Э. В. Сименса открыл принцип самовозбуждения электрических машин. Сконструировал зеркальный стереоскоп, фотометр, шифровальный аппарат - криптограф, самопишущие метеорологические приборы и др. Предложил мостовой метод измерения сопротивлений.

4. Клод Элвуд Шеннон (Shannon)(1916 - 2001) - американский инженер и математик . Человек, которого называют отцом современных теорий информации и связи. Клод Шеннон родился в 1916 году и вырос в городе Гэйлорде штата Мичиган. Еще в детские годы Клод познакомился как с детальностью технических конструкций, так и с общностью математических принципов. Он постоянно возился с детекторными приемниками и радио-конструкторами, которые приносил ему отец, помощник судьи, и решал математические задачки и головоломки, которыми снабжала его старшая сестра Кэтрин, ставшая впоследствии профессором математики. Клод полюбил эти два мира, столь несхожие между собой, - технику и математику. Будучи студентом Мичиганского университета, который он окончил в 1936 году, Клод специализировался одновременно и в математике, и в электротехнике. Эта двусторонность интересов и образования определила первый крупный успех, которого Клод Шеннон достиг в свои аспирантские годы в Массачусетском технологическом институте. В своей диссертации, защищенной в 1940 году, он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретенной в середине XIX века английским математиком Джорджем Булем. "Просто случилось так, что никто другой не был знаком с этими обеими областями одновременно!" - так скромно Шеннон объяснил причину своего открытия. В 1941 году 25-летний Клод Шеннон поступил на работу в Bell Laboratories. В годы войны он занимался разработкой криптографических систем, и позже это помогло ему открыть методы кодирования с коррекцией ошибок. А в свободное время он начал развивать идеи, которые потом вылились в теорию информации. Исходная цель Шеннона заключалась в улучшении передачи информации по телеграфному или телефонному каналу, находящемуся под воздействием электрических шумов. Он быстро пришел к выводу, что наилучшее решение проблемы заключается в более эффективной упаковке информации. В своих работах 1948-49 годов он определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии окрестили "битом", то есть выбор одного из двух равновероятных вариантов. Позже Шеннон любил рассказывать, что использовать энтропию ему посоветовал знаменитый математик Джон фон Нейман, который мотивировал свой совет тем, что мало кто из математиков и инженеров знает об энтропии, и это обеспечит Шеннону большое преимущество в неизбежных спорах. На прочном фундаменте своего определения количества информации Клод Шеннон доказал удивительную теорему о пропускной способности зашумленных каналов связи. Во всей полноте эта теорема была опубликована в его работах 1957-61 годов и теперь носит его имя. Кроме теории информации, неуемный Шеннон приложился во многих областях. Одним из первых он высказал мысль о том, что машины могут играть в игры и самообучаться. В 1950 году он сделал механическую мышку Тесей, дистанционно управляемую сложной электронной схемой. Эта мышка училась находить выход из лабиринта. В честь его изобретения IEEE учредил международный конкурс "микромышь", в котором до сих пор принимают участие тысячи студентов технических вузов. В те же 50-е годы Шеннон создал машину, которая "читала мысли" при игре в "монетку":человек загадывал "орел" или "решку", а машина отгадывала с вероятностью выше 50%, потому что человек никак не может избежать каких-либо закономерностей, которые машина может использовать. В 1956 году Шеннон покинул Bell Labs и со следующего года стал профессором Массачусетского технологического института, откуда ушел на пенсию в 1978 году. Труды Шеннона, к которым с благоговением относятся деятели науки, столь же интересны и для специалистов, решающих сугубо прикладные задачи. Шеннон заложил основание и для современного кодирования с коррекцией ошибок, без которого не обходится сейчас ни один дисковод для жестких дисков или система потокового видео, и, возможно, многие продукты, которым еще только предстоит увидеть свет. В МТИ и на пенсии им полностью завладело его давнее увлечение жонглированием. Шеннон построил несколько жонглирующих машин и даже создал общую теорию жонглирования, которая, впрочем, не помогла ему побить личный рекорд - жонглирование четырьмя мячиками. Клод Шеннон скончался в 2001 году в массачусетском доме для престарелых от болезни Альцгеймера на 84 году жизни.

Список литературы.

. А.П. Алферов, А.Ю. Зубов, А.С. Кузьмин, А.В. Черемушкин Основы Криптографии. - М.: Гелиос, 2005., с.5 – 53.

. Баричев С.Г., Гончаров В.В., Серов Р.Е. Основы современной криптографии. - М.: Горячая линия - Телеком, 2002., с. 4 – 8.

. Жельников В., Криптография от папируса до компьютера. - М.: ABF, 1996. http://www.fidel-kastro.ru/crypto/zhelnik.htm

Http://www.uran.donetsk.ua/~masters/2005/feht/chernenkaya/ind/history.html

Http://persona.rin.ru/view/fall//31397/polibij-polybios

Http://www.tonnel.ru/?l=kniga&273

Http://www.c-cafe.ru/days/bio/5/085.php

Http://persona.rin.ru/view/f/0/35276/shennon-klod-elvud

Http://www.enlight.ru/crypto/articles/shannon/__shann.htm

Криптография и шифрование тысячи лет используются людьми для защиты своих секретов. С некоторой долей условности эту историю можно начать с Древнего Египта.

Древний Египет

Самый древний текст с элементами криптографии найден в гробнице древнеегипетского вельможи Хнумхотепа II, наследного князя и номарха города Менат-Хуфу, жившего почти 4000 лет назад. Где-то около 1900 г до н.э. писарь Хнумхотепа описывал жизнь своего господина в его гробнице. Среди иероглифов он использовал несколько необычных символов, которые скрывают прямое значение текста. Такой метод шифрования фактически представляет собой шифр подстановки, когда элементы исходного текста заменяются другими элементами по определённым правилам.

Символы из гробницы Хнумхотепа II и их расшифровка

По мере развития египетской культуры замены иероглифов встречались всё чаще. Есть разные версии, почему египтяне использовали такую систему шифрования. По одной версии, они хотели охранить свои религиозные ритуалы от обычных людей. По другой версии, таким образом писцы придавали тексту некий формальный вид, как в наше время юристы используют специфические выражения для замены обычных слов. Как и сейчас, египетская криптография тоже могла быть способом писца впечатлить других людей - показать, что он может изъясняться на более высоком уровне, чем они.

Древняя Греция

Примерно в 500 г до н.э. спартанцы разработали устройство под названием скитала, созданное для отправки и получения секретных сообщений. Оно представляло собой цилиндр, обёрнутый по спирали узкой полоской пергамента. Послание писалось вдоль скиталы, но если полоску развернуть, оно становилось нечитаемым. Для прочтения текста требовалась скитала такого же диаметра. Только в этом случае буквы становились в ряд, чтобы восстановить оригинальное сообщение.


Пример скиталы

Скитала является примером перестановочного шифра, в котором элементы исходного текста меняют местами, а не заменяют другими символами. По современным стандартам скиталу было бы очень просто взломать, но 2500 лет назад очень мало людей умели читать и писать. Скитала обеспечила спартанцам защищённую связь.

Древний Рим

Самый ранний известный способ военного применения криптографии принадлежит Юлию Цезарю. Около 2000 лет назад Цезарь, будучи полководцем римской армии, решил проблему безопасных коммуникаций со своими полками. Проблема была в том, что гонцы с секретными военными сообщениями часто перехватывались неприятелем. Цезарь разработал шифр подстановки, в котором заменял одни буквы другими. Только тот, кто знал таблицу подстановки, мог расшифровать секретное сообщение. Теперь, даже если гонец попадёт в руки врага, шифровки не будут рассекречены. Это дало римлянам огромное преимущество в войне.


Пример шифра подстановки

В отличие от примера на этой иллюстрации, Цезарь обычно просто сдвигал буквы на некое определённое число. Это число было шифровальным ключом для его алгоритма. Случайный порядок замены символов обеспечивает гораздо лучшую безопасность благодаря большему количеству возможных таблиц замены.

Шифр Альберти-Виженера

В середине 15 века итальянский учёный, архитектор, скульптор, художник и математик Леон Батиста Альберти изобрёл систему шифрования на основе шифровального диска. Это было механическое устройство со скользящими дисками, которые допускали много разных методов подстановки символов. Это базовая концепция многоалфавитного шифра, в котором метод шифрования меняется непосредственно в процессе шифрования. В своей книге «Взломщики кодов» Дэвид Кан называет Альберти «отцом западной криптографии». Альберти никогда не реализовал свою концепцию шифровального диска, она осталась только на бумаге.


Шифровальный диск

В 16 веке французский дипломат Блез Виженер на основе концепции многоалфавитного шифра Альберти создал шифр, который получил название шифра Виженера. Он работает точно как система Цезаря за исключением того, что ключ меняется в процессе шифрования. В шифре Виженера применяется решётка из букв, которая задаёт метод подстановки. Её называют квадратом Виженера или таблицей Виженера. Решётка состоит из 26 строк алфавита со смещением на один символ друг относительно друга.

Метод смены одного ключа на другой следует простому шаблону. В качестве ключа шифрования выбирается специальное секретное слово. Каждый символ в исходном тексте заменяется с использованием таблицы. Чтобы определить, на какую букву нужно заменить первый символ, мы совмещаем первый символ исходного текста (по одной оси) с первым символом секретного слова (по другой оси). Метод повторяется для второй и каждой последующей букв, секретное слово используется многократно, пока не закончатся символы в исходном тексте.

Предположим, что нужно зашифровать такую фразу:

ATTACKATDAWN («Нападение на рассвете»)
Отправитель послания выбирает секретное слово и повторяет его до окончания исходного текста. Например, LEMON.

LEMONLEMONLE
Для зашифровки первого символа нужно совместить строку A со столбцом L (в результате получается L), для шифрования второго символа - строку T со столбцом E (в результате получается X) и так далее. Вот как выглядит результат:

Исходный текст: ATTACKATDAWN Ключевое слово: LEMONLEMONLE Шифротекст: LXFOPVEFRNHR
Расшифровка выполняется таким же способом: буква в тексте послания (диагональные строки таблицы) совмещается с буквой секретного слова в столбцах или строках таблицы.

Дисковый шифр Джефферсона

В конце 18 века Томас Джефферсон придумал шифровальную систему, очень похожую на шифр Виженера, но с лучшей защитой. Его шифратор состоял из 26 дисков с буквами алфавита, случайно размещёнными на каждом. Диски были пронумерованы и установлены на цилиндр в определённом порядке. Ключом является порядок дисков на оси.


Дисковый шифр Джефферсона

Чтобы зашифровать сообщение, нужно составить исходный текст в одной из строк цилиндра. Зашифрованным текстом будет любая другая строка. Получатель сообщения должен расположить диски в правильном порядке, после чего составить строку зашифрованного текста на цилиндре. Затем быстрый визуальный осмотр цилиндра сразу выявит текст исходного сообщения. Практически нулевая вероятность, что в строках цилиндра появится два не лишённых смысла сообщения.

Как и Альберти, Джефферсон никогда не использовал свою систему шифрования. В начале 20 века шифровальщики американской армии придумали заново цилиндр Джефферсона, ничего не зная об этом изобретении. Джефферсон опередил своё время более чем на сто лет. Армия США использовала такую систему шифрования с 1923 по 1942 годы.

История возникновения криптографии Почти четыре тысячи лет назад в городе Менет-Хуфу на берегу Нила некий египетский писец нарисовал иероглифы, которые рассказывали историю жизни его господина. Сделав это, он стал родоначальником документально зафиксированной истории криптографии. Дэвид Кан (David Kahn), эксперт по кодам и шифрам, консультант Конгресса США по вопросам криптографии.Почти четыре тысячи лет назад в городе Менет-Хуфу на берегу Нила некий египетский писец нарисовал иероглифы, рассказавшие историю жизни его господина.

Сделав это, он стал родоначальником документально зафиксированной истории криптографии. Эта система не была тайнописью в том смысле, как ее понимают в современном мире. Для засекречивания своей надписи египетский писец не использовал никакого полноценного шифра.Дошедшая до наших дней надпись, вырезанная примерно в 1900 году до н. э. на гробнице знатного человека по имени Хнумхотеп, лишь в отдельных местах состоит из необычных иероглифических символов вместо более привычных иероглифов.

Большинство из них встречается в последних двадцати столбцах, где перечисляются монументы, построенные Хнумхотепом во славу фараона Аменемхета II. Безымянный писец старался не затруднить чтение текста, а лишь придать ему большую важность, подобно тому, как в каком-нибудь заявлении по важному поводу пишут, например, «в год одна тысяча восемьсот шестьдесят третий от Рождества Христова», вместо того чтобы просто и без затей написать: «в 1863 году». Вместе с тем, хотя писец применил не тайнопись, он, бесспорно, воспользовался одним из существенных элементов шифрования - умышленным преобразованием письменных символов.

Это самый древний известный нам текст, который претерпел такие изменения. По мере расцвета древнеегипетской цивилизации и совершенствования письменности росло количество усыпальниц почитаемых умерших, и все более изощренными становились преобразования текстов на стенах гробниц.Со временем писцы стали заменять обычную иероглифическую форму буквы, например, рот, изображенный анфас, иной формой, например, ртом, изображенным в профиль.

Они вводили в употребление новые иероглифы, первый звук произношения которых выражал желательную букву, как, например, изображение свиньи. Иногда произношение двух иероглифов различалось, но их изображение напоминало друг друга.Время от времени писцы использовали иероглиф по принципу ребуса, подобно тому, как, например, в английском языке изображение пчелы может означать букву «В». Эти преобразования были изначально свойственны обычному египетскому письму: именно с их помощью иероглифы приобрели свои звуковые значения.

В дальнейшем они лишь усложнялись и делались все более искусственными.Такие изменения обнаружены во многих местах - в надгробных надписях, восхвалявших умерших, в гимне в честь Тота и на саркофагах фараона Сети I. В них нет попыток скрыть истинный смысл текста. Большинство надписей дублируются в обычной форме рядом с измененной.

Для чего же тогда это делать? Часто с той же определенной целью, что и в гробнице Хнумхотепа, - произвести впечатление на читателя. Иногда для того, чтобы блеснуть каллиграфией или ради красоты. Реже - чтобы отразить соответствующее тому времени произношение. Но постепенно многие надписи начинали преследовать другую, самую важную для криптографии цель - секретность.В некоторых случаях секретность была нужна для усиления тайны и, следовательно, колдовской силы поминальных текстов.

Гораздо чаще секретность проистекала из понятного желания древних египтян заставить прохожего прочитать их эпитафии и тем самым выразить умершим благословения, которые содержались в надгробных надписях. В Древнем Египте, с характерной для него непоколебимой верой в загробную жизнь, количество надгробных надписей быстро достигло такой степени, когда интерес к ним прохожих резко упал. Чтобы возродить былой интерес к надписям, писцы нарочно делали их несколько туманными.Они ввели криптографические знаки, дабы привлечь внимание читателя, заставить его задуматься и вызвать у него желание разгадать их смысл.

Но эти приемы совершенно не удались. Вместо того чтобы заинтересовать читателя, они губили даже малейшее желание прочитать набившие всем оскомину эпитафии. А посему вскоре после появления «надгробной» криптографии от нее отказались. Итак, добавление элемента секретности в преобразование иероглифов породило криптографию.Правда, это напоминало скорее игру, поскольку преследовалась цель задержать разгадку только на самое короткое время.

Поэтому криптоанализ также заключался всего лишь в раскрытии головоломки. Таким образом, древнеегипетский криптоанализ был квазинаукой, в отличие от криптоанализа современного, ставшего чрезвычайно серьезной областью научных знаний. Однако всем великим делам свойственны скромные начинания.Иероглифы Древнего Египта действительно включали, хотя и в несовершенной форме, два важных элемента - секретность и преобразование письма, которые составляют основные атрибуты криптографии.

Так родилась криптология. В течение 3000 лет ее развитие не было поступательным. В одних местах криптология появлялась самостоятельно и потом исчезала вместе с породившими ее цивилизациями. В других она выжила, проникнув в памятники литературы. Опираясь на ее литературную основу, последующие поколения уже могли карабкаться к новым высотам криптологии. Но продвижение к ним было достаточно медленным и прерывистым.Больше было потеряно, чем сохранено.

Значительная часть древней истории криптологии представляет собой плохо подобранный разношерстный букет, составленный из расцветающих, распустившихся и увядающих цветов одновременно. Накопленные знания получили простор только в начале эпохи европейского Возрождения. В Индии, стране с древней высокоразвитой цивилизацией, люди с незапамятных времен пользовались несколькими разновидностями тайнописи.В классическом древнеиндийском трактате об искусстве управлять государством, написанном между 321 и 300 годом до н. э рекомендуется, чтобы глава шпионской спецслужбы давал своим агентам задания с помощью тайнописи.

Там же дипломатам дается совет прибегать к криптоанализу для получения разведывательных данных: «При невозможности беседовать с людьми пусть посол осведомится о происходящем у врага из речей нищих, пьяных, сумасшедших, спящих или из условных знаков, надписей, рисунков в храмах и местах паломничества». И хотя автор трактата не дает никакого намека, как именно нужно читать тайнопись, тот факт, что он знает о возможности ее дешифрования, свидетельствует о некоторой искушенности в области криптоанализа.

Более того, впервые в истории человечества здесь упоминается о криптоанализе в политических целях. Не избежала соприкосновения с шифрами (или, если говорить точнее, с предшественниками шифров, так как в ней отсутствует элемент секретности) и Библия.Как и в случае с иероглифами на гробнице Хнумхотепа, преобразования письма выполнены в Библии без какого-либо явного желания скрыть содержание текста. Главной причиной, очевидно, являлось стремление переписчика обессмертить себя путем изменения текста, который позднее будет снова тщательно переписан и позволит пронести частицу его личности через века. Самая знаменитая «криптограмма» в Библии связана с историей о том, как в разгар пира у вавилонского царя Валтасара человеческая рука стала писать на стене зловещие слова: «мене, текел, фарес». Однако тайна заключается не в том, что означают эти слова. Непонятно, почему мудрецы царя не смогли разгадать их смысл.

Сами слова «мене», «текел» и «фарес» взяты из арамейского языка, родственного древнееврейскому, и означают «исчислил», «взвешен» и «разделено». Когда Валтасар вызвал к себе пророка Даниила, последний без труда прочитал надпись и дал толкование этих трех слов: «мене - исчислил Бог царство твое и положил конец ему; текел - ты взвешен и найден очень легким; фарес - разделено царство твое и отдано мидянам и персам». Надпись «мене, текел, фарес» может также означать названия денежных единиц - мина, текел (1/60 мины) и фарес (1/2 мины). Их перечисление именно в такой последовательности символизирует крушение Вавилонской империи.

Учитывая возможность всех этих интерпретаций, кажется странным, что вавилонские мудрецы не сумели прочитать зловещую надпись на стене. Возможно, они боялись сообщить Валтасару плохую новость или, может быть, Господь открыл глаза только Даниилу.

Как бы там ни было, одному Даниилу удалось разгадать эту загадку, и в результате он стал первым известным криптоаналитиком.

А поскольку это библейское сказание, то и награда за успешный криптоанализ, согласно Библии, намного превзошла какие-либо более поздние вознаграждения за аналогичные успехи в дешифровании: «Тогда облекли Даниила в багряницу, и возложили золотую цепь на шею его, и провозгласили его третьим властелином в царстве». В Европе криптография находилась в состоянии застоя вплоть до наступления эпохи Возрождения.

Применявшиеся шифросистемы были предельно просты - фразы писались по вертикали или в обратном порядке, гласные заменялись точками, использовались иностранные алфавиты (например, древнееврейский и армянский), каждая буква открытого текста заменялась следовавшей за ней буквой. Кроме того, в течение всех этих лет криптология была поражена болезнью, которая сохранилась до более позднего времени, а именно: убежденностью многих людей в том, что криптография и криптоанализ являются разновидностями черной магии.

С первых дней своего существования криптография преследовала цель спрятать содержание важных разделов письменных документов, имевших отношение к таким сферам магии, как гадание и заклинание. В одной из рукописей о магии, датируемой III веком н. э используется шифр, чтобы скрыть важные части колдовских рецептов.Криптография часто была на службе магии во времена средневековья, и даже в эпоху Возрождения с помощью шифров алхимики засекречивали важные части формул получения «философского камня». Сходство между магией и криптографией обусловливалось и другими факторами.

Помимо криптографии, таинственные символы использовались в таких понятных лишь посвященным областях магических знаний, как астрология и алхимия, где, подобно знакам открытого текста, каждая планета и каждое химическое вещество имели специальный знак. Как и зашифрованные слова, заклинания и магические формулы, вроде «абракадабры», походили на чепуху, но в действительности были сильны скрытым значением.

Вдобавок многие люди, которые хвастались своей способностью разгадывать шифры, одновременно похвалялись и умением слышать человеческие голоса, будучи глубоко под землей, или даром телепатии.Естественно, что впоследствии эти две области стали обсуждаться вместе - поскольку, мол, они всегда развивались бок о бок. Мнение о том, что криптоанализ является по своей природе черной магией, происходит и от поверхностного сходства между криптоанализом и гаданием.

Извлечение смысла из шифротекста казалось точно таким же делом, что и получение знаний путем изучения расположения звезд и планет, длины линий и мест их пересечения на ладони, внутренностей овец, положения кофейного осадка в чашке. Видимость брала верх над реальностью. Простодушные усматривали магию даже в обычном процессе расшифрования.Другие, более искушенные, видели ее в криптоанализе, так как вскрытие чего-то глубоко спрятанного казалось им непостижимым и сверхъестественным.

Ни в одном из упомянутых выше случаев применения тайнописи нет подтверждения существованию криптоанализа как науки. Время от времени факты дешифрования текста имели место. Подтверждением тому служат истории с пророком Даниилом или с какими-нибудь египтянами, которые разгадали отдельные иероглифические надписи на могильных памятниках. Но научного криптоанализа не существовало ни в Египте с Индией, ни в Европе вплоть до 1400 года. Была только криптография.Первыми открыли и описали методы криптоанализа арабы.

Этот народ в те времена создал одну из самых развитых цивилизаций, которую когда-либо знала история. Арабская наука процветала. Медицина и математика у арабов стали самыми лучшими в мире. Распространились ремесла. Мощная созидательная энергия арабской культуры, которую ислам лишил живописи и скульптуры, дала плоды на ниве литературы. Получило широкое распространение составление словесных загадок, ребусов и каламбуров.Грамматика являлась главным учебным предметом и включала в себя тайнопись.

Интерес к криптографии у арабов проявился рано. В 855 году арабский ученый по имени Абу Бакр Ахмед бен-Али бен-Вахшия ан-Набати включил несколько классических шифроалфавитов в свою «Книгу о большом стремлении человека разгадать загадки древней письменности». Один такой шифроалфавит, называвшийся «дауди» (по имени израильского царя Давида), использовался для зашифрования трактатов по черной магии.Он был составлен из видоизмененных букв древнееврейского алфавита.

Другой - сохранился до более позднего времени: в 1775 г. он был использован в письме шпиона, направленном регенту Алжира. Познания арабов в области криптологии были подробно изложены в произведении Шехаба Калкашанди, которое представляет собой громадную 14-томную энциклопедию, написанную в 1412 году для того, чтобы дать систематический обзор всех важных областей знания.Раздел под общим заголовком «Относительно сокрытия в буквах тайных сообщений» содержал две части: одна касалась символических действий и намеков, а другая была посвящена симпатическим чернилам и криптологии.

Первый раз за всю историю шифров в энциклопедии приводился список как систем перестановки, так и систем замены. Более того, в пятом пункте списка впервые упоминался шифр, для которого была характерна более чем одна замена букв открытого текста. Однако каким бы замечательным и важным этот факт ни был, он затмевается первым в истории описанием криптоаналитического исследования шифротекста.Его истоки, очевидно, следует искать в интенсивном и скрупулезном изучении Корана многочисленными школами арабских грамматиков. Наряду с другими исследованиями они занимались подсчетом частоты встречаемости слов, пытаясь составить хронологию глав Корана, изучали фонетику слов, чтобы установить, являлись ли они подлинно арабскими или были заимствованы из других языков.

Большую роль в обнаружении лингвистических закономерностей, приведших к возникновению криптоанализа у арабов, сыграло также развитие лексикографии.

Ведь при составлении словарей авторам фактически приходилось учитывать частоту встречаемости букв, а также то, какие буквы могут стоять рядом, а какие никогда не встречаются по соседству. Калкашанди начинает изложение криптоаналитических методов с главного: криптоаналитик должен знать язык, на котором написана криптограмма.Поскольку арабский язык, «самый благородный и самый прекрасный из всех языков», является «одним из наиболее распространенных», далее дается пространное описание его лингвистических характеристик.

Кроме того, указываются перечни букв, которые никогда не стоят вместе в одном слове, и букв, редко появляющихся по соседству, а также буквенные комбинации, которые в словах встретить невозможно.Последним идет список букв в порядке «частоты их использования в арабском языке в свете результатов изучения священного Корана». Калкашанди даже отмечает, что «в произведениях, не связанных с Кораном, частота использования может быть иной». Далее он продолжает: «Если вы хотите прочесть сообщение, которое вы получили в зашифрованном виде, то прежде всего начните подсчет букв, а затем сосчитайте, сколько раз повторяется каждый знак, и подведите итог в каждом отдельном случае.

Если изобретатель шифра был очень внимателен и скрыл в сообщении все границы между словами, то первая задача, которая должна быть решена, заключается в нахождении знака, разделяющего слова.Это делается так: вы берете букву и работаете, исходя из предположения, что следующая буква является знаком, делящим слова.

И таким образом вы изучаете все сообщение с учетом различных комбинаций букв, из которых могут быть составлены слова Если получается, тогда все в порядке; если нет, то вы берете следующую по счету букву и т. д пока вы не сможете установить знак раздела между словами. Затем нужно найти, какие буквы чаще всего встречаются в сообщении, и сравнить их с образцом частоты встречаемости букв, о котором упоминалось прежде.Когда вы увидите, что одна буква попадается чаще других в данном сообщении, вы предполагаете, что это буква «алиф». Затем вы предполагаете, что следующая по частоте встречаемости будет буквой «лам». Точность вашего предположения должна подтверждаться тем фактом, что в большинстве контекстов буква «лам» следует за буквой «алиф» Затем первые слова, которые вы попытаетесь разгадать в сообщении, должны состоять из двух букв. Это делается путем оценки наиболее вероятных комбинаций букв до тех пор, пока вы не убедитесь в том, что вы стоите на правильном пути. Тогда вы глядите на их знаки и выписываете их эквиваленты всякий раз, когда они попадаются в сообщении.

Нужно применять точно такой же принцип по отношению к трехбуквенным словам этого сообщения, пока вы не убедитесь, что вы на что-то напали.

Вы выписываете эквиваленты из всего сообщения. Этот же принцип применяется по отношению к словам, состоящим из четырех и пяти букв, причем метод работы прежний.Всякий раз, когда возникает какое-либо сомнение, нужно высказать два-три предположения или еще больше и выписать каждое из них, пока оно не подтвердится на основании другого слова». Дав это четкое разъяснение, Калкашанди приводит пример вскрытия шифра.

Дешифруемая криптограмма состоит из двух стихотворных строк, зашифрованных с помощью условных символов.В заключение Калкашанди отмечает, что восемь букв не было использовано и что это как раз те самые буквы, которые стоят в конце перечня, составленного по частоте встречаемости. Он отмечает: «Однако это простая случайность: буква может быть поставлена не на то место, которое она должна занимать в вышеупомянутом перечне». Такое замечание свидетельствует о наличии большого опыта в области криптоанализа.

Чтобы расставить все точки над «i», Калкашанди приводит второй пример криптоанализа довольно длинной криптограммы.Этим примером он и заканчивает раздел о криптологии. История умалчивает о том, в какой степени арабы использовали свои блестящие криптоаналитические способности, продемонстрированные Калкашанди, для вскрытия военных и дипломатических криптограмм или какое воздействие это оказало на мусульманскую историю.

Однако совершенно ясно, что вскоре эти познания перестали применяться на практике и были забыты. Один эпизод, произошедший почти 300 лет спустя, ярко показывает произошедшую деградацию.В 1600 году марокканский султан Ахмед аль- Мансур направил к английской королеве Елизавете I посольство во главе с доверенным человеком - министром Абдель Вахид ибн Масуд ибн Мухаммед Ануном.

Посольство должно было заключить с Англией союз, направленный против Испании. Анун отправил на родину зашифрованную простой заменой депешу, которая вскоре после этого каким-то образом попала в руки одного араба. Араб тот был, возможно, умным человеком, но, к сожалению, он ничего не знал о великом арабском наследии в области криптоанализа.Свидетельством тому - памятная записка, в которой он написал: «Хвала Аллаху! Относительно письма министра Абдель Вахид ибн Масуд ибн Мухаммед Ануна. Я нашел письмо, написанное его рукой, в котором он с помощью тайных знаков изложил некоторые сведения, предназначенные для нашего покровителя Ахмеда аль-Мансура.

Эти сведения касаются султанши христиан (да покарает их Аллах!), которая жила в стране под названием Лондон С того момента, как это письмо попало ко мне, я постоянно время от времени изучал содержавшиеся в нем знаки.Прошло примерно 15 лет, пока не наступило то время, когда Аллах позволил мне понять эти знаки, хотя никто не обучал меня этому ». Список литературы Для подготовки данной работы были использованы материалы с сайта http://www.elitarium. ru/.

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Последние материалы раздела:

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...