Хроматин. Классификация хроматина (гетерохроматин и эухроматин)

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

Таблица 4. Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15

ХРОМАТИН - материальный субстрат хромосом, представляющий собой многокомпонентную систему молекул, находящихся в определенных пространственных, химических и физических взаимоотношениях.

Основным структурным и химическим компонентом хроматина служит комплекс дезоксирибонуклеиновой кислоты (см.) с гистонами (см.) и негистоновыми белками (см. Нуклеопротеиды), иногда - с протаминами (см.). Другие компоненты хроматина - РНК (см. Рибонуклеиновые кислоты), липиды (см.), углеводы (см.), неорганические вещества прямо или косвенно связаны с белками (см.). Количественные соотношения компонентов хроматина существенно зависят от типа клеток; их относительное содержание чаще всего соответствует следующим величинам: ДНК 30-45%, гистоны 30-50%, негистоновые белки 2-35%, РНК и другие компоненты 1 -10%.

Термин «хроматин» был введен в 1880 году немецким ученым В. Флеммингом для обозначения окрашивающихся структур фиксированных ядер клеток (за исключением ядрышек). Преобладающая часть таких структур окрашивается основными красителями (базохроматин), а некоторые - кислотными (оксихроматин). Выделяемые в ядре хроматиновые структуры имеют вид глыбок или сети фибрилл, различающихся в одной клетке и в клетках разных объектов по степени дисперсности. Наиболее интенсивно окрашивающиеся глыбки - хромоцентры (кариосомы) иногда называли ложными ядрышками. Хромо центры имеют, по-видимому, повышенную адгезивную способность, поскольку они легко входят в контакт с ядерной оболочкой, а также агрегируют друг с другом.

Структура хроматина в ядрах интерфазных клеток, то есть клеток, находящихся в периоде между следующими друг за другом митозами (см.), зависит от стадии развития организма (см. Онтогенез , Эмбриональное развитие). У ряда исследованных объектов в первых 2-4-х бластомерах хроматиновые структуры не выявляются, на стадии 8-10 бластомеров в ядре выявляются мелкие хроматиновые глыбки, приобретающие в неделящихся дифференцированных клетках высокоспецифичный характер для каждого типа клеток (см. Деление клетки). В процессе старения этих клеток наблюдают усиление конденсации хроматина.

Изоэлектрическая точка (см.) хроматина зависит от количества белков, входящих в комплекс с ДНК, и находится в интервале значений pH 3,0-5,0. Патологические изменения хроматина как морфологические структуры сопровождаются изменениями pH, при которых находится изоэлектрическая точка. Это отмечают, например, при воздействиях ионизирующего излучения, старении и др. При различных патологических состояниях может меняться и степень дисперсности хроматина. Так, опухолевые клетки характеризуются наличием большого числа хромоцентров, имеющих иногда достаточно крупные размеры; при болезни Дауна (см. Дауна болезнь) хроматин по сравнению с нормой более конденсирован, изменены константы его связывания с красителями; при синдроме Блума (см. Пойкилодермия) хроматин имеет пылевидную или сегментированную структуру. При некоторых видах патологии отмечено усиление конденсации хроматина и концентрация его крупных глыбок на внутренней поверхности ядерной оболочки (гиперхроматоз).

Структуры хроматина и половой хроматин (см.) наблюдают с помощью световой микроскопии. Форма и размер этих структур зависят от способа фиксации клеток. Это свидетельствует о том, что выявляемая после фиксации морфология хроматина отражает не его истинную структуру в живой клетке, а лишь возможность разных способов его организации. В ядрах живых клеток, как правило, компоненты, соответствующие хроматиновым структурам, не выявляются. Однако незначительные повреждения (раздражения) в ряде случаев приводят к обратимому появлению таких структур в прежде гомогенном ядре (напр., при воздействии наркотических анальгетиков и др.). Известен и противоположный эффект - обратимая «гомогенизация» структур, выявляемая в норме в ядрах живых клеток. Естественно, что оптическая гомогенность ядра не тождественна структурной гомогенности хроматина на уровнях более низких, чем позволяет видеть разрешающая способность световой микроскопии. Поэтому сейчас термин «хроматин» утрачивает свое морфологическое содержание, его чаще относят к химическому субстрату хромосом (см.) - сложному комплексу биополимеров. Организующие этот комплекс в единую систему в основном слабые (нековалентные) взаимодействия, равно как и конформация (см.) образующих его молекул, существенным образом зависят от хим. состава, количественного соотношения взаимодействующих компонентов и внешних факторов. Это определяет возможность различных способов организации комплекса в целом и (или) благодаря структурной динамике организации его отдельных структурных компонентов. Полагают, что набор таких способов организации (состояний) ограничен, а переходы между ними имеют характер фазовых переходов. Реализация состояния хроматина, по тем или иным причинам не соответствующего состоянию данной клетки в норме, является признаком патологии.

Установлено существование, по крайней мере, двух классов хроматина: 1) эухроматина, который деконденсируется во время интерфазы и конденсируется в митозе; 2) гетерохроматина, который остается компактным не только в митозе, но и в интерфазе, где его микроскопически идентифицируют в виде хромоцентров. Эухроматин является основной информационной частью генома, в которой преимущественно локализованы структурные гены с соответствующими регуляторными областями. Для гетерохроматина характерна поздняя репликация (см.) ДНК, входящей в его состав. В отличие от эухроматина гетерохроматин в структурном отношении более лабилен: иногда наблюдают его деконденсацию при голодании, действии низких температур и др. Установлено, что при воздействии ряда мутагенных факторов (см. Мутагены) химической и физической природы структурные повреждения чаще локализуются в гетерохроматиновых областях хромосом. Различают два типа гетерохроматина. Первым из них является структурный, постоянно конденсированный хроматин. Как правило, в нем не содержится генов (см. Ген), его ДНК представлена в основном короткими повторяющимися нуклеотидными последовательностями (у некоторых организмов - сателлитной ДНК). При пространственном сближении в результате хромосомных перестроек участков структурного гетерохроматина и эухроматина в ряде случаев ингибируется фенотипическое проявление генов (так называемый эффект положения гена). Активация генов, локализованных в эухроматине, при пространственном разобщении последнего с гетерохроматином может быть, согласно некоторым представлениям, одной из причин активации онкогенов, локализованных в ДНК хромосомы. В целом роль структурного гетерохроматина недостаточно ясна. Полагают, что он существен для процессов конъюгации хромосом (см.), взаимного расположения хромосом в ядре, прикрепления участков хромосом к ядерной оболочке, укладки хроматиновых фибрилл, защиты жизненно важных элементов хромосом, сближения ядрышкообразующих хромосом, эволюции кариотипа и др. Таким образом, предполагаемая роль структурного гетерохроматина заключается в регуляции пространственной организации и соответственно - функциональной активности хромосом.

У человека структурный гетеро-хроматин локализован в центромерных участках всех хромосом, в районах вторичных перетяжек хромосом 1, 9, 16-й пар, коротких плечах акроцентрических хромосом, в дистальной части длинного плеча Y -хромосомы и обрамляет блоки генов рибосомной РНК (ядрышкообразующие районы). На долю структурного гетерохроматина у человека приходится 10-15% всего хроматина. У разных лиц количество структурного гетерохроматина варьирует даже в пределах гомологичных хромосом. Обнаружено, что полиморфные варианты структурного гетерохроматина (см. Полиморфизм в генетике) у людей могут коррелировать с некоторыми наследственными заболеваниями, а возможно определять их или указывать на предрасположенность к ним.

Вторым типом гетерохроматина принято считать факультативный гетерохроматин, или инактивированный эухроматин. Этот тип хроматина сходен с гетерохроматином только в морфол. отношении: микроскопически он выявляется в интерфазном ядре в виде интенсивно красящихся глыбок разного размера. Основываясь на молекулярной организации и функциях, его правильнее считать одним из типов эухроматина. Он содержит структурные гены, фенотипически инактивированные путем конденсации (гетерохроматини-зации) эухроматина. Одним из типичных примеров факультативного гетерохроматина являются тельца Барра (X-хроматин).

Таким образом, функционирование хроматина как системы, в которой происходит начальный этап реализации наследственной информации, в значительной степени определяется пространственным распределением ее взаимозависимых конденсированных и де-конденсированных зон (согласно представлениям о физических процессах, лежащих в основе самоорганизации пространственной структуры хроматина,- микрофазовое расслоение системы). Распределение конденсированных и деконденсированных зон является отражением состояния системы в целом, что не исключает, однако, относительной автономности этих участков в ряде процессов. Известны случаи, когда путем конденсации хроматина осуществляется инактивация целых хромосом (например, одной из X-хромосом у женщин) или почти всего генома (напр., в эритроцитах птиц). В большинстве типов клеток доля активного хроматина составляет 2- 15%. По данным молекулярно-биол. анализа, в ряде случаев инактивация связана с появлением определенных подфракций гистона Н1 или замещением последнего другими гистонами, в частности гистоном Н5 (см. Нуклеопротеиды). В сперматозоидах некоторых животных репрессия генома реализуется на фоне замещения гистонов протаминами или подобными им белками.

Существенную роль в организации транскрипции (см.), в том числе через дифференциальную деконденсацию хроматина, отводят негистоновым белкам хроматина (НГБ). В их число входят также ферментные комплексы, ответственные за репарацию (см. Репарация генетических повреждений), репликацию, транскрипцию и модификацию нуклеиновых кислот (см.) и за некоторые ферментативные превращения ряда хромосомных белков. В ядрах клеток, в которых не происходит активной транскрипции, количество негистоновых белков хроматина существенно уменьшено. Например, зрелые гаметы в значительной степени освобождены от таких белков. Полагают, что в организации или поддержании транскрипции принимают участие негистоновые белки хроматина, прочно связанные с ДНК, среди которых, по-видимому, находится компонент, специфически связывающий комплекс гормон - рецептор, а также тесно связанные с нуклеосомами белки HMG14 и HMG17. Последние способны ингибировать деацетилирование гистонов, а этот процесс наряду с недометилированием ДНК представляет собой модификации, характерные для компонентов активных участков хроматина.

Важным для структурных переходов хроматина является способность белка хроматина А24 к расщеплению на гистон Н2а и полипептид убиквитин. Общей характеристикой участков транскрипционно активного хроматина из разных источников является повышенная чувствительность их ДНК к воздействию ряда нуклеаз (см.). При активации транскрипции такая чувствительность распространяется на участок молекулы ДНК в составе хроматина по протяженности примерно на два порядка больше, чем занимает ген. Все изложенное выше свидетельствует о значении в организации транскрипции более высоких уровней упаковки хроматина, чем его элементарная фибрилла, видимая в электронный микроскоп. Последняя при участии гистона Н1, расположенного наряду с негистоновыми белками хроматина HMG1 и HMG2 в основном на межнуклеосомной ДНК, представляет волокно диаметром около 10 нм. При этом монотонность нуклеосомной организации дезоксирибонуклеопротеидного (ДНП) волокна может нарушаться благодаря структурной динамике нуклеосом (см. Клетка), модификации гистонов при их фосфорилировании, ацетилировании, метилировании и рибозилировании.

Существенную роль отводят меж-молекулярным контактам, способным регулировать конденсацию ДНК на уровне нуклеосом. Нек-рые структурные переходы нуклеосом происходят при изменении ионной силы среды. В ядре клетки количество низкомолекулярных противоионов (ионов К+, Na+ и др.) по порядку величины равно числу фиксированных на макромолекулах (например, фосфатные группы ДНК) зарядов. Поэтому небольшие колебания в абсолютном количестве низкомолекулярных противоионов в ядре (например, при увеличении или уменьшении объема последнего) должны вызвать структурные переходы нуклеосом. Наконец, гистон Н1 может замещаться другими гистонами или их комплексами, имеющими большее сродство к ДНК, с соответствующей реорганизацией структуры фибриллы. Таким образом, возможность различных способов упаковки хроматина заложена уже на уровне различных полиморфных структурных вариантов элементарной фибриллы хроматина. Стабильность следующего уровня организации хроматина - неравномерных по диаметру (20-30 нм) фибрилл - обеспечивается, по-видимому, и гистоном Н1. Дальнейшая упаковка хроматиновых фибрилл реализуется, как полагают, путем самоорганизации системы с образованием конденсированных (глобулярных) зон и петель или независимых суперспирализованных областей (доменов). Домены характеризуются участком двойной спирали ДНК, специальным образом расположенным в пространстве, концы этой двойной спирали фиксированы, что ограничивает или исключает возможность ее вращения. Длина петли ДНК по контуру для разных объектов соответствует мол. весу (массе) ДНК порядка 10 000000- 100 000000. Изменение степени суперспирализации ДНК является еще одним важным фактором регуляции процессов экспрессии генов (см. Экспрессивность гена) через модификацию надмолекулярных систем хроматина. Суперспирализация ДНК изменяется также при действии ионизирующего излучения, некоторых химических соединений, активации нуклеаз и др. Указанные факторы вызывают однонитевые разрывы в молекулах ДНК, что приводит к релаксации в отдельных петлях ее исходной суперспиральной структуры. Этот процесс может вызывать перераспределение белков хроматина, поскольку ряд белков имеет различные константы связывания с линейной, кольцевой и суперспиральной ДНК.

Воздействие агентов, вызывающих диссоциацию белков, в частности гистонов хроматина (некоторые химимечсие мутагены, ионизирующие излучение, высокие концентрации солей, ионов водорода и др.), также приводит к изменению степени суперспиральности, поскольку сам процесс образования нуклеосом связан с реорганизацией суперспирали ДНК.

Полагают, что динамические возможности структуры хроматина нельзя рассматривать только как один из факторов, регулирующих транскрипцию. Действие всех остальных факторов регуляции, как внутри-, так и внеклеточных, реализуется через создание структуры хроматина, специфичной для каждого типа клеток, различающихся по характеру синтеза РНК. В этой связи все воздействия, изменяющие нормальные взаимоотношения между компонентами хроматина и тем самым - его структуру, должны приводить к патологическому функционированию этой системы. Существенное значение имеют изменения структуры хроматина, предрасполагающие к последующему генетическому неблагополучию. Так, полагают, что важное значение может иметь реализация состояний хроматина, при которых снижена вероятность узнавания ферментами репарации повреждений ДНК - явления, которое, по-видимому, служит одной из ведущих причин феномена нестабильности хромосом и характерной для них группы наследственных болезней (см. Хромосомные болезни). Отмечена связь некоторых изменений структуры хроматина с увеличением частоты конъюгации негомологичных хромосом - одной из возможных причин анеуплоидий (см. Мутация). При действии генетически опасных агентов на клетки и организмы кроме генетических повреждений самой ДНК (генные мутации) и указанных выше перестроек структуры хроматина как системы возникают многочисленные нарушения во взаимодействиях между компонентами хроматина: частичная диссоциация белков хроматина, образование межмолекулярных «сшивок» между ДНК и белками, распад фибриллы хроматина на нуклеосомы и др., что в свою очередь усиливает патологический эффект такого агента.

Библиогр.: Андрееве. Г. и Спитковский Д. М. Биофизические модели самоорганизации пространственной структуры хроматина, Докл. АН СССР, т. 269, № 6, с. 1500, 1983; Г е о р г и е в Г. П. и БакаевВ. В. Три уровня структурной организации хромосом эукариот, Молек. биол., т. 12, № 6, с. 1205, 1978, библиогр.; H е й ф а х А. А. и Т и м о ф e е в а М. Я. Проблемы регуляции в молекулярной биологии развития, М., 1978; Прокофье-ва-Бе льговская А. А. Значение негистоновых белков в преобразованиях и генетическом функционировании хромосом, Молек. биол., т. 16, Na 4, с. 771, 1982; Теоретические проблемы медицинской генетики, под ред. А. Ф. Захарова, с. 52, М., 1979; Chromatin structure and function, ed. by C. A. Nicolini, N. Y. -L., 1979.

Д. М. Спитковский, H. А. Ляпунова.

Хроматин (от греч. chroma - краска) мелкие зернышки и глыбки материала, который обнаруживается в ядре клеток и окрашивается ос­новными красителями. Хроматин состоит из Комплекса ДНК и белка И соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализапии каждой из хромо­сом неодинакова по их длине. Различают два вида хроматина - Эухроматин и гетерохроматин.

Эухроматин. Соответствует сегментам хромосом, которые Деспира-лизованы и открыты для транскрипции. Эти сегменты Не окрашива­ются И не видны в световой микроскоп.

Гетерохроматин. Соответствует Конденсированным, Плотно скру­ченным сегментам хромосом (что делает их Недоступными для транс­крипции). Он Интенсивно окрашивается Основными красителями, и в световом микроскопе имеет вид гранул.

Таким образом, По морфологическим признакам ядра (соотноше­нию содержания эу - и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При ее повышении это соотношение изменяется в пользу эухроматина, при снижении - нарастает содержание гетерохроматина. При полном подавлении функции ядра (например, в поврежденных и гибну­щих клетках, при ороговении эпителиальных клеток эпидермиса - кера-тиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основны­ми красителями интенсивно и равномерно. Такое явление называется Кариопикнозом (от греч. karyon - ядро и pyknosis - уплотнение).

Распределение гетерохроматина (топография его частиц в яд­ре) и соотношение содержания эу - и гетерохроматина Характерны для клеток каждого типа, что позволяет осуществлять их идентификацию как визуально, так и с помощью автоматических анализаторов изобра­жения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина В ядре: его скопления располагают­ся Под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (Перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру.

Тельце Барра - Скопление гетерохроматина, соответствующее од­ной Х-хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра ("барабанной палочки"). Выявление тельца Барра (обычно в эпителиальных клетках слизистой оболочки полости рта) используется как ди­агностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

Упаковка хроматина в ядре. В дсконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей каждую хромосому, равна в среднем, около 5 см, а общая длина молекул ДНК всех хромосом в ядре (диаметром около 10 мкм) составляет более 2 м (что сравнимо с укладкой нити длиной 20 км в теннисный мячик диа­метром около 10 см), а в S-период интерфазы - более 4 м. Конкретные механизмы, препятствующие спутыванию этих нитей во время транс­крипции и репликации, остаются нераскрытыми, однако очевидна необ­ходимость Компактной упаковки молекул ДНК, В клеточном ядре это осуществляется благодаря их связи со специальными основными (гистоновыми) белками. Компактная упаковка ДНК в ядре обеспечивает:

(1) Упорядоченное расположение Очень длинных молекул ДНК в небольшом объеме ядра;

(2) функциональный Контроль активности генов (вследствие вли­яния характера упаковки на активность отдельных участков генома.

Уровни упаковки хроматина . Начальный уровень упа­ковки хроматина, обеспечивающий образование Нуклеосомной нити Ди­аметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклеосомы). Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием Хроматиновой фибриллы Диаметром 30 нм. В интерфазе хромосомы образованы хроматиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образу­ют Петли (петельные домены) Диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденси­рованных хромосом, которые выявляются лишь при делении клеток.

В хроматине ДНК связана помимо гастонов также и с Негистоновыми белками, Которые Регулируют активность генов. Вместе с тем, и гистоны, ограничивая доступность ДНК для других ДНК-связьвзающих белков, могут участвовать в регулядии активности генов.

Функция хранения генетической информации В ядре в неизме­ненном виде имеет исключительно важное значение для нормальной жизнедеятельности клетки и всего организма. Подсчитано, что при ре­пликации ДНК и в результате ее повреждений внешними факторами в каждой клетке человека ежегодно происходят изменения 6 нуклеотидов. Возникшие повреждения молекул ДНК могут исправляться в ре­зультате процесса Репарации Или путем Замещения После Распознава­ния и маркировки соответствующего участка.

В случае невозможности репарации ДНК при слишком значитель­ных повреждениях включается механизм запрограммированной гибели клетки . В этой ситуации "поведение" клетки можно оценить как своего рода "альтруистическое самоубийство": ценой своей гибели она спасает организм от возможных негативных последствий реплика­ции и амплификации поврежденного генетического материала.

Способность к репарации ДНК у Взрослого человека снижается примерно на 1% с каждым годом. Это снижение может отчасти объяс­нить, почему старение является фактором риска развития злокачест­венных заболеваний. Нарушения процессов репарации ДНК Характерно для ряда наследственных болезней, при которых резко Повышены Как Чувствительность к повреждающим факторам, Так и Частота разви­тия злокачественных новообразований.

Функция Реализации генетической информации В интерфазном ядре осуществляется непрерывно благодаря процессам Транскрипции. Геном млекопитающих содержит около ЗхЮ9 нуклеотидов, однако не более 1% его объема кодирует важные белки и принимает участие в ре­гуляции их синтеза. Функции основной некодирующей части генома не­известны.

При транскрипции ДНК образуется очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием Рибонуклеопротеинов (РНП). В первичном РНК-транс­крипте (как и в матричной ДНК) имеются дискретные значащие после­довательности нуклеотидов (экзоны), Разделенные длинными некодирующими вставками (нитронами). Процессинг РНК-транскрипта включает отщепление нитронов и стыковку экзонов - сплайсинг (от англ, splicing - сращивание). При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы иРНК, отделяющиеся от связанных с ни­ми белков при переносе в цитоплазму.

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Таблица 4 . Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Репликация эукариотических ДНК

Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом бактериальная циклическая ДНК является одним репликоном . От стартовой точки репликация идет в двух противоположных направлениях, так что по мере синтеза ДНК образуется так называемый глазок репликации, ограниченный с двух сторон репликационными вилками, что хорошо видн при электронномикроскопическом изучении вирусных и бактериальных реплицирующихся хромосом.

У эукариотических клеток организация репликации иного характера – полирепликоннная.. Как уже говорилось, при импульсном включении 3 НТ множественная метка появляется практически во всехмитотических хромосомах. Это означает, что одновременно в интерфазной хромосоме существует множество мест репликации и множество автономных точек начала репликации. Более подробно это явление было изучено с помощью радиоавтографии меченых молекул, выделенных ДНК (рис. 55).Если клетки были импульсно мечены 3 НТ, то в световом микроскопе на автографах выделенных ДНК можно видеть участки восстановленного серебра в виде пунктирных линий. Это небольшие отрезки ДНК, которые успели реплицироваться, а между ними расположены участки нереплицированной ДНК, которая не оставила радиоавтографа и поэтому остается невидимой. По мере увеличения времени контакта 3 НТ с клеткой величина таких отрезков возрастает, а расстояние между ними уменьшается. Из этих экспериментв можно точно рассчитать скорость репликации ДНК у эукариотических организмов. Скорость движения репликационной вилки оказалась равной 1-3 т.п.н. в мин у млекопитающих, около 1 т.п.н. в мин у некоторых растений, что намного ниже скорости репликации ДНК у бактерий (50 т.п.н. в мин.). В этих же экспериментах была прямо доказана полирепликонная структура ДНК хромосом эукариот: по длине хромосомной ДНК, вдоль нее, располагается множество независимых участков репликации – репликонов. По расстоянию между средними точками смежных метящихся репликонов, т.е. по расстоянию между двумя соседними стартовыми точками репликации, можно узнать величину отдельных репликонов. В среднем величина репликонову высших животных составляет около 30 мкм или 100 т.п.н. Следовательно, в гаплоидном наборе млекопитающих должно быть 20 000-30 000 репликонов. У низших эукариот величина репликонов меньше, около 40 т.п.н. Так у дрозофилы на геном приходится 3500 репликонов, а у дрожжей – 400. Как говорилось, синтез ДНК в репликоне идет в двух противоположных направлениях. Это легко доказывается радиоавтографически: если клеткам после импульсной метки дать продолжить синтезировать ДНК некоторое время в среде без 3 НТ, то произойдет падение включения его в ДНК, будет происходить как бы разбавление метки, и на радиоавтографе можно будет видеть симметричное, с двух сторон реплицируемого участка, уменьшение количества зерен восстановленного серебра.

Реплицирующиеся концы или вилки в репликоне прекращают движение, когда встретятся с вилками соседних репликонов (в терминальной точке, общей для соседних репликонов). В этом месте реплицированные участки соседних репликонов объединяются в единые ковалентные цепи двух новосинтезированных молекул ДНК. Функциональное подразделение ДНК хромосом на репликоны совпадает со структурным подразделением ДНК на домены или петли, основания которых, как уже упоминалось, скреплены белковыми связками.

Таким образом весь синтез ДНК на отдельной хромосоме протекает за счет независимого синтеза на множестве отдельных репликонов, с последующим соединением концов соседних отрезков ДНК. Биологический смысл этого свойства становится ясным при сравнении синтеза ДНК у бактерий и эукариот. Так бактериальная монорепликонная хромосома длиной в 1600 мкм синтезируется со скоростью около получаса. Если бы сантиметровая молекула ДНК хромосомы млекопитающих реплицировалась тоже как монорепликонная структура, то на это ушло бы около недели (6 суток). Но если в такой хромосоме расположено несколько сот репликонов, то для полной ее репликации понадобится всего около часа. На самом же деле время репликации ДНК у млекопитающих составляет 6-8 часов. Это связано с тем, что не все репликоны отдельной хромосомы включаются одновременно.

В некоторых случаях наблюдается одновременное включение всех репликонов или же появление дополнительных точек начала репликации, что дает возможность закончить синтез всех хромосом за минимально короткое время. Это явление происходит на ранних этапах эмбриогенеза некоторых животных. Так известно, что при дроблении яиц шпорцевых лягушек Xenopus laevis синтез ДНК занимает всего 20 минут, тогда как в культуре соматических клеток этот процесс продолжается около суток. Аналогичная картина наблюдается у дрозофилы: на ранних эмбриональных стадиях весь синтез ДНК в ядре занимает 3,5 минуты, а в клетках культуры ткани – 600 минут. При этом в клетках культуры величина репликонов оказалась почти в 5 раз больше, чем у эмбрионов.

Синтез ДНК по длине отдельной хромосомы происходит неравномерно. Было обнаружено, что в индивидуальной хромосоме активные репликоны собраны в группы, репликативные единицы, которые включают в себя 20-80 точек начала репликации. Это следовало из анализа радиоавтографов ДНК, где наблюдалась именно такая сблоченность реплицирующихся отрезков. Другим основанием для представления о существовании блоков или кластеров репликонов или репликационных единиц были эксперименты с включением в ДНК аналога тимидина - 5’-бромдезоксиуридина (BrdU). Включение BrdU в интерфазный хроматин приводит к тому, что во время митоза, участки с BrdU конденсируются в меньшей степени (недостаточная конденсация), чем те участки, где включался тимидин. Поэтому те участки митотических хромосом в которые включился BrdU, будут слабо окрашиваться при дифференциальной окраске. Это позволяет на синхронизированных культурах клеток выяснить последовательность включения BrdU, т.е. последовательность синтеза ДНК по длине одной взятой хромосомы. Оказалось, что происходит включение предшественника в большие участки хромосомы. Включение разных участков происходит строго последовательно в течение S-периода. Каждая хромосома характеризуется высокой стабильностью порядка репликации по своей длине, имеет свой специфический рисунок репликации.

Кластеры репликонов, объединенные в репликационные единицы, связаны с белками ядерного матрикса (см. ниже), которые вместе с ферментами репликации образуют т.н. кластеросомы – зоны в интерфазном ядре, в которых идет синтез ДНК.

Порядок, в котором активируются репликационные единицы, может, вероятно, определяться структурой хроматина в этих участках. Так, например, зоны конститутивного гетерохроматина (вблизи центромеры) реплицируются обычно в конце S-периода, также в конце S-периода удваивается часть факультативного гетерохроматина (например, X-хромосома самок млекопитающих). Особенно четко во времени последовательность репликации участков хромосом коррелирует с рисунком дифференциальной окраски хромосом: R-сегменты относятся к ранореплицирующимся, G-сегменты соответствуют участкам хромосом с поздней репликацией. C-сегменты (центромера) – места самой поздней репликации.

Так как в разных хромосомах величина и число разных групп дифференциально окрашенных сегментов различно, то это создает картину асинхронного начала и завершения репликации разных хромосом в целом. Во всяком случае, последовательность начала и окончания репликации отдельных хромосом в наборе не беспорядочная. Существует строгая последовательность репродукции хромосом относительно других хромосом в наборе.

Длительность процесса репликации отдельных хромосом прямо не зависит от их размеров. Так крупные хромосомы человека группы А (1-3) оказываются мечеными в течение всего S-периода, так же как и более короткие хромосомы группы В (4-5).

Таким образом, синтез ДНК в геноме эукариот начинается почти одновременно на всех хромосомах ядра в начале S-периода. Но при этом происходит последовательное и асинхронное включение разных репликонов как в разных участках хромосом, так и в разных хромосомах. Последовательность репликации того или иного участка генома строго детерминирована генетически. Это последнее утверждение доказывается не только картиной включения метки в разные отрезки S-периода, но также тем, что существует строгая последовательность появления в ходе S-периода пиков чувствительности определенных генов к мутагенам.

Хроматин представляет собой массу генетического вещества, состоящего из ДНК и белков, которые конденсируются с образованием хромосом во время деления эукариотических . Хроматин содержится в наших клеток.

Основная функция хроматина состоит в том, чтобы сжать ДНК в компактную единицу, которая будет менее объемной и сможет войти в ядро. Хроматин состоит из комплексов небольших белков, известных как гистоны и ДНК.

Гистоны помогают организовать ДНК в структуры, называемые нуклеосомами, обеспечивая фундамент для обертывания ДНК. Нуклеосома состоит из последовательности нитей ДНК, которые обертываются вокруг набора из восьми гистонов, называемых октомерами. Нуклеосома дополнительно складывается с получением хроматинового волокна. Хроматиновые волокна свертываются и конденсируются с образованием хромосом. Хроматин позволяет осуществить ряд клеточных процессов, включая репликацию ДНК, транскрипцию, восстановление ДНК, генетическую рекомбинацию и деление клеток.

Эухроматин и гетерохроматин

Хроматин внутри клетки может быть уплотнен в различной степени в зависимости от стадии клетки в . Хроматин в ядре содержится в виде эухроматина или гетерохроматина. Во время интерфазы, клетка не делится, а подвергается периоду роста. Большая часть хроматина находится в менее компактной форме, известной как эухроматин.

ДНК подвергается воздействию эухроматина, что позволяет проводить репликацию и транскрипцию ДНК. Во время транскрипции двойная спираль ДНК разматывается и открывается, чтобы можно было скопировать , кодирующие белки. Репликация и транскрипция ДНК необходимы для того, чтобы клетка синтезировала ДНК, белки и при подготовке к делению клеток ( или ).

Небольшой процент хроматина существует как гетерохроматин во время интерфазы. Этот хроматин плотно упакован, что не позволяет проводить транскрипцию гена. Гетерохроматин окрашивается красителями в более темный цвет, чем эухроматин.

Хроматин в митозе:

Профаза

Во время профазы митоза волокна хроматина превращаются в хромосомы. Каждая реплицированная хромосома состоит из двух хроматид, соединенных в .

Метафаза

Во время метафазы хроматин становится чрезвычайно сжатым. Хромосомы выровнены на метафазной пластинке.

Анафаза

Во время анафазы парные хромосомы () отделяются и вытягиваются микротрубочками веретена деления на противоположные полюса клетки.

Телофаза

В телофазе каждая новая перемещается в свое собственное ядро. Хроматиновые волокна разматываются и становятся менее уплотненными. После цитокинеза образуются две генетически идентичные . Каждая клетка имеет одинаковое количество хромосом. Хромосомы продолжают разматывать и удлинять образующий хроматин.

Хроматин, хромосома и хроматида

У людей часто возникают проблемы с различием терминов: хроматин, хромосома и хроматида. Хотя все три структуры состоят из ДНК и находятся внутри ядра, каждый из них определяется отдельно.

Хроматин состоит из ДНК и гистонов, которые упакованы в тонкие волокна. Эти волокна хроматина не конденсируются, но могут существовать либо в компактной форме (гетерохроматин), либо менее компактной форме (эухроматин). Процессы, включая репликацию ДНК, транскрипцию и рекомбинацию, встречаются в эухроматине. При делении клеток хроматин конденсируется с образованием хромосом.

Представляют собой одноцепочечные структуры конденсированного хроматина. Во время процессов деления клеток через митоз и мейоз, хромосомы реплицируются, чтобы гарантировать, что каждая новая дочерняя клетка получает правильное количество хромосом. Дублицированная хромосома является двухцепочечной и имеет привычную форму X. Две нити идентичны и связаны в центральной области, называемой центромером.

Является одна из двух нитей реплицированных хромосом. Хроматиды, соединенные центромером, называются сестринскими хроматидами. В конце клеточного деления сестринские хроматиды отделяются от дочерних хромосом в новообразованных дочерних клетках.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...