Химический опыт – получаем флуоресцеин. Реферат: Реакции фенолов Получение из ароматических сульфокислот

Резорцин

Качественные реакции

1. Раствор резорцина от 1 капли раствора хлорида железа принимает разных оттенков синюю, до темно-фиолетовой, окраску.

2. При осторожном нагревании 0,5 г резорцина с 0,1 г винной кислоты и крепкой серной кислотой появляется темное карминово-красное окрашивание.

3. При нагревании резорцина с фталевым ангидридом образуется флуоресцеин:

4. При нагревании нескольких миллилитров 2%-ного раствора резорцина в растворе едкой щелочи на водяной бане и прибавлении нескольких капель хлороформа (или раствора хлоралгидрата) смесь окрашивается в интенсивный красный цвет (отличие от гидрохинона и пирокатехина), переходящий в желтоватый после под-кисления разведенной уксусной кислотой.

5. Бромная вода выделяет осадок - см. Количественное определение.

Количественное определение

Бромометрическое определение основано на том, что бром в избытке взаимодействует с резорцином с образованием трибромре-зорцина:

Избыток брома определяется йодометрически.

1 г резорцина растворяют в воде в мерной колбе на 100 мл и доводят до метки. 25 мл этого раствора переливают в склянку на 500 мл с притертой пробкой, прибавляют 50 мл бромат-бромид-ной смеси (2,7833 г бромата калия и 50 г бромида калия в 1 л раствора), 50 мл воды, 5 мл соляной кислоты (уд. вес 1,15) и оставляют на одну минуту, после чего прибавляют еще 20 мл воды и 1 г йодида калия. Жидкость оставляют на 5 минут и выделившийся йод титруют 0,1 н. раствором тиосульфата натрия (индикатор - раствор крахмала). 1 мл 0,1 н. раствора бромата калия соответствует 0,001835 г резорцина.

Цель работы

Целью работы является проведение реакций окисления и конденсации для фенола и его производных.

Теоретическая часть

Фенолы – ароматические соединения, имеющие гидроксильные группы, непосредственно связанные с ароматическим ядром. По числу гидроксилов различают одноатомные, двухатомные и многоатомные фенолы. Простейший из них – оксибензол называют фенолом. Оксипроизводные толуола (метилфенолы) называют орто-, мета- и паракрезолами, а оксипроизводные ксилолов – ксиленолами. Фенолы ряда нафталина называют нафтолами. Простейшие двухатомные фенолы называются: о – диоксибензол – пирокатехин, м – диоксибензол – резорцин, n- диоксибензол – гидрохинон.

Многие фенолы легко окисляются, при этом часто образуется сложная смесь продуктов. В зависимости от окислителя и условий реакции можно получить различные продукты. Так, при парофазном окислении (t=540 0) о – ксилола получают фталевый ангидрид. Качественной реакцией на фенолы является проба с раствором хлорного железа, при этом образуется окрашенный ион. Фенол дает краснофиолетовую окраску, крезолы – голубую, другие фенолы – зеленую.

Реакция конденсации представляет собой внутримолекулярный или межмолекулярный процесс образования новой С-С-связи, обычно протекающий при участии конденсирующих реагентов, роль которых может быть самой различной: оказывает число каталитическое действие, давать промежуточные реакционноспособные продукты, просто связывать отщепляющуюся частицу, смещая равновесие в системе.

Реакция конденсации с отщеплением воды катализируется разнообразными реагентами: сильными кислотами,сильными щелочами (гидроокисями, алкоголятами, амидами, гидридами щелочных металлов, аммиаком, первичными и вторичными аминами).

Порядок выполнения работы

В данной работе проводится проверка возможности окисления фенолов и образования фталеинов реакцией конденсации.

3.1 Окисления фенола и нафтола

Окисление проводится раствором марганцево-кислого калия в присутствии раствора углекислого натра (соды).

3.1.1 оборудование и реактивы:

Пробирки;

Пипетки;

Фенол – водный раствор;

Нафтол - водный раствор;

Маргацевокислый калий (0,5 % - ный водный раствор);

Углекислый натрий (5 % - ный водный раствор);

3.1.2 Проведение опыта:

а) в пробирку поместить 1 мл водного раствора фенола или нафтола;

б) прилить 1 мл раствора углекислого натра (соды);

в) приливать по каплям раствор марганцевокислого калия при встряхивании пробирки. Наблюдать за измененим окраски раствора.

Окисление фенолов обычно протекает по различным направления и ведет к образованию сложной смеси веществ. Более легкая окисляемость фенолов, по сравнению с ароматическими углеводородами, обусловлена влиянием гидроксильной группы, резко повышающей подвижность атомов водорода при других атомах углерода бензольного яда.

3.2 Образование фталеинов.

3.2.1 Получение фенолфталеина.

Фенолфталеин образуется при реакции конденсации фенола со фталевым ангидридом в присутствии концентрированной серной кислоты.

Фталевый ангидрид вступает в конденсацию с фенолами, давая производные трифенилетана. Конденсация сопровождается отщеплением воды за счет кислорода одной из карбонильных групп ангидрида и подвижных атомов водорода бензольных ядер двух молекул фенола. Введение водоотнимающих средств, таких как концентрированная серная кислота, очень облегчает эту конденсацию.

Фенол образует фенолфталеин по следующей реакции:

/ \ /

H H С

3.2.1.1 Оборудование и реактивы:

Пробирки;

Пипетки;

Электроплитка;

Фталевый ангидрид;

Серная кислота разбавленная 1:5;

3.2.1.2 Проведение опыта:

б) в эту же пробирку добавить примерно вдвое большее количество фенола;

в) встряхнуть несколько раз содержимое пробирки и осторожно добавить к нему 3-5 капель концентрированной серной кислоты, продолжая встряхивать;

г)нагреть пробирку на электроплитке до появления темно-красного окрашивания;

д) охладить пробирку и добавить в нее 5 мл воды;

е) к полученному раствору добавить по каплям раствор щелочи и наблюдать изменение окраски;

ж) после изменения окраски к содержимому пробирки добавить несколько капелл разбавленной серной кислоты до возвращения первоначальной окраски или до обесцвечивания.

3.2.2 Получение флуоресцеина.

Флуоресциин образуется при реакции конденсации резорцина с фталевым ангидридом в присутствии концентрированной серной кислоты.

Двухатомные фенолы с гидроксильными группами в мета – положении, вступая в конденсацию, выделяют две молекулы воды, одну за счет кислорода одной из карбонильных групп ангидрида и подвижных атомов водорода бензольных ядер двух молекул фенола. вторая молекула воды выделяется за счет гидроксильных групп двух молекул фенола с образованием шестичленного кольца.

Резорцин образует флуоресцеин по следующей реакции:

OH HO ОН HO OH

/ \ / \ /

H H С

3.2.1.1.Оборудование и реактивы:

Пробирки;

Пипетки;

Электроплитка;

Фталевый ангидрид;

Резорцин;

Серная кислота концентрированная;

Раствор едкого натрия(5-10 %-ный);

3.2.2.1 Проведение опыта:

а) взвесить 0.1-0.3 г фталевого ангидрида и поместить в пробирку;

б) в эту же пробирку добавить примерно вдвое большее количество резорцина и перемешать встряхивая;

в) к содержимому пробирки осторожно добавит 3-5 капель концентрированной серной кислоты;

г) смесь в пробирке нагреть до появления темно-красного окрашивания. Нагреть на электроплитке;

д) охладить содержимое пробирки и добавить в нее 5 мл воды;

е) в чистую пробирку внести 2-3 капли полученного раствора, добавить 1 мл раствора щелочи и разбавить большим количеством воды. Наблюдать за изменением окраски.

3.2.3 Образование аурина

Аурин получается при конденсации щавелевой кислоты с фенолом в присутствии серной кислоты.

При нагревании в присутствии серной кислоты щавелевая кислота конденсируется с тремя молекулами фенола, отщепляя воду и окись углерода с образованием аурина.


H-O- - H H - -OH

-H . OH O =

| . С = O +3H 2 O+CO

H - C

3.2.3.1. Оборудование и реактивы:

Пробирки;

Пипетки;

Щавелевая кислота;

Серная кислота концентрированная;

3.2.3.2 Проведение опыта:

а) взвесить 0,02-0,05г щавелевой кислоты и примерно вдвое больше фенола;

б) поместить оба реактива пробирку и перемешать встряхиванием;

в) добавить в пробирку 1-2 капли концентрированной серной кислоты;

г) осторожно нагреть пробирку со смесью до начала кипения и появления интенсивно желтой окраски;

д) охладить пробирку, добавить в нее 3-4 мл воды и встряхнуть. Наблюдать за появившейся окраской;

е) к полученному раствору добавить несколько капель раствора щелочи и наблюдать за изменением окраски;

3.3 Разложение мочевины (амида карбоминовой кислоты) при нагревании.

При нагревании выше температуры плавления мочевина распадается с выделением аммиака. При температуре 150 0 -160 0 С две молекулы мочевины отщепляют одну молекулу аммиака и дают хорошо растворимый в теплой воде биуреат:

H 2 N-OO-NH 2 +H-NH-OO-NH 2 H 2 N-CO-NH-CO-NH 2 +NH 3

Для биуреата характерно образование в щелочном растворе с солями меди ярко-красного комплексного соединения, имеющиге в растворе едкого натра следующий состав:

(NH 2 CO NH CONH 2) 2 *2NaOH*Cu(OH) 2

3.3.1 Оборудование и реактивы:

Пробирки;

Электроплитка;

Мочевина (карбомид);

Раствор едкого натрия(5-7 %-ный);

Раствор серной меди (1%-ный).

3.3.2 Проведение опыта:

а) взвесить 0,2-0,3г мочевины и поместить в сухую пробирку;

б) нагреть пробирку на электрической плитке;

в) наблюдать за происходящими изменениями: плавлением, выделением аммиака, затвердеванием;

г) охладить пробирку;

д) в охлажденную пробирку добавить 1-2мл теплой воды, взболтать и слить в другую пробирку;

е) к полученному мутному раствору добавить 3-4 капли раствора едкого натра до прозрачности. Затем добавить одну каплю раствора серной кислой меди и наблюдать изменение окраски (появляется красивое фиолетовое окрашивание).


Похожая информация.


Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

Синтез флуоресцеина

Решил провести эксперименты с флуоресцеином, но готового реактива под рукой не оказалось: пришлось провести пробный синтез. В наличии были фталевый ангидрид и несколько грамм резорцина. За основу взял методику из статьи .

Для пробного эксперимента необходимые количества веществ рассчитывать не стал: просто взял 1 гр фталевого ангидрида, 1 гр резорцина, смешал. Смесь поместил в стаканчик на 50 мл и смочил примерно 0.5 мл концентрированной серной кислоты.

Стаканчик закрепил над включенной электрической плиткой. Смесь расплавилась и стала малиновой. Позже - красновато-коричневой. Нагрев регулировал, то убирая, то подставляя под стаканчик плитку. В целом смесь несильно кипела минут 5. Когда стаканчик снял с плитки, в верхней его части образовались иглы фталевого ангидрида.

Приготовил раствор 0.5 гр едкого натра в 50 мл воды. Смесь нужно было вылить из стаканчика в раствор щелочи, не дав ей остыть - иначе она застынет. В случае с пробиркой (см. цитируемую статью) это, видимо, было несложно, но у стаканчика бОльшая поверхность - смесь застывала. Из стаканчика удалось вылить в раствор щелочи всего лишь несколько капель, которые застыли на дне в виде зеленых шариков. Раствор стал желтовато-зеленым с характерной флуоресценцией.

Остальную часть застывшего расплава было достать из стакана проблематично. Решил: "Если гора не идет к Магомету - не грех сходить к горе". Вместо того чтобы пытаться выколупывать продукт, чтобы перенести его в щелочь, лучше налить щелочь в стакан с застывшей реакционной смесью и подождать, пока она растворится.

В результате получилась темно-зеленая жидкость с осадком. Поставил стаканчик на выключенную, но все еще горячую плитку. Реакционная смесь постепенно отстала от стенок, а жидкость стала коричневой.

Так и оставил на выходные. Потом еще переживал, что стакан нужно было накрыть, чтобы флуоресцеин в щелочной среде не окислялся воздухом (указаний на такую опасность в литературе не встречал, но кто его знает...)

После выходных пришел на работу и посмотрел на свой флуоресцеин (в пятницу оставил стакан с плавом, залитым раствором щелочи на остывающей плитке).

В стакане был желтый раствор (натриевая соль флуоресцеина - уранин) и красный порошок - осадок флуоресцеина. Однако не весь осадок был в виде порошка. На стеклянную палочку налипла масса, похожая на карамель (нерастворившийся плав).

Содержимое стакана профильтровал: образовался желтый раствор, а красный осадок осел на фильтре.

Когда я посмотрел методику получения флуоресцеина из резорцина и фталевого ангидрида , то убедился, что взял фталевый ангидрид в избытке (на 22.5 г резорцина нужно 15 г фталевого ангидрида, я же взял наугад: 1 г резорцина - 1 г фталевого ангидрида).

Именно поэтому не весь плав растворился, среда в стакане была явно не щелочной, а большая часть флуоресцеина находилась в осадке (напомню: флуоресцеин слабо растворим в воде, а его натриевая соль [уранин] - значительно лучше).

Палочку с прилипшей к ней массой перенес в чистый стакан, добавил гранулы едкого натра и немного воды. Плав постепенно растворился, образуя красно-коричневый непрозрачный раствор. Позднее к флуоресцеину, который остался на фильтре, я добавил щелочь и тоже перевел его в раствор. Растворы объединил.

(По большому счету отфильтровывать флуоресцеин было не обязательно: достаточно было максимально слить жидкость с осадка, а к образовавшейся суспензии добавить щелочь. Разумеется, кроме флуоресцеина в полученном растворе также содержится щелочь, сульфат натрия, фталат натрия и, возможно, остатки резорцина, но для дальнейших экспериментов это большого значения не имеет).

Каплю коричневого раствора добавил в трехлитровую банку с водой. Капля постепенно опускалась, образуя вихревые кольца, нити и "облака". Сначала капля была коричневой, потом постепенно стала желто-зеленой с отчетливой флуоресценцией. Неописуемая красота. Позже аналогичный эксперимент провел в пятилитровой банке.

Итак, приступим к экспериментам с флуоресцеином.

____________________________________________________________

Фенолы могут реагировать как по гидроксильной группе, так и по бензольному кольцу.

1. Реакции по гидроксильной группе

Углерод-кислородная связь в фенолах гораздо прочнее, чем в спиртах. Например, фенол не может быть превращен в бромбензол действием на него бромоводорода, тогда как циклогексанол при нагревании с бромоводородом легко превращается в бромциклогексан:

Как и алкоксиды феноксиды реагируют с алкилгалогенидами и другими алкилирующими реагентами с образованием смешанных эфиров:

(23)

Фенетол

(24)

Анизол

Алкилирование фенолов галогенуглеводородами или диметилсульфатом в щелочной среде представляет собой модификацию реакции Вильямсона. По реакции алкилирования фенолов хлоруксусной кислотой получают такие гербициды как 2,4-дихлорфеноксиуксусная кислота (2,4-Д).

(25)

2,4-Дихлорфеноксиуксусная кислота (2,4-Д)

и 2,4,5-трихлорфеноксиуксусная кислота (2,4,5-Т).

(26)

2,4,5-трихлорфеноксиуксусная кислота (2,4,5-Т)

Исходный 2,4,5-трихлорфенол получают по схеме:

(27)

1,2,4,5- Тетрахлорфенол 2,4,5-трихлорфеноксид натрия 2,4,5-трихлорфенол

При перегреве на стадии получения 2,4,5-трихлорфенола вместо него может образовываться очень токсичный 2,3,7,8-тетрахлордибензодиоксин:

2,3,7,8-Тетрахлордибензодиоксин

Фенолы являются более слабыми нуклеофилами, чем спирты. По этой причи-не они в отличие от спиртов не вступают в реакцию этерификации. Для получения сложных эфиров фенолов используют хлорангидриды и ангидриды кислот:

Фенилацетат

Дифенилкарбонат

Упр.17. Тимол (3-гидрокси-4-изопропилтолуол) содержится в тимьяне и используется в качестве антисептика средней силы в зубных пастах и жидкостях для полоскания рта. Его получают алкилированием по Фриделю – Крафтсу

м -крезола 2-пропанолом в присутствии серной кислоты. Напишите эту реакцию.

2. Замещение в кольцо

Оксигруппа фенола очень сильно активирует ароматическое кольцо по отношению к реакциям электрофильного замещения. В качестве промежуточных соединений вероятнее всего образуются оксониевые ионы:

При проведении реакции электрофильного замещения в случае фенолов необходимо применять специальные меры для того, чтобы предотвратить полизамещение и окисление.

3. Нитрование

Фенол нитруется гораздо легче бензола. При действии на него концентриро-ванной азотной кислоты образуется 2,4,6-тринитрофенол (пикриновая кислота):

Пикриновая кислота

Наличие в ядре трех нитрогрупп резко увеличивает кислотность фенольной группы. Пикриновая кислота является, в отличие от фенола, уже довольно сильной кислотой. Наличие трех нитрогрупп делает пикриновую кислоту взрывчатой, она используется для приготовления мелинита. Для получения мононитрофенолов необходимо использовать разбавленную азотную кислоту и проводить реакцию при низких температурах:

Получается смесь о- и п- нитрофенолов с преобладанием о- изомера. Эта смесь легко разделяется благодаря тому, что только о- изомер обладает летучестью с водяным паром. Большая летучесть о- нитрофенола объясняется образованием внутримолекулярной водородной связи, в то время как в случае

п- нитрофенола возникает межмолекулярная водородная связь.

4. Сульфирование

Сульфирование фенола осуществляется очень легко и приводит к образованию в зависимости от температуры преимущественно орто - или пара -фенолсульфокислот:

5. Галогенирование

Высокая реакционная способность фенола приводит к тому, что даже при его обработке бромной водой происходит замещение трех атомов водорода:

(31)

Для получения монобромфенола необходимо принимать специальные меры.

(32)

п -Бромфенол

Упр.18. На 0.94 г фенола действуют небольшим избытком бромной воды. Какой продукт и в каком количестве при этом образуется?

6. Реакция Кольбе

Диоксид углерода присоединяется к феноксиду натрия по реакции Кольбе, представляющей собой реакцию электрофильного замещения, в которой электрофилом является диоксид углерода

(33)

Фенол Феноксид натрия Салицилат натрия Салициловая кислота

Механизм:

(М 5)

Действием на салициловую кислоту уксусного ангидрида получают аспирин:

(34)

Ацетилсалициловая кислота


Если оба орто -положения заняты, то замещение проходит по пара- положению:

(35)

Реакция проходит по следующему механизму:


(М 6)

7. Конденсация с карбонилсожержащими соединениями

При нагревании фенола с формальдегидом в присутствии кислоты образуется фенолформальдегидная смола:

(36)

Фенолформальдегидная смола

Конденсацией фенола с ацетоном в кислой среде получают 2,2-ди(4-гидроксифенил)пропан, получивший промышленное название бисфенол А:

Бисфенол А

2,2-ди(4-гидроксифенил)пропан

ди(4-оксифенил)диметилметан

Обработкой бисфенола А фосгеном в пиридине получают лексан:

В парисутствии серной кислоты или хлорида цинка фенол конденсируется с фталевым ангидридом с образованием фенолфталеина:

(39)

Фталевый ангидрид Фенолфталеин

При сплавлении фталевого ангидрида с резорцином в присутствии хлорида цинка происходит аналогичная реакция и образуется флуоресцеин:

(40)

Резорцин Флуоресцеин

Упр.19. Изобразите схему конденсации фенола с формальдегидом. Какое практическое значение имеет эта реакция?

8. Перегруппировка Кляйзена

Фенолы вступают в реакции алкилирования по Фриделю-Крафтсу. Например, при взаимодействии фенола с аллилбромидом в присутствии хлорида алюминия образуется 2-аллилфенол:

(41)

Этот же продукт образуется и при нагревании аллилфенилового эфира в результате внутримолекулярной реакции называемой перегруппировкой Кляйзена:


Аллилфениловый эфир 2-Аллилфенол

Реакция

(43)

Проходит по следующему механизму:

(44)

Перегруппировка Кляйзена происходит также и при нагревании аллилвинилового эфира или 3,3-диметил-1,5-гексадиена:

(45)

Аллилвиниловый эфир 4-Пентеналь

(46)

3,3-Диметил- 2-Метил-2,6-

1,5-гексадиен гексадиен

Известны и другие реакции этого типа, например, Реакция Дильса-Альдера. Их называют перициклическими реакциями.

Получение. Получают из бензола.

Описание . Белый или белый со слабым желтоватым оттенком кристаллический порошок со слабым характерным запахом. Под влиянием света и воздуха постепенно окрашивается в розовый цвет.

Растворимость . Очень легко растворим в воде и 95% спирте, легко растворим в эфире, очень мало растворим в хлороформе, растворим в глицерине и жирном масле.

Подлинность .

1) При прибавлении к раствору препарата раствора хлорида окисного железа появляется сине-фиолетовое окрашивание, переходящее от прибавления раствора аммиака в буровато-желтое.

2) При сплавлении в фарфоровой чашке нескольких кристаллов препарата с избытком фталевого ангидрида получается плав желто-красного цвета. При растворении плава в растворе едкого натра появляется интенсивная зеленая флюоресценция.

Температура плавления 109-112°.

Количественное определение .

Броматометрический метод (вариант обратного титрования ).

Точную навеску препарата помещают в мерную колбу, растворяют в воде, прибавляют избыток 0,1М KBrO 3 , KBr, H 2 SO 4 , затем к смеси прибавляют раствор йодида калия, смесь сильно взбалтывают и оставляют на 10 минут в темном месте. После этого добавляют хлороформ и титруют выделившийся йод 0,1М раствором тиосульфата натрия до обесцвечивания.

KBrO 3 + 5KBr + 3H 2 SO 4 → 3Br 2 + 3K 2 SO 4 + 3H 2 O

Br 2 + 2KJ = J 2 + 2KBr

J 2 + 2Na 2 S 2 O 3 = 2NaJ + Na 2 S 4 O 6

УЧ = 1/6, формула обратного титрования

Хранение . В хорошо укупоренных банках оранжевого стекла.

Применение. Антисептическое средство, при кожных заболеваниях, экземе, наружно в мазях, пастах или растворах, редко применяется внутрь как средство, дезинфицирующее ЖКТ.

Резорцин несовместим с тимолом, ментолом, аспирином, камфорой (образует сыреющие смеси).

Легко разлагается (в щелочной среде) – окисляется, восстанавливает препараты ртути до металлической.

См. Учебно-методическое пособие по внутриаптечному контролю: глазные капели - раствор резорцина 1%.

Ароматические кислоты

Ароматические кислоты – это органические соединения, имеющие функциональную группу –COOH, а в качестве радикала бензольное ядро.

Простейший представитель – бензойная кислота.

Свойства ароматических кислот определяются:

1. Свойствами бензольного ядра, для которого характерны:

1.1. Реакции замещения водорода в ядре на галоген, NO 2 - , SO 3 2- - группы.

2. Свойствами – COOH группы.

2.1. Образовывать соли со щелочными, тяжелыми металлами, щелочами, карбонатами щелочных металлов.



2.2. Образовывать ангидриды, галогенангидриды, амиды.

2.3. Образовывать сложные эфиры в присутствии концентрированной серной кислоты.

3. Реакция среды ароматических кислот определяется по индикаторам (кислая).

Свободные ароматические кислоты применяют только наружно, т.к. диссоциируя на ионы, отщепляют ион H + , который обладает раздражающим действием, даже прижигающим. Кроме того, попадая в кровь, изменяет структуру кровяных телец, поэтому внутрь назначают только соли и сложные эфиры ароматических кислот.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...