Гипотеза Римана. Распределение простых чисел

Российский математик нашел доказательство Гипотезы Римана January 3rd, 2017


Бернхард Риман

Помните, я вам рассказывал про . Так вот, среди них была гипотеза Римана.

В 1859 году немецкий математик Бернхард Риман взял давнюю идею Эйлера и развил ее совершенно по-новому, определив так называемую дзета-функцию. Одним из результатов этой работы стала точная формула для количества простых чисел до заданного предела. Формула представляла собой бесконечную сумму, но специалистам по анализу к этому не привыкать. И это не было бесполезной игрой ума: благодаря этой формуле удалось получить новые подлинные знания о мире простых чисел. Мешала только одна маленькая неувязка. Хотя Риман мог доказать, что его формула точна, самые важные потенциальные следствия из нее полностью зависели от одного простого утверждения, касающегося дзета-функции, и вот это то простое утверждение Риман никак не мог доказать. Полтора столетия спустя, мы все еще не сумели сделать это.

Сегодня это утверждение называется гипотезой Римана и представляет собой, по сути, священный Грааль чистой математики, который похоже "нашел" российский математик .

Это может значить то, что мировая математическая наука находится на пороге события международного масштаба.

Доказательство или опровержение гипотезы Римана будет иметь далеко идущие последствия для теории чисел, особенно, в области распределения простых чисел. А это может повлиять на совершенствование информационных технологий.

Гипотеза Римана входит в список семи «проблем тысячелетия», за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит награду в один миллион долларов США.

Таким образом, доказательство гипотезы может обогатить российского математика.

Согласно неписаным законам международного научного мира, успех Игоря Турканов полностью признают не раньше, чем через несколько лет. Тем не менее, его работа уже была представлена на Международной физико-математической конференции под эгидой Института прикладной математики им. Келдыша РАН в сентябре 2016 года.

Также отметим, что если найденное Игорем Туркановым доказательство Гипотезы Римана будет признано верным, то на счет российских математиков будет записано решение уже двух из семи «проблем тысячелетия». Одну из этих проблем - «гипотезу Пуанкаре» в 2002 году . При этом он отказался от полагавшейся ему премии в $1 млн от института Клэя.

В 2015 году Профессор математики Опиеми Энох (Opeyemi Enoch) из Нигерии заявил о том, что он смог решить гипотезу Римана, но в Математическом институте Клэя пдо сегодняшнего момента считали гипотезу Римана недоказанной. По словам представителей института, для того, чтобы достижение было зафиксировано, его необходимо опубликовать в авторитетном международном журнале, с последующим подтверждением доказательства научным сообществом.

источники

Гипотеза Римана является одной из семи «проблем тысячелетия», за её доказательство Институт математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит приз в 1 млн. долларов. К рассмотрению принимаются решения, которые были опубликованы в известном математическом журнале, причём не ранее, чем через 2 года после публикации (для всестороннего рассмотрения математическим сообществом)(http://www.claymath.org/millennium/).
Я имел свои соображения и подходы, как всегда, сильно отличающиеся от известных. Мне хотелось написать художественно о гипотезе Римана. В процессе своих выкладок и сбора материала я обнаружил прекрасно написанную книгу Джона Дербишира: Джон ДЕРБИШИР «Простая одержимость.Бернхард Риман и величайшая нерешенная проблема в математике»(John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics). Издательство «Астрель», 2010 г.
После прочтения этой книги мне оставалось дать только эту ссылку.
«В августе 1859 года Бернхард Риман стал членом-корреспондентом Берлинской академии наук; это была большая честь для тридцатидвухлетнего математика. В согласии с традицией Риман по такому случаю представил академии работу по теме исследований, которыми он был в то время занят. Она называлась «О числе простых чисел, не превышающих данной величины». В ней Риман исследовал простой вопрос из области обычной арифметики. Чтобы понять этот вопрос, сначала выясним, сколько имеется простых чисел, не превышающих 20. Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих тысячи? Миллиона? Миллиарда? Существует ли общий закон или общая формула, которые избавили бы нас от прямого пересчета?
Риман взялся за эту проблему, используя самый развитый математический аппарат своего времени - средства, которые даже сегодня изучаются только в продвинутых институтских курсах; кроме того, он для своих нужд изобрел математический объект, сочетающий в себе мощь и изящество одновременно. В конце первой трети своей статьи он высказывает некоторую догадку относительно этого объекта, а далее замечает:
«Хотелось бы, конечно, иметь строгое доказательство этого факта, но после нескольких недолгих бесплодных попыток я отложил поиск такого доказательства, поскольку этого не требуется для непосредственных целей моего исследования».
Эта высказанная по случаю догадка оставалась почти незамеченной в течение десятилетий. Но затем, по причинам, которые я поставил себе целью описать в данной книге, она постепенно завладела воображением математиков, пока не достигла статуса одержимости, непреодолимой навязчивой идеи.
Гипотеза Римана, как стали называть эту догадку, оставалась навязчивой идеей в течение всего XX столетия и остается таковой по сей день, отразив к настоящему моменту все без исключения попытки доказать ее или опровергнуть. Эта одержимость Гипотезой Римана стала сильна как никогда после того, как в последние годы были успешно решены другие великие проблемы, долгое время остававшиеся открытыми: Теорема о четырех красках (сформулирована в 1852 году, решена в 1976), Последняя теорема Ферма (сформулирована, по-видимому, в 1637 году, доказана в 1994), а также многие другие, менее известные за пределами мира профессиональных математиков. Гипотеза Римана поглощала внимание математиков в течение всего XX века. Вот что говорил Давид Гильберт, один из виднейших математических умов своего времени, обращаясь ко второму международному конгрессу математиков:«В теории распределения простых чисел в последнее время Адамаром, де ля Валле Пуссеном, фон Мангольдтом и другими сделаны существенные сдвиги. Но для полного решения проблемы, поставленной в исследовании Римана «О числе простых чисел, не превышающих данной величины», необходимо прежде всего доказать справедливость исключительно важного утверждения Римана <...>».
Далее Гильберт приводит формулировку Гипотезы Римана. А вот как сто лет спустя высказался Филип А. Гриффитс, директор Института высших исследований в Принстоне, а ранее - профессор математики в Гарвардском университете. В своей статье, озаглавленной «Вызовы исследователям XXI века», в январском номере Journal of the American Mathematical Society за 2000 год он пишет:
«Несмотря на колоссальные достижения XX века, десятки выдающихся проблем все еще ожидают своего решения. Наверное, большинство из нас согласится, что следующие три проблемы относятся к числу наиболее вызывающих и интересных.
Первой из них является Гипотеза Римана, которая дразнит математиков уже 150 лет <...>».
Интересным явлением в Соединенных Штатах в последние годы XX века стало появление частных математических исследовательских институтов, финансируемых богатыми любителями математики. И Математический институт Клея (основанный в 1998 году бостонским финансистом Лэндоном Т. Клеем), и Американский математический институт (основан в 1994 году калифорнийским предпринимателем Джоном Фраем) ориентировали свои исследования на Гипотезу Римана. Институт Клея установил премию в миллион долларов за ее доказательство или опровержение. Американский математический институт обращался к Гипотезе на трех полномасштабных конференциях (в 1996, 1998 и 2000 годах), собравших исследователей со всего мира. Помогут ли эти новые подходы и инициативы в конце концов победить Гипотезу Римана, пока не ясно.
В отличие от Теоремы о четырех красках или Последней теоремы Ферма Гипотезу Римана нелегко сформулировать так, чтобы сделать ее понятной для нематематика, потому что она составляет самую суть одной трудной для понимания математической теории. Вот как она звучит:
Гипотеза Римана.
Все нетривиальные нули дзета-функции
имеют вещественную часть, равную одной второй».
Когда соприкасаешься с трудами вокруг гипотезы Римана, приходит мистическая идея не только об эволюции идей и мышления, не только о закономерностях развитии математики, не только об устройстве самого плана развёртывания вселенной, но и об изначальном знании, абсолютной истине, логосе как программе Единого.
Математические абстракции правят миром, управляют поведением элементарных частиц, высоких энергий, математические операторы порождают и уничтожают всё что угодно. После ряда веков доминирования материального, поклонения материальному, снова стала проявляться сила мирового духа в виде математических абстракций, пифагореизм, платонизм стали методологическими ориентирами современной науки.
Я с детства находил ошибки в трудах великих математиков. Не из зависти или вредности, а просто было интересно, могу ли я превзойти Пифагора,Диофанта, Евклида,Ферма, Мерсенна, Декарта, Гаусса, Эйлера, Лежандра,Римана,Дирихле, Дедекинда, Кляйна, Пуанкаре. И как ни странно, превосходил. Формулировал новые проблемы, доказывал новые теоремы. Но оказалось, что математический мир устроен, несмотря на требования точности и доказательности, как-то бюрократически. Оказалось, что твоим доказательствам просто не верят. Вопреки логике и объективности. А верят сказкам прессы, радио и телевидения. При этом средства массовой информации так сильно искажают действительное положение дел, что с удивлением узнаёшь, как переделаны твои фразы. Поэтому я стал избегать интервью.
Хочу заметить наличие множества ошибок вокруг гипотезы и дзета-функции Римана, а также в попытках доказать или опровергнуть гипотезу. Риман не придал большого значения поиску нулей дзета-функции. Но хор "выдающихся" последователей невероятно раздул значение гипотезы. Я показываю даже элементарными выкладками, что гипотеза неверна, что есть другие решения. Во-первых, дзета-функция не обладает той симметрией, о которой твердят, - симметрию решений имеет совсем другая функция. Во-вторых, если не лениться и уметь вычислять корни уравнений для функций с комплексными переменными, можно увидеть, что дело обстоит на самом деле несколько иначе. Хотите убедиться? Прочтите внимательно формулы на приложенном рисунке. Более подробно исчерпывающие примеры и вычисления можно найти в заметке "The Riemann"s Hypothesis Refutation Formulae" Можете добавить свои обобщения (особенно самой функции) и соответствующие вычисления. "А ларчик просто открывался!"
Успехов Вам!

Энциклопедичный YouTube

    1 / 5

    ✪ #170. ГИПОТЕЗА РИМАНА - ПРОБЛЕМА ТЫСЯЧЕЛЕТИЯ!

    ✪ Science show. Выпуск 30. Гипотеза Римана

    ✪ Гипотеза Римана. Решена проблема тысячелетия (но это не точно) | трушин ответит #031 +

    ✪ Гипотеза Римана. Решена проблема тысячелетия (но это не точно). Часть II | трушин ответит #032 +

    ✪ Что доказал Григорий Перельман?

    Субтитры

    Если натуральное число имеет только два делителя - само себя и единицу, то его называют простым. Наименьшее простое число - это два, тройка тоже делится лишь на саму себя и на единичку, а вот дважды-два - четыре, и это число составное, из пяти квадратиков можно лишь составить прямоугольник со сторонами 5 и 1, а вот шесть квадратиков можно выстроить не только в один ряд, но еще и прямоугольником 2х3. Интерес к простым числам появился еще в древности: первые записи по теме, известные нам, относятся ко второму тысячелетию до нашей эры - древние египтяне знали толк в математике. В Античные времена Евклид доказал, что простых чисел - бесконечно много, а, кроме того, у него было представление об основной теореме арифметики. Эратосфен в свою очередь придумал (или по крайней мере зафиксировал) алгоритм поиска простых чисел. Это очень крутая штука, называемая решетом Эратосфена, смотрите: сейчас мы быстро с его помощью определим в первой сотне натуральных чисел все простые. Единичка не является простым по определению, двойка - первое простое: вычеркиваем все числа кратные ей, ведь они обязательно составные. Ну вот, кандидатов уже вдвое меньше! Берем следующее простое число - три, вычеркиваем все числа, кратные трем. Заметьте, пятерка выбивает не так уж и много чисел, ведь многие уже оказались кратны двум или трем. Но что самое удивительное - наш алгоритм можно закончить на числе семь! Подумайте, почему это так! И если догадались, напишите в комментариях, на каком числе можно закончить процедуру при работе с первом десятком тысяч натуральных чисел! Итак, всего в первой сотне у нас оказалось двадцать пять простых чисел. Хм… а сколько простых чисел в первой тысяче или, скажем, миллионе? Этот вопрос потревожил самые светлые умы человечества не на шутку, никому тогда даром не нужны была практическая польза криптографии: математика - это скорее разговор с Богом или, во всяком случае, один из способов его услышать. Ну а простые числа - это как в химии атомы и как в литературе алфавит. Ладно, ближе к теме! Эстафету древнегреческих ученых спустя века принимает вся Европа: разрабатывает теорию чисел Пьер Ферма, огромный вклад вносит Леонард Эйлер, ну и, конечно, кем только не составляются огромные таблицы простых чисел. Однако закономерность появления наших особых нумеров среди составных обнаружить не удается. И только лишь в конце 18-го века Гауссом и Лежандром выдвигается предположение, что замечательнейшая функция π(x), которая подсчитывала бы количество простых чисел, меньших либо равных действительному числу x, устроена следующим образом π(x)=x/lnx. Кстати, у нас в первой сотне сколько чисел оказалось простых? Двадцать пять, правильно? Даже для таких малых значений функция выдает на выходе адекватный к истине результат. Хотя речь, скорее о пределе отношения π(x) и x/lnx: на бесконечности он равен единице. Вот это утверждение и есть теорема о распределении простых чисел. Существенный вклад в ее доказательство внес наш соотечественник Пафнутий Львович Чебышёв, а покончить с темой целиком можно было бы, сообщив вам напоследок, что эта теорема была доказана независимо Жаком Адамаром и Валле-Пуссеном еще в 1896 году. Ага…если бы не одно «но»! В своих рассуждениях они опирались на тезис одного коллеги-предшественника. И этим ученым с учетом того, что Эйнштейн еще не родился, был Бернхард Риман. Вот вам кадр с оригиналом рукописи Римана. Знаете, почему именно с этой темой он выступил: причина стара как наша образовательная система: простыми числами занимался научный руководитель Римана - Карл Фридрих Гаусс, король математики, между прочим! Вот здесь старая печатная версия доклада на немецком. Мне посчастливилось найти русский перевод, но даже стряхнув с него пыль, некоторые формулы трудно разглядеть, поэтому мы воспользуемся английским вариантом. Смотрим! Бернхард отталкивается от результатов Эйлера: справа с помощью заглавной греческой буквы сигма записана сумма всех натуральных чисел, а слева посредством заглавной и не менее греческой буквы Пи обозначено произведение, притом малая буква p пробегает все простые числа. Это очень красивое соотношение - призадумайтесь! Далее вводится дзета-функция и развиваются идеи, связанные с ней. А затем повествование посредством тернистой дороги математического анализа идет к заявленной теореме о распределении простых чисел, хотя и несколько с другого ракурса. А теперь взглянем сюда: уравнение, в котором слева - кси-функция, тесно связанная с дзетой, а справа -нолик. Риман пишет: «Вероятно все нули кси-функции действительные, во всяком случае было бы желательно найти строгое доказательство этого предложения». Затем добавляет, что после нескольких напрасных, не очень настойчивых попыток разыскать таковое, он временно от них отказался, так как для дальнейшей цели в этом надобности нет. Ну вот, так и родилась гипотеза Римана! На современный лад и со всеми уточнениями она звучит следующим образом: все нетривиальные нули дзета-функции имеют действительную часть, равную ½. Есть, конечно, и другие эквивалентные формулировки. В 1900-ом году Давид Гильберт включил гипотезу Римана в знаменитый список 23 нерешенных проблем. Кстати, вам не кажется странным, что Гильберт работал на той же кафедре Гёттингенского университета, что и Риман в свое время. Если это было проявление землячества, то с чистой совестью еще раз добавляю сюда последовательно кадры березки и Чебышёва. Отлично! Можем двигаться дальше. В 2000-ом году институт Клэя включил гипотезу Римана в список семи открытых проблем тысячелетия, и теперь за ее решение полагается 10⁶ ($). Да-а, понимаю, что вас, как настоящих математиков, деньги не сильно манят, но все-таки это хороший повод осознать суть гипотезы Римана. Поехали! Все очень легко и понятно! Во всяком случае было таковым для Римана. Вот дзета-функция в явном виде. Как и всегда, мы бы смогли увидеть нули функции, если бы нарисовали ее график. Хм… Ладно, попробуем это сделать! Если взять вместо аргумента s двоечку, получим знаменитую базельскую проблему - нужно будет вычислить сумму ряда обратных квадратов. Но это не беда, с задачай давным-давно справился Эйлер: ему сразу стало очевидно, что эта сумма равна π²/6. Хорошо, тогда возьмем s=4 - а, впрочем, Эйлер посчитал и это! Очевидно, π⁴/90. В общем, вы уже поняли, кто вычислил значения дзета-функции, в точках 6, 8, 10 и так далее. Так, а это что такое? Дзета-функция Римана от единички? Давайте посмотрим! А-а-а, так это же гармонический ряд! Итак, как вы думаете, чему равна сумма вот такого вот ряда? Слагаемые маленькие-маленькие, но все-таки побольше, чем в ряде обратных квадратов, правда? Кликните паузу, подумайте немного и дайте ваше оценочное значение. Ну сколько здесь? Два? Или, может быть, три? Барабанная дробь… гармонический ряд расходится! В бесконечность улетает эта сумма, понимаете, нет?! Вот смотрите, берем ряд, у которого каждое из слагаемых не превосходит соответствующих членов гармонического ряда. И видим: ½, затем еще ½, снова ½ и так далее до бесконечности! Это я к чему клоню? Дзета-функция от единички не определена! Ну что ж, теперь, кажется, понятно, как выглядит график дзеты. Одно только непонятно, где же нули дзета-функции? Ну покажите мне, где нетривиальные нули дзета-функции, а еще действительная часть, равная одной второй! Ведь если мы возьмем аргументом дзета-функции ½, то все члены полученного ряда будут не меньше гармонического, а значит, грусть, расходимость, бесконечность. То есть вообще при любом действительном s меньшем или равном единице, ряд расходится. И уж, конечно, при s=-1 дзета предстанет суммой всех натуральных чисел и не поравняется ни с каким конкретным числом. Ага… есть только одно «но»! Если моего смекалистого дружка попросить вычислить дзета-функцию в точке -1, то он, будучи бездушной железякой, выдаст значение -1/12. Да и вообще, дзета у него определена для любых аргументов, кроме единички, притом и нули достигаются - в четных отрицательных значениях! Да-а-а, приехали, с чем же это может быть связано? О, хорошо, что под рукой есть учебник по теории функции комплексного переменного: тут наверняка найдется ответ. Так и есть, так и есть! Оказывается, у некоторых функций есть аналитическое продолжение! Речь идет о функциях, которые дифференцируются сколь угодно много раз, в ряд Тейлора раскладываются, помните такие? Они имеют продолжение в виде некоторой другой функции, кстати говоря, единственной. И в частности нашу родную дзета-функцию для действительного аргумента, коль скоро под все условия она подходит, можно расширить на всю комплексную плоскость по принципу аналитического продолжения. И Риман с этим справился на ура! Сразу скажу, что всевозможные значения комплексного аргумента можно было бы изобразить только на плоскости. Но если аргумент пробегает точки плоскости, то как изобразить значения функции? На плоскости можно ограничиться нулями функции, а можно взять на вооружение третье измерение, хотя по-хорошему для дзеты их нужно четыре. Ну а еще можно попробовать использовать цвет. Сами смотрите! По оси абсцисс откладывается действительная часть аргумента, по оси ординат -мнимая. Ну что ж, теперь держите ухо востро: все нетривиальные нули дзета-функции имеют действительную часть, равную ½. Тут уж и сказке конец, а кто слушал - молодец! Домашнее задание - доказать или опровергнуть гипотезу Римана, и не вздумайте списывать у Атьи! Мыслите критически, занимайтесь математикой, счастливо! [Играет музыка]

Формулировка

Эквивалентные формулировки

Соображения об истинности гипотезы

Среди данных, позволяющих предполагать истинность гипотезы, можно выделить успешное доказательство сходных гипотез (в частности, гипотезы Римана о многообразиях над конечными полями ). Это наиболее сильный теоретический довод, позволяющий предположить, что условие Римана выполняется для всех дзета-функций , связанных с автоморфными отображениями (англ.) русск. , что включает классическую гипотезу Римана. Истинность аналогичной гипотезы уже доказана для дзета-функции Сельберга (англ.) русск. , в некоторых отношениях сходной с функцией Римана, и для дзета-функции Госса (англ.) русск. (аналог дзета-функции Римана для функциональных полей).

С другой стороны, некоторые из дзета-функций Эпштейна (англ.) русск. не удовлетворяют условию Римана, хотя они имеют бесконечное число нулей на критической линии. Однако эти функции не выражаются через ряды Эйлера и не связаны напрямую с автоморфными отображениями.

К «практическим» доводам в пользу истинности Римановской гипотезы относится вычислительная проверка большого числа нетривиальных нулей дзета-функции в рамках проекта ZetaGrid .

Связанные проблемы

Две гипотезы Харди-Литтлвуда

  1. Для любого ε > 0 {\displaystyle \varepsilon >0} существует T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} , такое что при и H = T 0 , 25 + ε {\displaystyle H=T^{0{,}25+\varepsilon }} интервал содержит нуль нечётного порядка функции .
  2. Для любого ε > 0 {\displaystyle \varepsilon >0} существуют такие T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} и c = c (ε) > 0 {\displaystyle c=c(\varepsilon)>0} , что при T ⩾ T 0 {\displaystyle T\geqslant T_{0}} и справедливо неравенство N 0 (T + H) − N 0 (T) ⩾ c H {\displaystyle N_{0}(T+H)-N_{0}(T)\geqslant cH} .

Гипотеза А. Сельберга

В 1942 году Атле Сельберг исследовал проблему Харди-Литтлвуда 2 и доказал, что для любого ε > 0 {\displaystyle \varepsilon >0} существуют T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} и c = c (ε) > 0 {\displaystyle c=c(\varepsilon)>0} , такие что для T ⩾ T 0 {\displaystyle T\geqslant T_{0}} и H = T 0 , 5 + ε {\displaystyle H=T^{0{,}5+\varepsilon }} справедливо неравенство N (T + H) − N (T) ⩾ c H log ⁡ T {\displaystyle N(T+H)-N(T)\geqslant cH\log T} .

В свою очередь, Атле Сельберг высказал гипотезу, что можно уменьшить показатель степени a = 0 , 5 {\displaystyle a=0{,}5} для величины H = T 0 , 5 + ε {\displaystyle H=T^{0{,}5+\varepsilon }} .

В 1984 году А. А. Карацуба доказал , что при фиксированном с условием 0 < ε < 0,001 {\displaystyle 0<\varepsilon <0{,}001} , достаточно большом T {\displaystyle T} и H = T a + ε {\displaystyle H=T^{a+\varepsilon }} , a = 27 82 = 1 3 − 1 246 {\displaystyle a={\tfrac {27}{82}}={\tfrac {1}{3}}-{\tfrac {1}{246}}} промежуток (T , T + H) {\displaystyle (T,T+H)} содержит не менее c H ln ⁡ T {\displaystyle cH\ln T} вещественных нулей дзета-функции Римана ζ (1 2 + i t) {\displaystyle \zeta {\Bigl (}{\tfrac {1}{2}}+it{\Bigr)}} . Тем самым он подтвердил гипотезу Сельберга.

Оценки А. Сельберга и А. А. Карацубы являются неулучшаемыми по порядку роста при T → + ∞ {\displaystyle T\to +\infty } .

В 1992 году А. А. Карацуба доказал, что аналог гипотезы Сельберга справедлив для «почти всех» промежутков (T , T + H ] {\displaystyle (T,T+H]} , H = T ε {\displaystyle H=T^{\varepsilon }} , где ε {\displaystyle \varepsilon } - сколь угодно малое фиксированное положительное число. Метод, разработанный Карацубой, позволяет исследовать нули дзета-функции Римана на «сверхкоротких» промежутках критической прямой, то есть на промежутках (T , T + H ] {\displaystyle (T,T+H]} , длина H {\displaystyle H} которых растёт медленнее любой, даже сколь угодно малой, степени T {\displaystyle T} . В частности, он доказал, что для любых заданных чисел ε {\displaystyle \varepsilon } , ε 1 {\displaystyle \varepsilon _{1}} с условием 0 < ε , ε 1 < 1 {\displaystyle 0<\varepsilon ,\varepsilon _{1}<1} почти все промежутки (T , T + H ] {\displaystyle (T,T+H]} при H ⩾ exp ⁡ { (ln ⁡ T) ε } {\displaystyle H\geqslant \exp {\{(\ln T)^{\varepsilon }\}}} содержат не менее H (ln ⁡ T) 1 − ε 1 {\displaystyle H(\ln T)^{1-\varepsilon _{1}}} нулей функции ζ (1 2 + i t) {\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}+it{\bigr)}} . Эта оценка весьма близка к той, что следует из гипотезы Римана.

См. также

Примечания

  1. Weisstein, Eric W. Riemann Hypothesis (англ.) на сайте Wolfram MathWorld .
  2. Rules for the Millennium Prizes
  3. Что несколько необычно, так как lim sup n → ∞ σ (n) n log ⁡ log ⁡ n = e γ . {\displaystyle \limsup _{n\rightarrow \infty }{\frac {\sigma (n)}{n\ \log \log n}}=e^{\gamma }.}
    Неравенство нарушается при n = 5040 и некоторых меньших значениях, но Гай Робин в 1984 году показал, что оно соблюдается для всех бóльших целых, тогда и только тогда, когда гипотеза Римана верна.
Командир судна 18 января 2018 в 13:05

Доказательство Гипотезы Римана

  • Математика

Гипотеза Римана это математическая гипотеза, выведенная в 1859 году Бернхардом Риманом. И которая до сих пор не была решена.

Гипотеза Римана звучит так:

Все нетривиальные нули дзета-функции имеют действительную часть равную 1/2.
Мне удалось доказать это утверждение. Мои выводы основываются на резултате фон Коха 1901 года.

Если Гипотеза Римана верна, то

π(x) = Li(x) + Ο(√x∙ln x)

Гипотеза Римана имеет большое значение в квантовой механике, а также в криптографии.

Формула π(x) и Li(x)

В данном разделе я представлю две формулы с помощью которых я доказал Гипотезу Римана. Это новая формула функции π(x) и новый метод интегрирования функции 1/ln(x).

Функция π(x) показывает сколько в данном числе x простых чисел. Простые числа - это числа, которые делятся только на себя и на единицу. Например: 2 3 5 7…

Формула функции π(x).:

(1.1)
Доказательство:

Эта формула исключает из данного числа x все не простые числа, по правилам решета Эратосфена. Решето Эретосфена это метод, придуманный Эратосфеном Киренским для определения последовательности простых чисел. Алгоритм таков, если взять ряд из натуральных чисел без единицы

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…

И исключить из него все четные числа, кроме самой маленькой из них, т.е. двойки, получится:

2 3 5 7 9 11 13 15 17…

А потом из этой получившейся последовательности исключить все числа которые делятся на следующее простое число после двойки, это число 3, не считая ее самой. Получится:

2 3 5 7 11 13 17…

Если так делать до бесконечности, то останутся только простые числа. Моя формула работает по такому принципу. Сначала формула исключает единицу из данного числа x, а потом количество всех четных чисел, кроме 2. Далее количество чисел, которые делятся на 3, кроме тройки, а из данного количества исключаются четные числа, которые которые делятся на 3 и т.д.
fn(x) обозначает самое минимальное число, которое надо исключить из x, чтобы получилось то число которое делится на n без остатка.

График функции fn(x):


Рис.(1.1) График функции fn(x)

Область определения функции

Область значения

Каждое выражение в скобках содержит количество определенных не простых чисел не превосходящих x.

Рано или позно определенное выражение в скобках формулы π(x) будет равна нулю (1.1). Поэтому данная сумма не бесконечна.

Я не могу доказать математически формулу (1.1), но можно понять, что формула верна, исходя из того что ее функция напоминает решето Эретосфена. Можно сказать, что эта формула-аналитический вариант решета Эретосфена.

Формула функции Li(x):

(1.2)
Доказательство:

Все члены этой суммы это площадь прямоугольника под графиком функции 1/ln(x), бесконечное количество площадей прямоугольников сходятся к площади под графиком функции 1/ln(x), начиная с аргумента 2. А так как функция Li(x) это интеграл графика функции 1/ln(x), то формула (1.2) равна Li(x).


Рис.(1.2) Прямоугольники под графиком функции 1/ln(x)

Верхний правый угол всех прямоугольников лежат на определенной точке графика, а так как прямоугольников бесконечно много, то углы прямоугольников охватывают все точки графика от 1/ln(2) до 1/ln(x).

Доказательство

Итак, если Гипотеза Римана верна то

π(x) = Li(x) + Ο(√x∙ln x)

А если переделать это выражение то получится, что

То есть, если доказать это неравенство то получится что Гипотеза Римана верна.
Подставив подставив выведенные формулы в неравенство получим:


(1.3) Остаточный член

При условии что x>2.Преобразуем это выражение, для упрощения.

Из этого можно сделать вывод что, если неравенство


(1.5)

Верное, то и Гипотеза Римана верна. Проверем это. Если перенести все члены неравенства (1.5) в правую часть неравенства, то получится


(1.6)

Первая разность этого выражения, при x>2, всегда отрицательна. А вторая разность отрицательна приблизительно лишь при x>10, но это не страшно, так как нас интересуют только большие аргументы, выражение (1.6) все равно будет верное.

Неравенство (1.6) верное, значит и неравенство

Тоже верное.

Гипотеза Римана доказана.

Теги: Задачи тысячелетия, простые числа

Знаменитый британский математик Майкл Атья, профессор Оксфордского, Кембриджского и Эдинбургского институтов и лауреат почти десятка престижных премий в области математики, представил доказательство гипотезы , одной из «задач тысячелетия». Доказательство занимает всего 15 строк, а вместе с введением и списком литературы — пять страниц. Текст Атья выложил на сервисе Drive.

Гипотеза о распределении нулей дзета-функции Римана была сформулирована математиком Бернхардом Риманом в 1859 году.

Она описывает, как расположены на числовой прямой простые числа.

В то время как не найдено какой-либо закономерности, описывающей распределение простых чисел среди натуральных, Риман обнаружил, что количество простых чисел, не превосходящих x, — функция распределения простых чисел, обозначаемая π(x) — выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Гипотеза Римана утверждает, что все нетривиальные нули дзета-функции лежат на вертикальной линии Re=0,5 комплексной плоскости. Гипотеза Римана важна не только для чистой математики — дзета-функция постоянно всплывает в практических задачах, связанных с простыми числами, например, в криптографии.

По словам Атьи, решение он нашел, экспериментируя с постоянной тонкой структуры — фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она определяет размер очень малого изменения величины (расщепления) энергетических уровней атома и, следовательно, образования тонкой структуры — набора узких и близких частот в его спектральных линиях.

Гипотеза Римана входит в список семи «задач тысячелетия», за решение каждой из которых Математический институт Клэя в США обязывается выплатить награду в один миллион долларов США.

Если доказательство будет подтверждено, Атья получит награду.

Математический институт Клэя объявил о своем решении отдать премию Перельману 19 марта 2010 года. Работы, за которые математик удостоился награды, были написаны им в 2002 году, причем они были выложены в архив электронных препринтов, а не напечатаны в рецензируемом научном журнале. В своих выкладках Перельман завершил доказательство гипотезы геометризации Терстона, которая прямо связана с гипотезой Пуанкаре.

В 2005 году за эти работы Перельману была присуждена Филдсовская премия, которую часто называют Нобелевской премией для математиков. От этой награды российский математик также отказался.

В 2014 году математик из Казахстана Мухтарбай Отелбаев , что решил еще одну из «задач тысячелетия» — нашел условия системы уравнений Навье — Стокса, при которых для каждого набора параметров имеется единственное решение. Уравнения Навье — Стокса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач.

Для того чтобы признать решение Отелбаева верным, научное сообщество должно его проверить. Пока что результаты проверки неизвестны.

В 2010 году американский математик индийского происхождения Винай Деолаликар , что решил еще одну из задач тысячелетия — нашел доказательство неравенства классов сложности P и NP.

Данная проблема состоит в следующем: если положительный ответ на какой-то вопрос можно быстро проверить (за полиномиальное время), то правда ли, что ответ на этот вопрос можно быстро найти (за полиномиальное время и используя полиномиальную память), то есть действительно ли задачу легче проверить, чем решить?

Данных о том, что научное сообщество признало доказательство верным, пока что нет.

Последние материалы раздела:

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...