Гидроксид железа (III): состав и молярная масса. Соединения железа (III) Гидроксид железа 3 разлагается

Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно–бурого осадка

Fe(NO 3) 3 + 3KOH ® Fe(OH) 3 ¯ + 3KNO 3

Fe 3+ + 3OH - ® Fe(OH) 3 ¯

Fe(OH) 3 – более слабое основание, чем гидроксид железа (II).

Это объясняется тем, что у Fe 2+ меньше заряд иона и больше его радиус, чем у Fe 3+ , а поэтому, Fe 2+ слабее удерживает гидроксид-ионы, т.е. Fe(OH) 2 более легко диссоциирует.

В связи с этим соли железа (II) гидролизуются незначительно, а соли железа (III) - очень сильно. Для лучшего усвоения материалов этого раздела рекомендуется просмотреть видеофрагмент (доступен только на CDROM). Гидролизом объясняется и цвет растворов солей Fe(III): несмотря на то, что ион Fe 3+ почти бесцветен, содержащие его растворы окрашены в жёлто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fe(OH) 3 , которые образуются благодаря гидролизу:

Fe 3+ + H 2 O « 2+ + H +

2+ + H 2 O « + + H +

H 2 O « Fe(OH) 3 + H +

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза. Fe(OH) 3 обладает слабо выраженной амфотерностью: он растворяется в разбавленных кислотах и в концентрированных растворах щелочей:

Fe(OH) 3 + 3HCl ® FeCl 3 + 3H 2 O

Fe(OH) 3 + 3H + ® Fe 3+ + 3H 2 O

Fe(OH) 3 + NaOH ® Na

Fe(OH) 3 + OH - ® -

Соединения железа (III) - слабые окислители, реагируют с сильными восстановителями:

2Fe +3 Cl 3 + H 2 S -2 ® S 0 + 2Fe +2 Cl 2 + 2HCl

Качественные реакции на Fe 3+

1) При действии гексацианоферрата (II) калия K 4 (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):

4FeCl 3 +3K 4 ® Fe 4 3 ¯ + 12KCl

4Fe 3+ + 12C l - + 12K + + 3 4- ® Fe 4 3 ¯ + 12K + + 12C l -

4Fe 3+ + 3 4- ® Fe 4 3 ¯

2) При добавлении к раствору, содержащему ионы Fe 3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска роданида железа(III):

FeCl 3 + 3NH 4 CNS « 3NH 4 Cl + Fe(CNS) 3

(при взаимодействии же с роданидами ионов Fe 2+ раствор остаётся практически бесцветным).

Работа в лаборатории

Реактивы: железные опилки Fe, соль Мора (NH 4) 2 SO 4 ·FeSO 4 ·6H 2 O, раствор хлорида железа (III) FeCl 3 , раствор гексационоферрата (III) калия K 3 , раствор гексационоферрата (II) калия K 4 , раствор роданида калия KCNS, раствор соляной кислоты HCl (концентрированный и разбавленный), раствор серной кислоты H 2 SO 4 (концентрированный и разбавленный), раствор азотной кислоты HNO 3 (концентрированный и разбавленный), раствор гидроксида натрия NaOH (концентрированный и разбавленный).


Посуда и оборудование: спиртовка, держатель для пробирок, штатив для пробирок, шпатель, пробирки, стеклянная палочка.

Соединения двухвалентного железа

I . Гидроксид железа (II)

Образуется при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeCl 2 + 2 KOH = 2 KCl + F е(OH ) 2 ↓

Fe(OH) 2 - слабое основание, растворимо в сильных кислотах:

Fe(OH) 2 + H 2 SO 4 = FeSO 4 + 2H 2 O

Fe(OH) 2 + 2H + = Fe 2+ + 2H 2 O

Дополнительный материал:

Fe(OH) 2 – проявляет и слабые амфотерные свойства, реагирует с концентрированными щелочами:

Fe ( OH ) 2 + 2 NaOH = Na 2 [ Fe ( OH ) 4 ]. образуется соль тетрагидроксоферрат ( II ) натрия

При прокаливании Fe(OH) 2 без доступа воздуха образуется оксид железа (II) FeO - соединение черного цвета :

Fe(OH) 2 t˚C → FeO + H 2 O

В присутствии кислорода воздуха белый осадок Fe(OH) 2 , окисляясь, буреет – образуя гидроксид железа (III) Fe(OH) 3:

4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3 ↓

Дополнительный материал:

Соединения железа (II) обладают восстановительными свойствами, они легко превращаются в соединения железа (III) под действием окислителей:

10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 = 5Fe 2 (SO 4) 3 + K 2 SO 4 + 2MnSO 4 + 8H 2 O

6FeSO 4 + 2HNO 3 + 3H 2 SO 4 = 3Fe 2 (SO 4) 3 + 2NO­ + 4H 2 O

Соединения железа склонны к комплексообразованию:

FeCl 2 + 6NH 3 = Cl 2

Fe(CN) 2 + 4KCN = K 4 (жёлтая кровяная соль)

Качественная реакция на Fe 2+

При действии гексацианоферрата (III) калия K 3 (красной кровяной соли) на растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):

3 Fe 2+ Cl 2 + 3 K 3 [ Fe 3+ ( CN ) 6 ] → 6 KCl + 3 KFe 2+ [ Fe 3+ ( CN ) 6 ]↓

(турнбулева синь – гексацианоферрат ( III ) железа ( II )-калия)

Турнбуллева синь очень похожа по свойствам на берлинскую лазурь и тоже служила красителем. Названа по имени одного из основателей шотландской фирмы по производству красителей «Артур и Турнбуль».

Соединения трёхвалентного железа

I . Оксид железа (III)

Образуется при сжигании сульфидов железа, например, при обжиге пирита:

4 FeS 2 + 11 O 2 t ˚ C → 2 Fe 2 O 3 + 8 SO 2 ­

или при прокаливании солей железа:

2FeSO 4 t˚C → Fe 2 O 3 + SO 2 ­ + SO 3 ­

Fe 2 O 3 - оксид к расно-коричневого цвета , в незначительной степени проявляющий амфотерные свойства

Fe 2 O 3 + 6HCl t˚C → 2FeCl 3 + 3H 2 O

Fe 2 O 3 + 6H + t˚C → 2Fe 3+ + 3H 2 O

Fe 2 O 3 + 2 NaOH + 3 H 2 O t ˚ C → 2 Na [ Fe (OH ) 4 ],образуется соль – тетрагидроксоферрат ( III ) натрия

Fe 2 O 3 + 2OH - + 3H 2 O t˚C → 2 -

При сплавлении с основными оксидамиили карбонатами щелочных металлов образуются ферриты:

Fe 2 O 3 + Na 2 O t˚C → 2NaFeO 2

Fe 2 O 3 + Na 2 CO 3 = 2NaFeO 2 + CO 2

II. Гидроксид железа ( III )

Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно–бурого осадка

Fe(NO 3) 3 + 3KOH = Fe(OH) 3 ↓ + 3KNO 3

Fe 3+ + 3OH - = Fe(OH) 3 ↓

Дополнительно:

Fe(OH) 3 – более слабое основание, чем гидроксид железа (II).

Это объясняется тем, что у Fe 2+ меньше заряд иона и больше его радиус, чем у Fe 3+ , а поэтому, Fe 2+ слабее удерживает гидроксид-ионы, т.е. Fe(OH) 2 более легко диссоциирует.

В связи с этим соли железа (II) гидролизуются незначительно, а соли железа (III) - очень сильно.

Гидролизом объясняется и цвет растворов солей Fe(III): несмотря на то, что ион Fe 3+ почти бесцветен, содержащие его растворы окрашены в жёлто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fe(OH) 3 , которые образуются благодаря гидролизу:

Fe 3+ + H 2 O ↔ 2+ + H +

2+ + H 2 O ↔ + + H +

+ + H 2 O ↔ Fe(OH) 3 + H +

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза.

Fe(OH) 3 обладает слабо выраженной амфотерностью: он растворяется в разбавленных кислотах и в концентрированных растворах щелочей:

Fe(OH) 3 + 3HCl = FeCl 3 + 3H 2 O

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Fe(OH) 3 + NaOH = Na

Fe(OH) 3 + OH - = -

Дополнительный материал:

Соединения железа (III) - слабые окислители, реагируют с сильными восстановителями:

2Fe +3 Cl 3 + H 2 S -2 = S 0 ↓ + 2Fe +2 Cl 2 + 2HCl

FeCl 3 + KI = I 2 ↓ + FeCl 2 + KCl

Качественные реакции на Fe 3+

Опыт

1) При действии гексацианоферрата (II) калия K 4 (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):

4 Fe 3+ Cl 3 + 4 K 4 [ Fe 2+ ( CN ) 6 ] → 12 KCl + 4 KFe 3+ [ Fe 2+ ( CN ) 6 ]↓

(берлинская лазурь - гексацианоферрат ( II ) железа ( III )-калия)

Берлинская лазурь была получена случайно в начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении солей железа получался синим. При проверке поташа оказалось, что он был прокален с бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с высушенной кровью животных и железными опилками. Выщелачиванием такого сплава получали желтую кровяную соль. Сейчас берлинскую лазурь используют для получения печатной краски и подкрашивания полимеров.

Установлено, что берлинская лазурь и турнбулева синь – одно и то же вещество, так как комплексы, образующиеся в реакциях находятся между собой в равновесии:

KFe III [ Fe II ( CN ) 6 ] KFe II [ Fe III ( CN ) 6 ]

2) При добавлении к раствору, содержащему ионы Fe 3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска раствора роданида железа(III):

2FeCl 3 + 6KCNS = 6KCl + Fe III [ Fe III ( CNS ) 6 ]

(при взаимодействии же с роданидами ионов Fe 2+ раствор остаётся практически бесцветным).

Тренажёры

Тренажёр №1 - Распознавание соединений, содержащих ион Fe (2+)

Тренажёр №2 - Распознавание соединений, содержащих ион Fe (3+)

Задания для закрепления

№1. Осуществите превращения:
FeCl 2 -> Fe(OH) 2 -> FeO -> FeSO 4
Fe -> Fe(NO 3) 3 -> Fe(OH) 3 -> Fe 2 O 3 -> NaFeO 2

№2. Составьте уравнения реакций, при помощи которых можно получить:
а) соли железа (II) и соли железа (III);
б) гидроксид железа (II) и гидроксид железа (III);
в) оксиды железа.

Русское название

Железа (III) гидроксид полимальтозат

Латинское название вещества Железа (III) гидроксид полимальтозат

Ferri (III) hydroxydum polymaltosatum (род. Ferri (III) hydroxydi polymaltosati)

Фармакологическая группа вещества Железа (III) гидроксид полимальтозат

Типовая клинико-фармакологическая статья 1

Фармдействие. Препарат Fe в виде полимальтозного комплекса гидроксида Fe 3+ (является декстрином железа, в отличие от Fe 3+ гидроксид полиизомальтозата — декстрана Fe, не содержит декстранов, обусловливающих большую вероятность развития анафилактических реакций). Снаружи многоядерные центры гидроксида Fe 3+ окружаются многими нековалентно связанными молекулами полимальтозы, образуя комплекс с общей мол. массой 50 тыс.Da, который является настолько большим, что его диффузия через мембраны слизистой оболочки кишечника приблизительно в 40 раз меньше, чем у гексагидрата Fe 2+ . Данный макромолекулярный комплекс стабилен, не выделяет Fe в виде свободных ионов, сходен по структуре с естественным соединением Fe и ферритина. Благодаря такому сходству, Fe 3+ из кишечника поступает в кровь только путем активного всасывания, что объясняет невозможность передозировки (и интоксикации) препаратом в отличие от простых солей Fe, всасывание которых происходит по градиенту концентрации. Всосавшееся Fe депонируется в связанном с ферритином виде, главным образом в печени. Позже, в костном мозге оно включается в Hb. Железо, входящее в состав Fe 3+ -гидроксид полимальтозного комплекса, не обладает прооксидантными свойствами (которые присущи простым солям Fe 2+), что приводит к снижению окисления ЛПНП и ЛПОНП . Быстро восполняет дефицит Fe в организме, стимулирует эритропоэз, восстанавливает Hb.

Фармакокинетика. Степень абсорбции после перорального приема зависит от степени дефицита Fe (чем больше дефицит, тем выше абсорбция) и от величины дозы препарата (чем выше доза, тем хуже абсорбция). Всасывается преимущественно в 12-перстной и тонкой кишке. Невсосавшаяся часть Fe 3+ выводится с каловыми массами. После в/м введения попадает в кровоток через лимфатическую систему. TC max — 24 ч. В РЭС комплекс расщепляется на гидроксид Fe 3+ и полимальтозу (метаболизируется путем окисления). В кровотоке Fe связывается с трансферрином, в тканях депонируется в составе ферритина, в костном мозге включается в Hb и используется в процессе эритропоэза.

Показания. Пероральные формы: лечение железодефицитной анемии различного генеза и латентного дефицита Fe у младенцев и детей младшего возраста; повышенная потребность в Fe (беременность, период лактации, донорство, период интенсивного роста, вегетарианство, пожилой возраст).

Раствор для инъекций: лечение железодефицитной анемии при неэффективности или невозможности приема пероральных Fe-содержащих ЛС (в т.ч. у больных с заболеваниями ЖКТ и страдающих синдромом мальабсорбции).

Противопоказания. Гиперчувствительность, избыток Fe в организме (гемохроматоз, гемосидероз), анемия, не связанная с дефицитом Fe (гемолитическая анемия или мегалобластная анемия, вызванная недостатком цианокобаламина, апластическая анемия), нарушение механизмов утилизации Fe (свинцовая анемия, сидероахрестическая анемия, талассемия, поздняя порфирия кожи). Раствор для в/м введения (дополнительно): болезнь Рандю-Вебера-Ослера, хронический полиартрит, инфекционные болезни почек в острой стадии, неконтролируемый гиперпаратиреоз, декомпенсированный цирроз печени, инфекционный гепатит, ранний детский возраст (до 4 мес), беременность (I триместр).

Дозирование. Внутрь, во время или сразу после еды. Дозировка и сроки лечения зависят от степени недостатка Fe. Суточная доза может быть разделена на несколько приемов или принята однократно.

Таблетки: следует разжевывать или глотать целиком во время или после еды. Суточную дозу допустимо принимать за 1 раз. Лечение клинически выраженного дефицита: 1 таблетка 1-3 раза в день в течение 3-5 мес до нормализации Hb. Затем прием следует продолжить в течение еще нескольких месяцев для того, чтобы восстановить запасы Fe в организме (1 таблетка в сутки). Беременным женщинам: 1 таблетка 2-3 раза в сутки до нормализации Hb, с последующим приемом по 1 таблетке в сутки до родов. Для терапии латентного дефицита Fe и для профилактики недостаточности Fe — 1 таблетка в сутки.

Капли допустимо смешивать с фруктовыми и овощными соками или с искусственными питательными смесями, не опасаясь снижения активности препарата. 1 мл (20 кап) содержит 176,5 мг Fe 3+ гидроксид полимальтозного комплекса (50 мг элементарного Fe), 1 кап равна 2,5 мг элементарного Fe. Дозы для лечения клинически выраженного дефицита Fe: недоношенные дети — 1-2 кап/кг ежедневно в течение 3-5 мес; дети до 1 года — 10-20 кап/сут; 1-12 лет — 20-40 кап/сут; дети старше 12 лет и взрослые — 40-120 кап/сут; беременные — 80-120 кап/сут. Длительность лечения — не менее 2 мес. В случае клинически выраженного дефицита Fe нормализация Hb достигается лишь через 2-3 мес после начала лечения. Для восстановления внутренних резервов Fe прием в профилактических дозах должен быть продолжен в течение нескольких месяцев. Дозы для лечения латентного дефицита Fe: дети до 1 года — 6-10 кап/сут; 1-12 лет — 10-20 кап/сут; дети старше 12 лет и взрослые — 20-40 кап/сут; беременные — 40 кап/сут. Профилактика дефицита Fe: дети до 1 года — 2-4 кап/сут; 1-12 лет — 4-6 кап/сут; дети старше 12 лет и взрослые — 4-6 кап/сут; беременные — 6 кап/сут.

Сироп содержит в 1 мл 10 мг Fe 3+ . Дозы для лечения клинически выраженного дефицита Fe: дети до 1 года — 2,5-5 мл/сут (25-50 мг Fe); 1-12 лет — 5-10 мл/сут; дети старше 12 лет, взрослые и кормящие женщины — 10-30 мл/сут; беременные — 20-30 мл/сут. Дозы для лечения латентного дефицита Fe: дети от 1 до 12 лет — 2,5-5 мл/сут; дети старше 12 лет, взрослые и кормящие женщины — 5-10 мл/сут; беременные — 10 мл/сут. Профилактика дефицита Fe: беременные — 5-10 мл/сут.

Побочное действие. Пероральные лекарственные формы: диспепсия (ощущение переполнения и давления в эпигастральной области, тошнота, запор или диарея), темная окраска кала (обусловлена выведением невсосавшегося Fe и не имеет клинического значения).

Раствор для в/м введения: в редких случаях — артралгия, увеличение лимфатических узлов, лихорадка, головная боль, недомогание, диспепсия (тошнота, рвота); крайне редко — аллергические реакции.

Местные реакции (при неправильной технике введения): окрашивание кожи, болезненность, воспаление.

Взаимодействие. Пероральные формы: взаимодействия с др. ЛС не обнаружено. Раствор для инъекций: ингибиторы АПФ усиливают системные эффекты. Не следует применять одновременно с пероральными Fe-содержащими препаратами (уменьшается всасывание Fe из ЖКТ).

Особые указания. Раствор для инъекций: экспериментальное изучение репродукции, а также контролируемые исследования у беременных женщин не проводились. В малых количествах неизмененное железо из полимальтозного комплекса может проникать в грудное молоко, однако маловероятно возникновение нежелательных эффектов у вскармливаемых детей.

Не установлено никаких отрицательных воздействий на плод при назначении пероральных форм в период беременности (в т.ч. в I триместре).

При назначении препарата пациентам с сахарным диабетом следует учитывать, что 1 мл сиропа содержит 0,04 ХЕ , а 1 мл капель — 0,01 ХЕ .

Прием препаратов Fe необходимо продолжать и после нормализации Hb. Не вызывает окрашивания зубной эмали.

Раствор для инъекций предназначен только для в/м введения. Техника инъекции имеет важное значение. В результате неправильного введения препарата могут возникнуть болезненность и окрашивание кожи в месте инъекции. Методика вентро-ягодичной инъекции рекомендована вместо общепринятой — в верхний наружный квадрант большой ягодичной мышцы.

1) Длина иглы должна быть не менее 5-6 см. Просвет иглы не должен быть слишком широким. Для детей, а также для взрослых с небольшой массой тела иглы должны быть короче и тоньше.

2) В соответствии с рекомендациями Hochstetter, место инъекции определяют следующим образом: по линии позвоночного столба на уровне, соответствующем пояснично-подвздошному сочленению, фиксируют точку A. Если больной лежит на правом боку, располагают средний палец левой руки в точке A. Отставляют указательный палец от среднего так, чтобы он находился под линией подвздошного гребня в точке B. Треугольник, располагающийся между проксимальными фалангами, средним и указательным пальцами является местом инъекции.

3) Инструменты дезинфицируются обычным методом.

4) Прежде чем ввести иглу, сдвигают кожу примерно на 2 см для того, чтобы хорошо закрыть канал прокола после извлечения иглы. Это предотвращает проникновение введенного раствора в подкожные ткани и окрашивание кожи.

5) Располагают иглу вертикально по отношению к поверхности кожи, под большим углом к точке подвздошного сочленения, чем к точке бедренного сустава.

Соединения железа (II)

Соединения железа со степень окисления железа +2 малоустойчивы и легко окисляются до производных железа (III).

Fe 2 O 3 + CO = 2FeO + CO 2 .

Гидроксид железа (II) Fe(OH) 2 в свежеосажденном виде имеет серовато-зеленую окраску, в воде не растворяется, при температуре выше 150 °С разлагается, быстро темнеет вследствие окисления:

4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3 .

Проявляет слабовыраженные амфотерные свойства с преобладанием основных, легко реагирует с неокисляющими кислотами:

Fe(OH) 2 + 2HCl = FeCl 2 + 2H 2 O.

Взаимодействует с концентрированными растворами щелочей при нагревании с образованием тетрагидроксоферрата (II):

Fe(OH) 2 + 2NaOH = Na 2 .

Проявляет восстановительные свойства, при взаимодействии с азотной или концентрированной серной кислотой образуются соли железа (III):

2Fe(OH) 2 + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 6H 2 O.

Получается при взаимодействии солей железа (II) с раствором щелочи в отсутствии кислорода воздуха:

FeSO 4 + 2NaOH = Fe(OH) 2 + Na 2 SO 4 .

Соли железа (II). Железо (II) образует соли практически со всеми анионами. Обычно соли кристаллизуются в виде зеленых кристаллогидратов: Fe(NO 3) 2 · 6H 2 O, FeSO 4 · 7H 2 O, FeBr 2 · 6H 2 O, (NH 4) 2 Fe(SO 4) 2 · 6H 2 O (соль Мора) и др. Растворы солей имеют бледно-зеленую окраску и, вследствие гидролиза , кислую среду:

Fe 2+ + H 2 O = FeOH + + H + .

Проявляют все свойства солей.

При стоянии на воздухе медленно окисляются растворенным кислородом до солей железа (III):

4FeCl 2 + O 2 + 2H 2 O = 4FeOHCl 2 .

Качественная реакция на катион Fe 2+ - взаимодействие с гексацианоферратом (III) калия (красной кровяной солью) :

FeSO 4 + K 3 = KFe↓ + K 2 SO 4

Fe 2+ + K + + 3- = KFe↓

в результате реакции образуется осадок синего цвета - гексацианоферрат (II) железа (III) - калия.

Степень окисления +3 характерна для железа.

Оксид железа (III) Fe 2 O 3 - вещество бурого цвета, существует в трех полиморфных модификациях.


Проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:

Fe 2 O 3 + 6HCl = 2FeCl 3 + 3H 2 O.

С растворами щелочей не реагирует, но при сплавлении образует ферриты :

Fe 2 O 3 + 2NaOH = 2NaFeO 2 + H 2 O.

Проявляет окислительные и восстановительные свойства. При нагревании восстанавливается водородом или оксидом углерода (II), проявляя окислительные свойства:

Fe 2 O 3 + H 2 = 2FeO + H 2 O,

Fe 2 O 3 + CO = 2FeO + CO 2 .

В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):

Fe 2 O 3 + 3KNO 3 + 4KOH = 2K 2 FeO 4 + 3KNO 2 + 2H 2 O.

При температуре выше 1400°С разлагается:

6Fe 2 O 3 = 4Fe 3 O 4 + O 2 .

Получается при термическом разложении гидроксида железа (III):

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

или окислением пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

FeCl 3 + 3KCNS = Fe(CNS) 3 + 3KCl,

СургутскийГосударственный Университет

Кафедра химии

по теме:

Выполнил:

Бондаренко М.А.

Проверил:

Щербакова Л.П.

Сургут, 2000
Впериодической системе железо находится в четвертом периоде, в побочнойподгруппе VIII группы.

Химический знак – Fe (феррум). Порядковый номер –26, электронная формула 1s2 2s2 2p6 3d64s2 .

¯­ ­ ­ ­ ­ ­ 3d ­ 4p 4s Электронно-графическаяформула
¯­ ­ ­ ­ ­ 3d ¯­ 4p

Валентные электроны у атома железа находятся напоследнем электронном слое (4s2 ) и предпоследнем (3d6 ).В химических реакциях железо может отдавать эти электроны и проявлять степениокисления +2, +3 и, иногда, +6.

Нахождение в природе.

Железо является вторым пораспространенности металлом в природе (после алюминия). В свободном состояниижелезо встречается только в метеоритах, падающих на землю. Наиболее важныеприродные соединения:

Fe2O3· 3H2O – бурый железняк;

Fe2O3 – красный железняк;

Fe3O4(FeO· Fe2O3) – магнитныйжелезняк;

FeS2 - железный колчедан (пирит).

Соединения железа входят всостав живых организмов.

Получение железа.

В промышленности железо получаютвосстановлением его из железных руд углеродом (коксом) и оксидом углерода (II)в доменных печах. Химизм доменного процесса следующий:

3Fe2O3 + CO = 2Fe3O4+ CO2,

Fe3O4 + CO = 3FeO + CO2,

FeO + CO = Fe + CO2.

Физические свойства.

Железо – серебристо серыйметалл, обладает большой ковкостью, пластичностью и сильными магнитнымисвойствами. Плотность железа – 7,87 г/см3, температура плавления1539°С.

Химические свойства.

В реакциях железо являетсявосстановителем. Однако при обычной температуре оно не взаимодействует даже ссамыми активными окислителями (галогенами, кислородом, серой), но принагревании становится активным и реагирует с ними:

2Fe+ 3Cl2 = 2FeCl3 Хлорид железа (III)

3Fe+ 2O2 = Fe3O4(FeO · Fe2O3) Оксид железа (II,III)

Fe+ S = FeS Сульфид железа (II)

При очень высокой температурежелезо реагирует с углеродом, кремнием и фосфором:

3Fe + C = Fe3C Карбиджелеза (цементит)

3Fe + Si = Fe3Si Силициджелеза

3Fe + 2P = Fe3P2 Фосфиджелеза (II)

Железо реагирует сосложными веществами.

Во влажном воздухе железо быстроокисляется (корродирует):

4Fe + 3O2 + 6H2O = 4Fe(OH)3,

Fe(OH)3 = Fe

O– H + H2O

Ржавчина

Железо находится в серединеэлектрохимического ряда напряжений металлов, поэтому является металлом среднейактивности . Восстановительная способность у железа меньше, чем у щелочных,щелочноземельных металлов и у алюминия. Только при высокой температурераскаленное железо реагирует с водой:

3Fe + 4H2O = Fe3O4 +4H2­

Железо реагирует с разбавленнымисерной и соляной кислотами , вытесняя из кислот водород:

Fe + 2HCl = FeCl2 + H2­

Fe + H2SO4 = FeSO4 +H2­

При обычной температуре железоне взаимодействует с концентрированной серной кислотой, так как пассивируетсяею. При нагревании концентрированная H2SO4 окисляетжелезо до сульфита железа (III):

2Fe + 6H2SO4 = Fe2(SO4)3+ 3SO2­ + 6H2O.

3FeSO4 + 2K3 = Fe32¯ + 3K2SO4.

При взаимодействии ионов 3- с катионами железа Fe2+ образуется темно-синий осадок – турнбулева синь:

3Fe2+ +23- = Fe32¯

Соединения железа (III)

Оксид железа (III) Fe2O3 – порошок бурого цвета, не растворяется в воде. Оксид железа (III) получают:

А) разложением гидроксида железа (III):

2Fe(OH)3 = Fe2O3 + 3H2O

Б) окислением пирита (FeS2):

4Fe+2S2-1 + 11O20 = 2Fe2+3O3 + 8S+4O2-2.

Fe+2 – 1e ® Fe+3

2S-1 – 10e ® 2S+4

O20 + 4e ® 2O-2 11e

Оксид железа (III) проявляет амфотерные свойства:

А) взаимодействует с твердыми щелочами NaOH и KOH и с карбонатами натрия и калия при высокой температуре:

Fe2O3 + 2NaOH = 2NaFeO2 + H2O,

Fe2O3 + 2OH- = 2FeO2- + H2O,

Fe2O3 + Na2CO3 = 2NaFeO2 + CO2.

Феррит натрия

Гидроксид железа (III) получают из солей железа (III) при взаимодействии их со щелочами:

FeCl3 + 3NaOH = Fe(OH)3¯ + 3NaCl,

Fe3+ + 3OH- = Fe(OH)3¯.

Гидроксид железа (III) является более слабым основанием, чем Fe(OH)2, и проявляет амфотерные свойства (с преобладанием основных). При взаимодействии с разбавленными кислотами Fe(OH)3 легко образует соответствующие соли:

Fe(OH)3 + 3HCl « FeCl3 + H2O

2Fe(OH)3 + 3H2SO4 « Fe2(SO4)3 + 6H2O

Fe(OH)3 + 3H+ « Fe3+ + 3H2O

Реакции с концентрированными растворами щелочей протекают лишь при длительном нагревании. При этом получаются устойчивые гидрокомплексы с координационным числом 4 или 6:

Fe(OH)3 + NaOH = Na,

Fe(OH)3 + OH- = -,

Fe(OH)3 + 3NaOH = Na3,

Fe(OH)3 + 3OH- = 3-.

Соединения со степенью окисления железа +3 проявляют окислительные свойства, так как под действием восстановителей Fe+3 превращается в Fe+2:

Fe+3 + 1e = Fe+2.

Так, например, хлорид железа (III) окисляет йодид калия до свободного йода:

2Fe+3Cl3 + 2KI = 2Fe+2Cl2 + 2KCl + I20

Качественные реакции на катион железа (III)

А) Реактивом для обнаружения катиона Fe3+ является гексациано (II) феррат калия (желтая кровяная соль) K2.

При взаимодействии ионов 4- с ионами Fe3+ образуется темно-синий осадок – берлинская лазурь :

4FeCl3 + 3K4 « Fe43¯ +12KCl,

4Fe3+ + 34- = Fe43¯.

Б) Катионы Fe3+ легко обнаруживаются с помощью роданида аммония (NH4CNS). В результате взаимодействия ионов CNS-1 с катионами железа (III) Fe3+ образуется малодиссоциирующий роданид железа (III) кроваво-красного цвета:

FeCl3 + 3NH4CNS « Fe(CNS)3 + 3NH4Cl,

Fe3+ + 3CNS1- « Fe(CNS)3.

Применение и биологическая роль железа и его соединений.

Важнейшие сплавы железа – чугуны и стали – являются основными конструкционными материалами практически во всех отраслях современного производства.

Хлорид железа (III) FeCl3 применяется для очистки воды. В органическом синтезе FeCl3 применяется как катализатор. Нитрат железа Fe(NO3)3 · 9H2O используют при окраске тканей.

Железо является одним из важнейших микроэлементов в организме человека и животных (в организме взрослого человека содержится в виде соединений около 4 г Fe). Оно входит в состав гемоглобина, миоглобина, различных ферментов и других сложных железобелковых комплексов, которые находятся в печени и селезенке. Железо стимулирует функцию кроветворных органов.

Список использованной литературы:

1. «Химия. Пособие репетитор». Ростов-на-Дону. «Феникс». 1997 год.

2. «Справочник для поступающих в вузы». Москва. «Высшая школа», 1995 год.

3. Э.Т. Оганесян. «Руководство по химии поступающим в вузы». Москва. 1994 год.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....