Гениальный математик григорий перельман уехал в швецию. Григорий яковлевич перельман биография

В основе курса СССР на точные науки, подготовившего почву для достижений ядерной физики, космонавтики и спортивных шахмат, лежала сильная математическая традиция. Оформившись в 1930-х, она подарила миру таких ученых, как Андрей Колмогоров, Александр Гельфонд, Павел Александров и многих других, которые преуспели в традиционных (алгебра, теория чисел) и новых направлениях математики (топология, теория вероятностей, математическая статистика). По масштабам интересов и интеллектуальных ресурсов сравниться с советской могли разве что американская и китайская школы. Но сравнением они не ограничивались: на макроуровне царица наук развивалась в противоречивой обстановке дружелюбной подозрительности. Важную роль такие взаимовлияния сыграли и в профессиональной жизни Григория Перельмана – признанного математического гения, окончательно доказавшего гипотезу Пуанкаре и решившего таким образом одну из семи «задач тысячелетия».

Сurriculum vitæ. Первые страницы

Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде в семье инженера-электрика и учительницы математики, а спустя десять лет у него появилась сестра – в будущем тоже кандидат (точнее, PhD) математических наук. Помимо любви к классической музыке, привитой матерью, Григорий с детства проявлял интерес к точным наукам: в пятом классе он начал посещать математический центр при Дворце пионеров, а после восьмого перешел в школу № 239 с углубленным изучением математики, которую окончил без золотой медали только из-за недостатка баллов по нормативам ГТО. В 1982 году он в составе школьной команды получил золотую медаль на 23-й Международной математической олимпиаде в Будапеште и вскоре был зачислен на математико-механический факультет Ленинградского государственного университета без сдачи экзаменов.

В вузе за примерную учебу Перельман получал Ленинскую стипендию. Окончив университет с отличием, он поступил в аспирантуру на базе Ленинградского отделения Математического института имени В. А. Стеклова РАН. В 1990 году под научным руководством академика Александра Даниловича Александрова (основоположника так называемой геометрии Александрова – раздела метрической геометрии) Перельман защитил кандидатскую диссертацию на тему «Седловые поверхности в евклидовых пространствах». Затем в должности старшего научного сотрудника продолжил работать в лаборатории математической физики института Стеклова, успешно развивая теорию пространств Александрова.

В начале 1990-х Перельману довелось поработать в нескольких уважаемых исследовательских учреждениях США: в Университете штата Нью-Йорк в Стоуни-Брук, Курантовском институте математических наук и Калифорнийском университете в Беркли.

Поворотной для молодого математика стала встреча с Ричардом Гамильтоном, область научных интересов которого простиралась в плоскости дифференциальной геометрии – нового направления, широко используемого в общей теории относительности. В своих работах по топологии многообразий американский ученый впервые использовал систему дифференциальных уравнений под названием поток Риччи – нелинейный аналог уравнения теплопроводности, который описывает не распределение температуры, а деформацию хаусдорфова пространства, локально эквивалентного евклидовому.

Благодаря этой системе уравнений Гамильтону удалось наметить решение одной из семи «задач тысячелетия» – по сути, разработать подход к доказательству гипотезы Пуанкаре.

Благосклонность зарубежного коллеги и столь фундаментальная проблема произвели на Перельмана большое впечатление. В то время он продолжал сглаживать углы пространств Александрова – технические трудности казались непреодолимыми, и ученый вновь и вновь возвращался к идее потока Риччи. По словам советского математика Михаила Громова, сосредоточившись на этих задачах, Перельман стал еще более аскетичным, что вызывало тревогу у его близких.

В 1994 году он получил приглашение прочесть лекцию на Международном конгрессе математиков в Цюрихе, а сразу несколько научных организаций, в том числе Принстонский и Тель-Авивский университеты, предложили ему место в штате. В ответ на просьбу Стэнфордского университета предоставить резюме и рекомендации ученый заметил: «Если они знают мои работы, им не нужно мое CV. Если же они нуждаются в моем CV, они не знают мои работы». Несмотря на такое обилие заманчивых предложений, в 1995 году он принял решение вернуться в «родной» институт Стеклова.

В 1996-м Европейское математическое общество присудило Перельману его первую международную премию, которую по каким-то причинам он отказался получать.

Помимо непритязательности в быту, пристрастия к музыке (Перельман играет на скрипке) и строгой приверженности научной этике, ученого уже тогда отличал интерес к параллельному решению сложных задач. В 1994 году он доказал гипотезу о душе. В дифференциальной геометрии под «душой» (S) подразумевают компактное тотально выпуклое тотально геодезическое подмногообразие риманова многообразия (M, g). В простейшем случае, то есть в случае евклидова пространства Rn (n отражает мерность), душой будет любая точка этого пространства.

Перельман доказал, что душа полного связного риманова многообразия с секционной кривизной K ≥ 0, секционная кривизна одной из точек в котором строго положительна во всех направлениях, является точкой, а само многообразие диффеоморфно Rn. Математиков потрясло редкостное изящество доказательства Перельмана: выкладки заняли всего две страницы, в то время как «доперельмановские» попытки решения излагались в длинных статьях и оставались незавершенными.

Доказательство гипотезы Пуанкаре, или Благодатное слияние кухни с операционной

На рубеже 19–20 веков гениальный французский математик Анри Пуанкаре увлеченно закладывал фундамент топологии – науки о свойствах пространств, которые остаются неизменными при непрерывных деформациях. В 1900 году ученый предположил, что трехмерное многообразие, все группы гомологий которого как у сферы, гомеоморфно сфере (топологически ей эквивалентно). В общем же случае, для многообразий любой мерности, гипотеза звучит примерно так: всякое односвязное замкнутое n-мерное многообразие гомеоморфно n-мерной сфере. Здесь необходимо хоть немного расшифровать термины, которыми так свободно оперировал Пуанкаре.

Двумерное многообразие – это плоскость: например, поверхность сферы или тора («бублика»). Трехмерное многообразие представить сложнее: в качестве одной из его моделей рассматривают додекаэдр, противоположные грани которого особым образом «склеены» друг с другом – отождествлены. Именно для случая трехмерного многообразия гипотеза Пуанкаре оставалась крепким орешком на протяжении целого века. Что касается гомеоморфизма, то любые замкнутые, без дыр, поверхности гомеоморфны, то есть могут непрерывно и однозначно преобразовываться (отображаться) друг в друга и деформироваться в сферу, а вот с тором, например, такое без разрыва поверхности не пройдет, поэтому он негомеоморфен сфере, зато гомеоморфен… кружке – той самой, из кухонного шкафчика. Гомология – понятие, позволяющее строить специфические алгебраические объекты (группы, кольца) для изучения топологических пространств – считается, что общеалгебраические структуры устроены проще, чем топологические. Вот простейшие примеры гомологии: замкнутая линия на поверхности гомологична нулю, если она служит границей какого-то участка этой поверхности; гомологичной нулю является любая замкнутая линия на сфере, у тора же такая линия может и не быть гомологичной нулю.

Группы – разнообразные множества, удовлетворяющие особым условиям, – оказались крайне полезными для описания топологических инвариантов – характеристик пространства, не меняющихся при его деформациях. Очень востребованы, в частности, группы гомологий и фундаментальные группы. Группа гомологии ставится в соответствие топологическому пространству для алгебраического исследования его свойств. Фундаментальная группа – это множество закрепленных (начинающихся и заканчивающихся) в отмеченной точке отображений отрезка в пространство (петель), измеряющих количество «дырок» в этом пространстве («дырки» возникают из-за невозможности непрерывно деформировать отрезок в точку). Такая группа представляет собой один из топологических инвариантов: гомеоморфные пространства имеют одну и ту же фундаментальную группу.

В первоначальном варианте гипотеза Пуанкаре для трехмерных многообразий оставалась «разрешимой»: она позволяла ослабить условие на фундаментальную группу до условия на группу гомологий. Однако вскоре Пуанкаре исключил это допущение, продемонстрировав пример нестандартной трехмерной гомологической сферы с конечной фундаментальной группой – «сферу Пуанкаре». Такой объект мог быть получен, например, склеиванием каждой грани додекаэдра с противоположной, повернутой на угол π/5 по часовой стрелке. Уникальность сферы Пуанкаре заключается в том, что она гомологична трехмерной сфере, но при этом отличаться от нее в евклидовом пространстве.

В окончательной формулировке гипотеза Пуанкаре звучала следующим образом: всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере. Доказательство этой гипотезы сулило новые возможности для моделирования многомерных пространств. В частности, полученные с помощью космического зонда WMAP данные позволяли рассматривать додекаэдрическое пространство Пуанкаре как возможную математическую модель формы Вселенной.

И вот, в 2002–2003 годах (к тому моменту тематическая переписка Перельмана с Гамильтоном уже сошла на нет) пользователь с ником Grisha Perelman с интервалом в несколько месяцев разместил на сервере препринтов arXiv.org три статьи (1, 2, 3), содержащие решение задачи, еще более общей, чем гипотеза Пуанкаре, – гипотезы геометризации Терстона. И первая же публикация стала международной научной сенсацией, хотя из-за антипатии автора к бюрократии ни одна из статей так и не попала на страницы рецензируемых журналов. Выкладки Перельмана были настолько лаконичны и в то же время сложны, что во всеобщий восторг просто не могло не вкрасться недоверие, поэтому с 2004 по 2006 годы проверку работ Перельмана проводили сразу три группы ученых из США и Китая.

Чтобы деформировать риманову метрику на односвязном трехмерном многообразии до гладкой метрики целевого многообразия, Перельман ввел новый метод изучения потока Риччи, который вполне справедливо назвали теорией Гамильтона – Перельмана. Изюминка метода заключалась в том, чтобы при подходе к сингулярности, возникающей при деформации метрики, остановить применяемый к многообразию поток и вырезать «шею» (открытую область, диффеоморфную прямому произведению) или выбросить малую связную компоненту, «заклеив» две полученные «дырки» шарами. По мере повторения этой хирургической операции выбрасывается все, при этом каждый кусок диффеоморфен сферической пространственной форме, а итоговое многообразие является сферой.

В итоге Перельману удалось не только доказать гипотезу Пуанкаре, но и полностью классифицировать компактные трехмерные многообразия. Вероятно, этого никогда бы не случилось, если бы в длинном списке отличительных черт Перельмана не значилась непоколебимая настойчивость. Бывший учитель математики, кандидат физико-математических наук Сергей Рушкин вспоминал: «Гриша начал очень много работать в девятом классе, и у него оказалось очень ценное для занятий математикой качество: способность к очень длительной концентрации внимания без особых успехов внутри задачи.

Все-таки человеку нужна психологическая подпитка, нужны психологические успехи, чтобы заниматься чем-то дальше. Фактически гипотеза Пуанкаре – это почти девять лет без знания того, решится задача или не решится. Понимаете, там даже невозможны были частичные результаты. Не доказалась теорема в полном объеме – иной раз можно опубликовать даже двадцатистраничную статью по тому, что все-таки получилось. А там – или пан, или пропал».

Вечность в кармане

В 2003 году Григорий Перельман принял приглашение прочесть о своих работах серию публичных лекций и докладов в США. Но его не понимали ни студенты, ни коллеги. В течение нескольких месяцев математик терпеливо объяснял, в том числе и в личных беседах, свои методы и идеи. Во время «американского турне» Перельман рассчитывал и на плодотворный разговор с Гамильтоном, но он так и не состоялся. Вернувшись в Россию, ученый продолжил отвечать на сыпавшиеся от математиков вопросы по электронной почте.

В 2005 году, устав от атмосферы публичности, интриг и бесконечных объяснений, связанных с затянувшейся проверкой его выкладок, Перельман уволился из института и фактически оборвал профессиональные связи.

В 2006 году все три группы экспертов признали доказательство гипотезы Пуанкаре состоявшимся, на что китайские математики во главе с Яу Шинтуном, чья фамилия красуется в названии целого класса многообразий (пространств Калаби–Яу), ответили попыткой оспорить приоритет Перельмана. Правда, выбранный для этого инструментарий оказался неудачным: он сильно походил на плагиат. Оригинальная статья учеников Яу, Цао Хуайдуна и Чжу Сипина, занявшая весь июньский номер The Asian Journal of Mathematics, аннотировалась как окончательное доказательство гипотезы Пуанкаре с применением теории Гамильтона – Перельмана. Если верить журналистским расследованиям, то еще перед публикацией этой статьи, открыто курируемой Яу, последний потребовал у 31 математика из редколлегии журнала в кратчайшие сроки прокомментировать ее, однако саму статью тогда почему-то не предоставил.

Яу Шинтун не просто отлично знал Гамильтона, но и сотрудничал с ним, и заявление Перельмана об успешном решении задачи стало для обоих ученых сюрпризом: после долгих лет работы над ней они рассчитывали, несмотря на временную заминку, прийти к финишу первыми. Впоследствии Яу подчеркивал, что препринты Перельмана выглядели неряшливо и невнятно из-за отсутствия подробных расчетов (автор приводил их по мере необходимости в ответ на запросы независимых экспертов), и это мешало ему и всем остальным понять доказательство в полной мере.

Попытка умалить заслуги Перельмана – а Яу даже любезно подсчитал их в процентном выражении – не удалась, и вскоре китайские ученые подкорректировали заглавие и аннотацию своей статьи. Теперь ее нужно было воспринимать не как свидетельство «венценосного достижения» китайских математиков, а как «самостоятельную и подробную экспозицию» доказательства гипотезы Пуанкаре, произведенного Гамильтоном и Перельманом – без посягательств на чей-то приоритет. Перельман прокомментировал действия Яу так: «Я не могу сказать, что я возмущен, остальные поступают еще хуже…» И правда, китайского математического гения можно понять: ревностную поддержку статьи своих учеников Яу позже объяснял желанием представить окончательное доказательство в удобоваримом, каждому понятном виде и закрепить в истории заслуги соотечественников в решении этой задачи тысячелетия – а ведь их и на самом деле отрицать нельзя…

Тем временем, в августе 2006 года, Перельману присудили Филдсовскую премию «за вклад в геометрию и его революционные идеи в изучении геометрической и аналитической структуры потока Риччи». Но, как и десять лет назад, от награды Перельман отказался, а заодно и сообщил о нежелании далее пребывать в статусе профессионального ученого. В декабре того же года журнал Science впервые признал математическую работу – работу Перельмана – «Прорывом года». Тогда же СМИ разразились серией статей, освещающих это достижение, правда, с упором на сопровождавший его конфликт. Для защиты своей позиции Яу обратился к адвокатам и пригрозил судом «опорочившим его имя» журналистам, однако угрозу так и не осуществил.

В 2007 году Перельман занял девятое место в рейтинге «Сто ныне живущих гениев», опубликованном в The Daily Telegraph. А спустя три года Математический институт Клэя присудил за решение задачи тысячелетия «Премию тысячелетия» – впервые в истории. Поначалу премию в один миллион долларов Перельман проигнорировал, а затем официально отверг: «Если говорить совсем коротко, то главная причина – это несогласие с организованным математическим сообществом. Мне не нравятся их решения, я считаю их несправедливыми. Я считаю, что вклад в решение этой задачи американского математика Гамильтона ничуть не меньше, чем мой».

В 2011 году «Премию тысячелетия», от которой отказался Перельман, Институт Клэя решил направить на оплату труда молодых, подающих надежды математиков, для которых в парижском Институте Анри Пуанкаре учредили специальную временную должность. Тогда же Ричарду Гамильтону присудили Премию Шао по математике за создание программы решения гипотезы Пуанкаре. Премиальный миллион долларов в тот год пришлось разделить поровну между Гамильтоном и вторым математическим лауреатом, Деметриосом Христодулу.

Доброе отношение к Гамильтону Перельман сохранил, несмотря на несостоявшийся диалог и очевидную неудовлетворенность старшего коллеги финалом этой научной истории. А это многое говорит о человеке. По слухам, Григорий Яковлевич продолжает жить в Санкт-Петербурге, периодически посещая Швецию, где сотрудничает с местной компанией, занимающейся научными разработками. Ну а шесть задач тысячелетия все еще ждут своего гения.

, №7, 2014 , №8, 2014 , №10, 2014 , №12, 2014 , №1, 2015 , №4, 2015 , №5, 2015 , №6, 2015 , №7, 2015 , №9, 2015 , №1, 2016 , №2, 2016 , №3, 2016 , №6, 2016 , №8, 2016 , № 11, 2016 , № 2, 2017 , № 4, 2017 , № 6, 2017 , № 7, 2017 , №10, 2017 , №12, 2017 , №7, 2018 .

Журнальный вариант одной из глав новой книги Ник. Горькавого «Неоткрытые миры» (СПб.: «Астрель», 2018).

Математики - люди особенные. Они так глубоко погружаются в абстрактные миры, что, «возвращаясь на Землю», часто не могут приспособиться к реальной жизни и удивляют окружающих непривычными взглядами и поступками. У нас речь пойдёт о едва ли не самом талантливом и неординарном из них - Григории Перельмане.

В 1982 году шестнадцатилетний подросток Гриша Перельман, только что получивший золотую медаль на Международной математической олимпиаде в Будапеште, поступил в Ленинградский университет. Он заметно отличался от других студентов. Его научный руководитель профессор Юрий Дмитриевич Бураго рассказывал: «Существует масса одарённых студентов, которые говорят раньше, чем думают. Гриша был не таким. Он всегда очень тщательно и глубоко обдумывал, что намеревался сказать. Он не был очень быстрым в решениях. Скорость решения не значит ничего, математика не построена на скорости. Математика зависит от глубины».

После окончания университета Григорий Перельман стал сотрудником Математического института имени Стеклова, опубликовал ряд интересных статей по трёхмерным поверхностям в евклидовых пространствах. Мировое математическое сообщество оценило его достижения по заслугам. В 1992 году Перельмана пригласили на работу в Нью-Йоркский университет.

Григорий попал в один из мировых центров математической мысли. Каждую неделю он ездил на семинар в Принстон, где однажды прослушал лекцию выдающегося математика, профессора Колумбийского университета Ричарда Гамильтона. После лекции Перельман подошёл к профессору и задал несколько вопросов. Позже Перельман вспоминал об этой встрече: «Мне было очень важно расспросить его кое о чём. Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков».

Перельман провёл в США несколько лет. Он ходил по Нью-Йорку в одном и том же вельветовом пиджаке, питался в основном хлебом, сыром и молоком и непрерывно работал. Его стали приглашать в самые престижные университеты Америки. Молодой человек выбрал Гарвард и тут столкнулся с тем, что ему категорически не понравилось. Комитет по приёму на работу потребовал от соискателя автобиографию и рекомендательные письма от других учёных. Реакция Перельмана была жёсткой: «Если они знают мои работы, то им не нужна моя биография. Если им нужна моя биография, то они не знают моих работ». Он отказался от всех предложений и летом 1995 года вернулся в Россию, где продолжил работу над идеями, которые развивал Гамильтон. В 1996 году Перельману присудили премию Европейского математического общества для молодых математиков, но он, не любивший никакой шумихи, отказался её принять.

Когда Григорий добился определённых успехов в своих исследованиях, он написал письмо Гамильтону, надеясь на совместную работу. Однако тот не ответил, и Перельману пришлось действовать дальше в одиночку. Но впереди его ждала мировая слава.

В 2000 году Математический институт Клэя опубликовал «список проблем тысячелетия», в который вошли семь классических задач математики, решения которых не могут найти уже очень много лет, и пообещал премию миллион долларов за доказательство любой из них. Менее чем через два года, 11 ноября 2002-го, Григорий Перельман опубликовал на научном сайте в интернете статью, в которой на 39 страницах подвёл итог своих многолетних усилий по доказательству одной задачи из списка. Американские математики, которые знали Перельмана лично, немедленно принялись обсуждать статью, в которой доказывалась знаменитая гипотеза Пуанкаре. Учёного пригласили в несколько университетов США прочитать курс лекций, посвящённый его доказательству, и в апреле 2003 года он полетел в Америку. Там Григорий провёл несколько семинаров, на которых показывал, как ему удалось превратить гипотезу Пуанкаре в теорему. Математическое сообщество признало лекции Перельмана исключительно важным событием и предприняло значительные усилия по проверке предложенного доказательства.

Подробности для любознательных

Задача Пуанкаре

Жюль Анри Пуанкаре (1854–1912) - выдающийся французский математик, механик, физик, астроном и философ, глава Парижской академии наук и член ещё более 30 академий наук мира. Сформулированная Пуанкаре в 1904 году задача относится к области топологии.

Для топологии основное свойство пространства - его непрерывность. Любые пространственные формы, которые можно получить одну из другой с помощью растяжения и искривления, без разрезов и склеек, в топологии считаются одинаковыми (в качестве наглядного примера часто демонстрируют превращение чашки в бублик). Гипотеза Пуанкаре утверждает, что в четырёхмерном пространстве все трёхмерные поверхности, относящиеся к компактным многообразиям, с точки зрения топологии эквивалентны сфере.

Доказательство гипотезы Григорием Перельманом позволило разработать новый методологический подход к решению топологических задач, имеющий огромное значение для дальнейшего развития математики.

Парадоксально, но Перельман не получал грантов для доказательства гипотезы Пуанкаре, а другим учёным, проверяющим его правильность, гранты на сумму миллион долларов были выделены. Проверка была крайне важна, ведь над доказательством этой задачи трудилось немало математиков, а если она действительно решена, то они оставались не у дел.

Математическое сообщество проверяло доказательство Перельмана несколько лет и к 2006 году пришло к выводу, что оно правильное. Юрий Бураго тогда писал: «Доказательство закрывает целую отрасль математики. После него многим учёным придётся переключиться на исследования в других областях».

Математика всегда считалась наукой максимально строгой и точной, где нет места эмоциям и интригам. Но даже здесь есть борьба за приоритет. Вокруг доказательства российского математика закипели страсти. Двое молодых математиков, выходцев из Китая, изучив работу Перельмана, опубликовали гораздо более объёмную и подробную - более трёхсот страниц - статью с доказательством гипотезы Пуанкаре. В ней они утверждали, что работа Перельмана содержит много пробелов, которые им удалось восполнить. Согласно правилам математического сообщества, приоритет в доказательстве теоремы принадлежит тем исследователям, которые сумели представить его в наиболее полном виде. По мнению многих специалистов, доказательство Перельмана было полным, хотя и кратко изложенным. Более подробные выкладки не вносили в него ничего нового.

Когда журналисты спросили Перельмана, что он думает о позиции китайских математиков, Григорий ответил: «Я не могу сказать, что я возмущён, остальные поступают ещё хуже. Разумеется, существует масса более или менее честных математиков. Но практически все они - конформисты. Сами они честны, но они терпят тех, кто таковыми не являются». Затем он с горечью отметил: «Чужаками считаются не те, кто нарушает этические стандарты в науке. Люди, подобные мне, - вот кто оказывается в изоляции».

В 2006 году Григорию Перельману присудили высшую награду в области математики - Филдсовскую премию . Но математик, ведущий уединённый, даже затворнический образ жизни, отказался её получать. Это был настоящий скандал. Президент Международного математического союза даже прилетал в Петербург и десять часов уговаривал Перельмана принять заслуженную награду, вручение которой планировалось на конгрессе математиков 22 августа 2006 года в Мадриде в присутствии испанского короля Хуана Карлоса I и трёх тысяч участников. Этот конгресс должен был стать историческим событием, однако Перельман вежливо, но непреклонно сказал: «Я отказываюсь». Филдсовская медаль, по словам Григория, его совершенно не интересовала: «Это не имеет никакого значения. Всем понятно, что если доказательство верное, то никакого другого признания заслуг не требуется».

В 2010 году Институт Клэя присудил Перельману обещанную премию в миллион долларов за доказательство гипотезы Пуанкаре, которую ему собирались вручить на математической конференции в Париже. Перельман отказался от миллиона долларов и в Париж не поехал.

Как объяснил он сам, ему не нравится этическая атмосфера в математическом сообществе. Кроме того, вклад Ричарда Гамильтона он считал ничуть не меньшим. Лауреат многих математических премий, советский, американский и французский математик М. Л. Громов поддержал Перельмана: «Для великих дел необходим незамутнённый разум. Ты должен думать только о математике. Всё остальное - людская слабость. Принять награду означает проявить слабость».

Отказ от миллиона долларов сделал Перельмана ещё более знаменитым. Многие просили его получить премию и отдать им. Григорий не отвечал на подобные просьбы.

До сих пор доказательство гипотезы Пуанкаре остаётся единственной решённой задачей из списка тысячелетия. Перельман стал математиком номер один в мире, хотя и отказался от контактов с коллегами. Жизнь показала, что выдающихся результатов в науке часто добивались одиночки, которые не входили в структуру современной науки. Таким был Эйнштейн. Работая клерком в патентном бюро, он создал теорию относительности, разработал теорию фотоэффекта и принцип работы лазеров. Таким стал Перельман, который пренебрёг правилами поведения в научном сообществе и достиг при этом максимальной эффективности своей работы, доказав гипотезу Пуанкаре.

Математический институт Клэя (Кембридж, США) основан в 1998 году бизнесменом Лэндоном Клэйем и математиком Артуром Джеффи для увеличения и распространения математических знаний.

Премия Филдса за выдающиеся достижения в области математики присуждается с 1936 года.

Российский математик, автор доказательства теоремы Пуанкаре - одной из фундаментальных задач математики. Кандидат физико-математических наук. Работал в Ленинградском (Санкт-Петербургском) отделении Математического института имени Стеклова, преподавал в ряде университетов США. С 2003 года не работает и почти не общается с посторонними.


Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде. Его отец был инженером-электриком, в 1993 году эмигрировал в Израиль. Мать осталась в Санкт-Петербурге, работала учителем математики в ПТУ.

Перельман окончил среднюю школу номер 239 с углубленным изучением математики. В 1982 году в составе команды школьников участвовал в Международной математической олимпиаде в Будапеште. В том же году был зачислен на математико-механический факультет Ленинградского государственного университета без экзаменов. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Все годы учился получал Ленинскую стипендию, окончил университет с отличием.

Поступил в аспирантуру при Ленинградском (ныне Санкт-Петербургском) отделении Математического института им. В. А. Стеклова АН СССР (ныне РАН). Научным руководителем Перельмана был академик Александр Данилович Александров . Защитив кандидатскую диссертацию, Перельман продолжил работать в лаборатории математической физики института им.Стеклова.

В 1992 году Перельмана пригласили провести по семестру в Нью-Йоркском университете и университете Стони Брук (Stony Brook University), затем он продолжил преподавание и научную работу в Беркли. В 1996 году вернулся в институт Стеклова.

Перельман известен работами по теории пространств Александрова, сумел доказать ряд гипотез.

В ноябре 2002 – июле 2003 годов Перельман разместил на сайте arXiv.org три научные статьи, в предельно сжатом виде содержавшие решение одного из частных случаев гипотезы геометризации Уильяма Терстона, приводящее к доказательству гипотезы Пуанкаре. Доказательство этой теоремы (заключающейся в том, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере) считается одной из фундаментальных задач математики. Описанный ученым метод изучения потока Риччи получил название теории Гамильтона-Перельмана. Эти работы Перельмана не получили статуса официальной научной публикации, так как arXiv.org является библиотекой препринтов, а не рецензируемым журнало. Попыток официальной публикации этих работ Перельман не предпринимал.

В 2003 году Перельман прочитал в США серию лекций, посвященных своим работам, после чего вернулся в Санкт-Петербург и поселился в квартире своей матери в Купчино. Ушел с поста ведущего научного сотрудника лаборатории математической физики и практически полностью прервал контакты с коллегами.

За четыре года проверки и детализации выкладок Перельмана ведущие эксперты в этой области ошибок не обнаружили. 22 августа 2006 года Перельману присуждена Филдсовская премия "за вклад в геометрию и революционные достижения в понимании аналитической и геометрической структуры потока Риччи". Перельман отказался принять премию и общаться с журналистами.

За доказательство теоремы Пуанкаре Математическим институтом Клэя (США) была назначена премия в один миллион долларов. Согласно правилам присуждения премии, Перельман может быть удостоен награды после публикации своей работы в рецензируемом журнале.

Математик Перельман - личность очень известная, несмотря на то что он ведет уединенную жизнь и всячески сторонится прессы. Доказательство гипотезы Пуанкаре, сделанное им, поставило его в один ряд с величайшими учеными в мировой истории. Математик Перельман отказался от множества наград, предоставляемых научным сообществом. Этот человек живет очень скромно и всецело предан науке. Безусловно, о нем и его открытии стоит подробно рассказать.

Отец Григория Перельмана

13 июня 1966 года на свет появился Григорий Яковлевич Перельман, математик. Фото его в свободном доступе немного, но самые известные представлены в этой статье. Он родился в Ленинграде - культурной столице нашей страны. Отец его был инженером-электриком. Он не имел отношения к науке, как считают многие.

Яков Перельман

Весьма распространено мнение о том, что Григорий - сын Якова Перельмана, известного популяризатора науки. Однако это заблуждение, ведь он умер в блокадном Ленинграде в марте 1942 года, поэтому никак не мог быть отцом Этот человек родился в Белостоке, городе, который ранее принадлежал Российской империи, а сейчас входит в состав Польши. Яков Исидорович появился на свет в 1882 году.

Якова Перельмана, что весьма интересно, также привлекала математика. Кроме того, он увлекался астрономией, физикой. Этот человек считается основоположником занимательной науки, а также одним из первых, кто писал произведения в жанре научно-популярной литературы. Он является создателем книги "Живая математика". Перельман написал и множество других книг. Кроме того, его библиография включает более тысячи статей. Что касается такой книги, как "Живая математика", Перельман представляет в ней различные головоломки, связанные с этой наукой. Многие из них оформлены в виде маленьких рассказов. Эта книга рассчитана в первую очередь на подростков.

В одном отношении особенно интересна еще книга, автор которой - Яков Перельман ("Занимательная математика"). Триллиард - знаете ли вы, что это за число? Это 10 21 . В СССР долгое время параллельно существовало две шкалы - "короткая" и "длинная". Согласно Перельману, "короткая" использовалась в финансовых расчетах и житейском обиходе, а "длинная" - в научных трудах, посвященных физике и астрономии. Так вот, триллиарда по "короткой" шкале не существует. 10 21 в ней называется секстиллионом. Эти шкалы вообще существенно различаются.

Однако мы не будем подробно на этом останавливаться и перейдем к рассказу о вкладе в науку, который внес именно Григорий Яковлевич, а не Яков Исидорович, достижения которого были менее скромными. Кстати, любовь к науке Григорию привил отнюдь не его известный однофамилец.

Мать Перельмана и ее влияние на Григория Яковлевича

Мать будущего ученого преподавала математику в ПТУ. Кроме того, она была талантливой скрипачкой. Вероятно, любовь к математике, а также к классической музыке Григорий Яковлевич перенял именно у нее. И то и другое в равной степени привлекало Перельмана. Когда перед ним встал выбор, куда поступить - в консерваторию или в технический вуз, он долго не мог решиться. Кто знает, кем бы мог стать Григорий Перельман, если бы решил получить музыкальное образование.

Детство будущего ученого

Уже с юных лет Григорий отличался грамотной речью, как письменной, так и устной. Он часто поражал этим учителей в школе. Кстати, до 9-го класса Перельман обучался в средней школе, по всей видимости, типичной, которых так много на окраине. А затем учителя из Дворца пионеров заметили талантливого юношу. Его взяли на курсы для одаренных детей. Это способствовало развитию уникальных дарований Перельмана.

Победа на олимпиаде, окончание школы

С этих пор начинается веха побед для Григория. В 1982 году он получил на состоявшейся в Будапеште Международной математической олимпиаде. В ней Перельман участвовал вместе с командой советских школьников. Он получил полный балл, решив безукоризненно все задачи. Одиннадцатый класс школы Григорий окончил в этом же году. Сам факт участия в этой престижной олимпиаде открывал для него двери лучших учебных заведений нашей страны. А ведь Григорий Перельман не просто участвовал в ней, но и получил золотую медаль.

Неудивительно, что он был зачислен без экзаменов в Ленинградский государственный университет, на механико-математический факультет. Кстати, золотую медаль в школе Григорий, как это ни странно, не получил. Этому помешала оценка по физкультуре. Сдача спортивных норм в то время была обязательна для всех, включая и тех, кто с трудом представлял себя у шеста для прыжков или у штанги. По остальным предметам он учился на пятерки.

Учеба в ЛГУ

В течение следующих нескольких лет будущий ученый продолжал свое образование в ЛГУ. Он участвовал, и с большим успехом, в разнообразных математических соревнованиях. Перельману удалось даже получить престижную Ленинскую стипендию. Так он стал обладателем 120 рублей - немалых денег по тем временам. Должно быть, в то время ему жилось неплохо.

Нужно сказать, что математико-механический факультет этого университета, который сейчас называется Санкт-Петербургским, был в советские годы одним из лучших в России. В 1924 году, к примеру, его окончил В. Леонтьев. Практически сразу же после завершения обучения он получил Нобелевскую премию по экономике. Этого ученого даже именуют отцом американской экономики. Леонид Канторович, единственный отечественный лауреат данной премии, получивший ее за вклад в эту науку, являлся профессором матмеха.

Продолжение образования, жизнь в США

После окончания ЛГУ Григорий Перельман поступил в Математический институт Стеклова, чтобы продолжить обучение в аспирантуре. Вскоре он вылетел в США для того, чтобы представить это учебное заведение. Эта страна всегда считалась государством неограниченной свободы, особенно в советское время среди жителей нашей страны. Повидать ее мечтали многие, однако математик Перельман был не из их числа. Кажется, что искушения Запада прошли для него незамеченными. Ученый по-прежнему вел скромный образ жизни, даже несколько аскетический. Он питался бутербродами с сыром, которые запивал кефиром или молоком. И конечно, математик Перельман усердно трудился. В частности, он вел преподавательскую деятельность. Ученый встречался со своими коллегами-математиками. Америка через 6 лет ему наскучила.

Возвращение в Россию

Григорий возвратился в Россию, в родной институт. Здесь он проработал 9 лет. Именно в это время, должно быть, он и стал понимать, что дорога к "чистому искусству" лежит через изоляцию, оторванность от социума. Григорий решил порвать все свои отношения с сослуживцами. Ученый решил запереться в своей ленинградской квартире и начать грандиозный труд...

Топология

Нелегко объяснить, что доказал Перельман в математике. Только большие любители этой науки могут в полной мере понять значение сделанного им открытия. Мы попытаемся доступным языком рассказать о гипотезе, которую вывел Перельман. Григория Яковлевича привлекла топология. Это раздел математики, нередко называемый также геометрией на резиновом листе. Топология изучает геометрические формы, сохраняющиеся, когда форма изгибается, скручивается или растягивается. Другими словами, если она абсолютно эластично деформируется - без склеек, срезов и разрывов. Топология очень важна для такой дисциплины, как математическая физика. Она дает представление о свойствах пространства. Речь идет в нашем случае о беспредельном пространстве, которое непрерывно расширяется, то есть о Вселенной.

Гипотеза Пуанкаре

Великий французский физик, математик и философ Ж. А. Пуанкаре первым вывел гипотезу на этот счет. Это произошло в начале 20 века. Но следует заметить, что он именно сделал предположение, а не привел доказательство. Перельман поставил своей задачей доказать эту гипотезу, вывести спустя целое столетие математическое решение, логически выверенное.

Когда говорят о его сути, начинают обычно следующим образом. Возьмите резиновый диск. Его следует натянуть на шар. Таким образом, у вас получилась двухмерная сфера. Необходимо, чтобы в одной точке была собрана окружность диска. К примеру, вы можете проделать это с рюкзаком, стянув и обвязав его шнуром. Получается сфера. Конечно, для нас она является трехмерной, но с точки зрения математики будет двухмерной.

Затем начинаются уже образные проекции и рассуждения, которые трудно понять неподготовленному человеку. Следует представить теперь трехмерную сферу, то есть шар, натянутый на что-то, который уходит в другое измерение. Трехмерная сфера, согласно гипотезе, - единственный существующий трехмерный объект, который можно стянуть гипотетическим "гипершнуром" в одной точке. Доказательство же этой теоремы помогает нам понять, какую форму имеет Вселенная. Кроме того, благодаря ей можно обоснованно предположить, что Вселенная и есть такая трехмерная сфера.

Гипотеза Пуанкаре и теория Большого взрыва

Нужно отметить, что эта гипотеза является подтверждением теории Большого взрыва. Если Вселенная представляет собой единственную "фигуру", отличительная черта которой - возможность стянуть ее в одну точку, это значит, что ее можно и растянуть таким же образом. Возникает вопрос: если она является сферой, что же находится за пределами Вселенной? Способен ли человек, который является вторичным продуктом, относящимся к одной только планете Земля и даже не к космосу в целом, познать это таинство? Тем, кому интересно, можно предложить почитать труды еще одного известного на весь мир математика - Стивена Хокинга. Однако и он не может пока сказать на этот счет что-либо конкретное. Будем надеяться, что в будущем появится еще один Перельман и ему удастся разгадать эту загадку, которая мучает воображение многих. Кто знает, может быть, и самому Григорию Яковлевичу еще удастся это сделать.

Нобелевская премия по математике

Перельман не получил эту престижную награду за свое великое достижение. Странно, не правда ли? На самом деле это объясняется очень просто, если учесть, что такой награды просто не существует. Была создана целая легенда о причинах того, почему Нобель обделил представителей столь важной науки. И по сей день не вручается Нобелевская премия по математике. Перельман, вероятно, получил бы ее, если бы она существовала. Существует легенда, что причина неприятия Нобелем математиков следующая: именно к представителю этой науки от него ушла невеста. Так это или нет, но только с наступлением 21 века справедливость наконец восторжествовала. Именно тогда появилась другая премия для математиков. Расскажем вкратце о ее истории.

Как появилась премия института Клэя?

На математическом конгрессе, состоявшемся в 1900 году в Париже, предложил список, включающий 23 проблемы, которые нужно решить в новом, 20 веке. На сегодняшний день разрешена уже 21 из них. Кстати, выпускник матмеха ЛГУ Ю. В. Матиясевич в 1970 году завершил решение 10-й из этих проблем. В начале 21 века в американском институте Клэя был составлен подобный ему список, состоящий из семи задач по математике. Их следовало решить уже в 21 веке. Награда в миллион долларов была объявлена за решение каждой из них. Еще в 1904 году Пуанкаре сформулировал одну из этих задач. Он выдвинул гипотезу о том, что в все трехмерные поверхности, гомотипически эквивалентные сфере, являются гомеоморфными ей. Говоря простыми словами, если трехмерная поверхность похожа в чем-то на сферу, то существует возможность расправить ее в сферу. Это утверждение ученого иногда называют формулой Вселенной из-за его большой важности в понимании сложных физических процессов, а также из-за того, что ответ на него означает решение вопроса о форме Вселенной. Следует сказать и о том, что это открытие играет большую роль и в развитии нанотехнологий.

Итак, математический институт Клэя решил выбрать 7 самых трудных задач. За решение каждой из них было обещано по миллиону долларов. И вот появляется со сделанным им открытием Григорий Перельман. Премия по математике, конечно же, достается ему. Его заметили довольно быстро, так как он с 2002 года публиковал свои наработки на зарубежных интернет-ресурсах.

Как Перельман был удостоен премии Клэя

Итак, в марте 2010 года был удостоен заслуженной награды Перельман. Премия по математике означала получение внушительного состояния, размер которого составлял 1 млн долларов. Григорий Яковлевич должен был получить ее за доказательство Однако в июне 2010 года ученый проигнорировал проводимую в Париже математическую конференцию, на которой должно было состояться вручение этой награды. А 1 июля 2010 г. Перельман заявил о своем отказе публично. Более того, деньги, положенные ему, он так и не взял, несмотря на все просьбы.

Почему математик Перельман отказался от премии?

Григорий Яковлевич объяснил это тем, что совесть не дает ему получить миллион, положенный еще нескольким другим математикам. Ученый отметил, что у него было много причин как взять деньги, так и не брать их. Он долго не мог решиться. В качестве основной причины отказа от награды Григорий Перельман, математик, назвал несогласие с научным сообществом. Он отметил, что считает несправедливыми его решения. Григорий Яковлевич заявил, что считает, что вклад Гамильтона, немецкого математика, в решение этой задачи ничуть не меньше, чем его.

Кстати, несколько позже даже появился анекдот на эту тему: математикам надо почаще выделять миллионы, возможно, кто-нибудь все-таки решится их взять. Год спустя после отказа Перельмана Деметриосу Кристодулу и Ричарду Гамильтону был присужден Shaw Prize. Размер этой награды по математике составляет миллион долларов. Эту премию иногда именуют также Нобелевской премией Востока. Гамильтон получил ее за создание математической теории. Именно ее развил затем российский математик Перельман в своих работах, посвященных доказательству гипотезы Пуанкаре. Ричард эту награду принял.

Другие награды, от которых отказался Григорий Перельман

К слову, в 1996 году Григорию Яковлевичу была присуждена престижная премия для молодых математиков от Европейского математического сообщества. Однако он отказался получить ее.

Спустя 10 лет, в 2006 году, ученому присудили медаль Филдса за решение гипотезы Пуанкаре. Григорий Яковлевич отказался и от нее.

Журнал Science в 2006 г. назвал доказательство гипотезы, созданной Пуанкаре, научным прорывом года. Следует отметить, что это первая работа в области математики, которая заслужила такое звание.

Дэвид Грубер и Сильвия Назар в 2006 году опубликовали статью под названием Manifold Destiny. В ней говорится о Перельмане, о его решении проблемы Пуанкаре. Кроме того, в статье рассказывается о математическом сообществе и о существующих в науке этических принципах. В ней же представлено и редкое интервью с Перельманом. Немало говорится и о критике Яу Шинтана, китайского математика. Вместе с учениками он попробовал оспорить полноту представленного Григорием Яковлевичем доказательства. В интервью Перельман отметил: "Чужаками считаются не те, кто нарушает этические стандарты в науке. Люди, подобные мне, - вот кто оказывается в изоляции".

В сентябре 2011 г. отказался и от членства в Российской академии наук математик Перельман. Биография его представлена в книге, изданной в этом же году. Из нее можно узнать больше о судьбе этого математика, хотя собранная информация основана на свидетельстве третьих лиц. Автор ее - Книга была составлена на основании интервью с одноклассниками, учителями, коллегами и сослуживцами Перельмана. Сергей Рукшин, учитель Григория Яковлевича, отозвался о ней критически.

Григорий Перельман сегодня

И сегодня он ведет уединенный образ жизни. Всячески игнорирует прессу математик Перельман. Где живет он? До последнего времени Григорий Яковлевич проживал вместе с матерью в Купчино. А с 2014 года известный российский математик Григорий Перельман находится в Швеции.

Прочитав биографию Григория Перельмана, многие в современном мире так и не смогут понять, почему математик отказался от премий

Несколько лет назад всему миру стал известен российский математик Перельман Григорий Яковлевич, биография которого интересна каждому в основном потому, что этот ученый проявил небывалое для нынешних времен благородство, отказавшись от престижных премий.

Детство и первые шаги Перельмана в математике

Григорий Перельман появился на свет 13 июля 1966 года в еврейской семье в Ленинграде. Отец – инженер-электрик эмигрировал в 1993 году в Израиль, а мать, Любовь Лейбовна вместе с сыном осталась в Санкт-Петербурге, где работала в ПТУ учителем математики. Она сама играла на скрипке и смогла привить Грише любовь к классической музыке.

До девятого класса Гриша учился в школе, расположенной на городской окраине, но с пятого класса стал посещать математический центр, расположенный во дворце пионеров. Центром руководил Сергей Рукшин, доцент РГПУ, его ученики постоянно завоёвывали награды на олимпиадах по математике. Входя в команду школьников, Григорий завоевал в 1982 году на Международной математической олимпиаде, проходящей в Будапеште, золотую медаль, безукоризненно решив все задачи. Здесь уже началась биография математика Перельмана.

Далее он окончил специализированную ленинградскую физико-математическую школу № 239. Григорий не только ходил в музыкальную школу, но и неплохо играл в настольный теннис. Но, не сдав нормы ГТО, не смог претендовать на золотую медаль.

Продолжение образования

Без экзаменов Перельмана приняли в Ленинградский госуниверситет на факультет механики и математики. Даже краткая биография Перельмана дает понять, что у этого человека способности к точной науке даны свыше. Он продолжал побеждать на математических олимпиадах разного уровня и продолжал учиться только на отлично. Успехи в учёбе принесли ему Ленинскую стипендию. По окончании университета с отличием, Перельман продолжил обучение в аспирантуре под руководством академика А.Д. Александрова, которая существовала при Ленинградском отделении Математического института им. Стеклова (ЛОМИ). В 1990 году он защитил здесь кандидатскую диссертацию, после чего остался работать здесь же старшим научным сотрудником.

Видео о биографии Григория Перельмана

Международный уровень

Защитив диссертацию и работая в Математическом институте при Академии наук, Григорий Перельман отправился на двухлетнюю стажировку в университет в Беркли (США). Здесь он максимально близко подобрался к тому способу, который помог бы ему решить свою главную математическую задачу. Своих коллег он удивлял аскетическим бытом, довольствуясь сыром, молоком и хлебом.

Когда Перельман работал в США, то наиболее часто он посещал лекции математика Ричарда Гамильтона, мэтра математики, также стремившегося доказать гипотезу Пуанкаре. Им был разработан метод потоков Риччи, предназначенный для физики, но Перельмана он также заинтересовал.

Когда математик вернулся в 1996 году в Россию, то плотно занялся разработкой методов, пригодных для доказательства гипотезы Пуанкаре, и спустя небольшое время заметно продвинулся в этом направлении. Он выбрал совершенно нестандартный подход к решению проблемы, применяя те самые потоки Риччи, чтобы подтвердить правильность и корректность своих расчетов. Перельман проинформировал своего американского коллегу об успехах, но ответной реакции не последовало. Гамильтону выкладки российского учёного показались несерьёзными, и он отказался от продолжения совместной работы. Впрочем, его можно было понять, ведь Перельман в своих умозаключениях совмещал математические расчёты с постулатами теоретической физики, другими словами – решал с помощью смежных наук топологическую задачу геометрии, поэтому такой симбиотический способ доказательства Гамильтону оказался не под силу.

Рождение доказательства гипотезы Пуанкаре

На семь следующих лет биография Григория Перельмана словно отсутствует – он буквально выпал из среды коллег – никто не знал, чем он в это время занимался. И вот, в ноябре 2002 года на сайте, где математики и физики выкладывают свои работы, появилась статья Григория Перельмана, где было изложено доказательство гипотезы Пуанкаре. Она доказывалась всего на 39 страницах, где являлась частным примером, демонстрирующим суть исследования.

Одновременно Перельман отправил свой труд Гамильтону и Жень Тяню – китайскому математику, с которым подружился в Америке, и ряду других учёных, чьё мнение ценил.

Почему же Перельман так легко пустил в научные массы свой научный труд, которому отдал несколько напряжённейших лет своей жизни? Неужели его не посещали опасения, что его расчётами могут воспользоваться другие и выдать их за свои? Ведь решение этой математической проблемы было оценено в миллион долларов, а он опубликовал её в интернете, не дожидаясь проверки.

На подобные вопросы американских журналистов Перельман ответил, что им двигала предпосылка: если в его работе кроется ошибка, и кто-то другой сможет её исправить, чтобы довести до конца доказательство, то и это удовлетворило бы самого автора. Еще он объяснял поступок так:

  • Перельман признался, что не ставил перед собой непременную цель быть единственным автором доказательства это математической задачи.
  • Для него доказать одну из «задач тысячелетия» было общим делом.
  • Он не мечтал прославиться или разбогатеть на этом.
  • Не было и задачи доказать свою уникальность. Он просто занимался тем, чем был по-настоящему увлечён.

Как только в интернете появилась первая статья Перельмана, касающаяся формулы энтропии для потока Риччи, то в научных кругах взорвалась настоящая бомба.

Проверка доказательства

  • В 2003 году математик согласился посетить с серией докладов несколько американских университетов. Там он потратил немало времени на объяснение своих методов и идей как в публичных лекциях, так и при встречах с видными математиками. А вернувшись на родину, отвечал по электронной почте на вопросы зарубежных коллег.
  • С 2004 по 2006 год работу Перельмана тщательно проверяли три группы математиков независимо одна от другой. Все они не нашли изъянов в выкладках автора, а это означало, что проблемы Пуанкаре больше не существует. При этом несколько китайских математиков попытались прибегнуть к плагиату, заявив, что обнаружили полное доказательство, правда, затем дезавуировали свои слова.

Видео о биографии математика Григория Перельмана

Далее биография Перельмана делает ещё один поворот – он в 2005 году покидает лабораторию математической физики и институт, почти полностью прекращая общение с коллегами. Он не проявил дальнейшего интереса к научной карьере. В настоящее время Григорий Перельман живёт с матерью в Купчино, игнорируя прессу и ведя очень замкнутый образ жизни.

Оценки и признание Григория Перельмана

  • В 1996 году Перельмана наградили премией от Европейского математического общества, но он от неё отказался.
  • За решение проблемы Пуанкаре в 2006 году ему присудили премию и медаль Филдса, что является так называемой Нобелевской премией по математике . Но Перельман отказался и от этой награды.
  • Журнал «Science» назвал в 2006 году работу Перельмана научным прорывом года, причём впервые такое звание получил труд по математике.
  • Математический институт Клея в 2010 году премировал Перельмана одним миллионом долларов, это стало первым прецедентом присуждения премии за решение одной из математических «проблем тысячелетия».
  • В том же году Перельман не приехал в Париж на математическую конференцию, где должна была быть вручена эта премия, а уже 1 июля публично от неё отказался. Резоны Перельманы были весьма странными по понятиям современного общества. Он не согласился с математическим сообществом, считая его решения несправедливыми. Перельман не забыл, что пользовался работами Гамильтона и считал, что тот заслуживает признания в этой победе не меньше самого Перельмана.

Подобная публичная оценка заслуг другого математика со стороны признанного автора доказательства является основательно подзабытым явлением благородства в современной науке. Перельман отметил между тем, что, встретив непреодолимые технические проблемы, Гамильтон не смог закончить свои исследования.

На данный момент Григорий Перельман ничем не напоминает о своём существовании. Он не идет на контакты ни с российскими, ни с иностранными корреспондентами. Но интерес к нему со временем не угасает, о нём продолжают писать очерки и книги. Даже первый номер израильской версии «Плейбоя», вышедший в марте 2013 года опубликовал пространную статью о Григории Перельмане. Несколько лет назад Перельман после долгих уговоров согласился принять участие при создании научно-популярного фильма с громким названием «Формула Вселенной».

Считаете ли Вы Григория Перельмана выдающимся математиком? Поразил ли Вас его отказ от премий? Расскажите об этом в

Последние материалы раздела:

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...

Конспект урока по окружающему миру на тему: «Режим дня II
Конспект урока по окружающему миру на тему: «Режим дня II

Тема Режим дня Учебная задача Цель темы научиться планировать распорядок дня Сформировать понятие о режиме дня школьника Показать...