Фундаментальные частицы. Простым языком об элементарных частицах, коллайдере и частице Бога Различные реальные фундаментальные частицы могут возникнуть из

Единицы измерения физических величин при описании явлений, происходящих в микромире, подразделяются на основные и производные, которые определяются через математическую запись законов физики.
В связи с тем, что все физические явления происходят в пространстве и времени, за основные единицы принимают в первую очередь единицы длины и времени, к ним присоединяется единица массы. Основные единицы: длины l , времени t, массы m − получают определенную размерность. Размерности производных единиц определяются формулами, выражающими определенные физические законы.
Размеры основных физических единиц подбирают так, чтобы на практике было удобно ими пользоваться.
В системе СИ приняты следующие размерности: длины [l ] = м (метр), времени [t] = с (секунда), массы [т] = кг (килограмм).
В системе СГС для основных единиц приняты следующие размерности: длины [/] = см (сантиметр), времени [t] = с (секунда) и массы [т] = г (грамм). Для описания явлений, происходящих в микромире, можно использовать обе системы единиц СИ и СГС.
Оценим порядки величин длины, времени и массы в явлениях микромира.
Кроме общепринятых международных систем единиц СИ и СГС используются также "естественные системы единиц", опирающиеся на универсальные физические константы. Эти системы единиц особенно уместны и используются в различных физических теориях. В естественной системе единиц за основные единицы приняты фундаментальные постоянные: скорость света в вакууме − с, постоянная Планка − ћ, гравитационная постоянная G N , постоянная Больцмана − k: число Авогадро − N A , и др. В естественной системе единиц Планка принято с = ћ = G N = k = 1. Этой системой единиц пользуются в космологии для описания процессов, в которых одновременно существенны квантовые и гравитационные эффекты (теории Черных дыр, теории ранней Вселенной).
В естественной системе единиц решена проблема естественной единицы длины. Таковой можно считать комптоновскую длину волны λ 0 , которая определяется массой частицы М: λ 0 = ћ/Мс.
Длина характеризует размер объекта. Так, для электрона классический радиус r 0 = e 2 /m e c 2 = 2.81794·10 -13 см (е, m е − заряд и масса электрона). Классический радиус электрона имеет смысл радиуса заряженного шара с зарядом е (распределение сферически симметрично), при котором энергия электростатического поля шара ε = γе 2 /r 0 равна энергии покоя электрона m e c 2 (используется при рассмотрении томпсоновского рассеяния света).
Используется также радиус боровской орбиты. Он определяется как расстояние от ядра, на котором с наибольшей вероятностью можно обнаружить электрон в невозбужденном атоме водорода
a 0 = ћ 2 /m e e 2 (в СГС-системе) и a 0 = (α/4π)R = 0.529·10 -10 м (в СИ-системе), α = 1/137.
Размер нуклона r ≈ 10 -13 см (1 фемтометр). Характерные размеры атомных систем − 10 -8 , ядерных систем − 10 -12 ÷ 10 -13 см.
Время
изменяется в широком интервале и определяется как отношение расстояния R к скорости объекта v. Для микрообъектов τ яд = R/v = 5·10 -12 см/10 9 см/с ~ 5·10 -22 с;
τ элем ч = 10 -13 см/3·10 10 см/с = 3·10 -24 с.
Массы объектов изменяются от 0 до М. Так, масса электрона m е ≈ 10 -27 г, масса протона
m р ≈ 10 -24 г (СГС-система). Одна атомная единица массы, использующаяся в атомной и ядерной физике, 1 а.е.м. = М(С)/12 в единицах массы атома углерода.
К фундаментальным характеристикам микрообъектов следует отнести электрический заряд, а также характеристики, необходимые для идентификации элементарной частицы.
Электрический заряд частиц Q измеряется обычно в единицах заряда электрона. Заряд электрона е = 1.6·10 -19 кулон. Для частиц в свободном состоянии Q/e = ±1, 0, а для кварков, входящих в состав адронов, Q/e = ±2/3 и ±1/3.
В ядрах заряд определяется количеством протонов Z, содержащихся в ядре. Заряд протона по абсолютной величине равен заряду электрона.
Для идентификации элементарной частицы необходимо знать:
I − изотопический спин;
J − собственный момент количества движения − спин;
Р − пространственную четность;
С − зарядовую четность;
G − G-четность.
Эти сведения записываются в виде формулы I G (J PC).
Спин − одна из важнейших характеристик частицы, для измерения которой используется фундаментальная константа Планка h или ћ = h/2π = 1.0544·10 -27 [эрг-с]. Бозоны имеют целый спин в единицах ћ: (0,1, 2,...)ћ, фермионы − полуцелый (1/2, 3/2,.. .)ћ. В классе суперсимметричных частиц значения спинов фермионов и бозонов меняются местами.

Рис. 4 иллюстрирует физический смысл спина J по аналогии с классическим представлением о моменте количества движения частицы с массой m = 1 г, движущейся со скоростью v = 1 см/с по окружности с радиусом r = 1 см. В классической физике момент количества движения J = mvr = L (L − орбитальный момент). В квантовой механике J = = 10 27 ћ = 1 эрг·с для тех же параметров движущегося по окружности объекта, где ћ = 1.05·10 -27 эрг·с.
Проекция спина элементарной частицы на направление ее импульса называется спиральностью. Спиральность безмассовой частицы с произвольным спином принимает только два значения: по или против направления импульса частицы. Для фотона возможные значения спиральности равны ±1, для безмассового нейтрино спиральность равна ±1/2.
Спиновый момент количества движения атомного ядра определяется как векторная сумма спинов элементарных частиц, образующих квантовую систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы. Орбитальный момент ||, и спиновый момент || приобретают дискретное значение. Орбитальный момент || = ћ[l (l +1)] 1/2 , где l − орбитальное квантовое число (может принимать значения 0, 1,2,...), собственный момент количества движения || = ћ 1/2 где s − спиновое квантовое число (может принимать нулевые, целые или полуцелые значенияJ, полный момент количества движения равен сумме + = .
К производным единицам следует отнести: энергию частицы, быстроту, заменяющую скорость для релятивистских частиц, магнитный момент и др.
Энергия покоящейся частицы: Е = mc 2 ; движущейся частицы: Е = m 2 c 4 + p 2 c 2 .
Для нерелятивистских частиц: Е = mс 2 + р 2 /2m; для релятивистских частиц, с массой m = 0: Е = ср.
Единицы измерения энергии − эВ, кэВ, МэВ, ГэВ, ТэВ, ... 1 ГэВ = 10 9 эВ, 1 ТэВ = 10 12 эВ,
1 эВ = 1.6·10 -12 эрг.
Скорость частицы β = v/c, где с = 3·10 10 см/с − скорость света. Скорость частицы определяет такую важнейшую характеристику как Лоренц-фактор частицы γ = 1/(1-β 2) 1/2 = E/mc 2 . Всегда γ > 1- Для нерелятивистских частиц 1 < γ < 2, а для релятивистских частиц γ > 2.
В физике высоких энергий скорость частицы β близка к 1 и для релятивистских частиц ее трудно определить. Поэтому вместо скорости используется быстрота y, которая связана со скоростью соотношением у = (1/2)ln[(1+β)/(1-β)] = (1/2)ln[(E+p)/(E-p)]. Быстрота изменяется от 0 до ∞.

Функциональная связь между скоростью частицы и быстротой показана на рис. 5. Для релятивистских частиц при β → 1, Е → р, тогда вместо быстроты можно использовать псевдобыстроту η, которая определяется углом вылета частицы θ, η = (1/2)ln tan(θ/2). В отличие от скорости быстрота − аддитивная величина, т.е. у 2 = y 0 + y 1 для любой системы отсчета и для любых релятивистских и нерелятивистских частиц.
Магнитный момент μ = Iπr 2 /c, где ток I = ev/2πr, возникает из-за вращения электрического заряда. Таким образом, любая заряженная частица имеет магнитный момент. При рассмотрении магнитного момента электрона используется магнетон Бора
μ B = eћ/2m e c = 0.5788·10 -14 МэВ/Гс, магнитный момент электрона = g·μ B ·. Коэффициент g называется гиромагнитным отношением. Для электрона g = /μ B · = 2, т.к. J = ћ/2, = μ B при условии, что электрон − точечная бесструктурная частица. Гиромагнитное отношение g содержит информацию о структуре частицы. Величина (g − 2) измеряется в экспериментах, направленных на изучение структуры частиц, отличных от лептонов. Для лептонов эта величина свидетельствует о роли более высоких электромагнитных поправок (см. далее п. 7.1).
В ядерной физике используется ядерный магнетон μ я = eћ/2m p c, где m p − масса протона.

2.1.1. Система Хэвисайда и ее связь с системой СГС

В системе Хэвисайда скорость света с и постоянная Планка ћ полагаются равными единице, т.е. с = ћ = 1. Основными единицами измерения являются энергетические единицы − МэВ или МэВ -1 , в то время как в системе СГС основные единицы измерения − [г, см, с]. Тогда, воспользовавшись соотношениями: Е = mc 2 = m = МэВ, l = ћ/mc = МэВ -1 , t = ћ/mc 2 = МэВ -1 , получим связь между системой Хэвисайда и системой СГС в виде:
  • m(г) = m(МэВ)·2·10 -27 ,
  • l (см) = l (МэВ -1)·2·10 -11 ,
  • t (с) = t (МэВ -1)·б.б·10 -22 .

Система Хэвисайда применяется в физике высоких энергий для описания явлений, происходящих в микромире, и основана на использовании естественных констант с и ћ, которые являются определяющими в релятивистской и квантовой механике.
Числовые значения соответствующих величин в системе СГС для электрона и протона приводятся в табл. 3 и могут быть использованы для перехода из одной системы в другую.

Таблица 3. Числовые значения величин в системе СГС для электрона и протона

2.1.2. Планковские (естественные) единицы

При рассмотрении гравитационных эффектов для измерения энергии, массы, длины и времени вводится планковская шкала. Если гравитационная энергия объекта равна его полной энергии, т.е.

то
длина = 1.6·10 -33 см,
масса = 2.2 ·10 -5 г = 1.2·10 19 ГэВ,
время = 5.4·10 -44 с,
где = 6.67·10 -8 см 2 ·г -1 ·с -2 .

Гравитационные эффекты существенны, когда гравитационная энергия объекта сравнима с его полной энергией.

2.2. Классификация элементарных частиц

Понятие "элементарная частица" сформировалось с установлением дискретного характера строения вещества на микроскопическом уровне.

Атомы → ядра → нуклоны → партоны (кварки и глюоны)

В современной физике термин "элементарные частицы" употребляется для наименования большой группы мельчайших наблюдаемых частиц материи. Эта группа частиц весьма обширна: протоны р, нейтроны n, π- и K-мезоны, гипероны, очарованные частицы (J/ψ...) и множество резонансов (всего
~ 350 частиц). Эти частицы получили название "адроны".
Выяснилось, что эти частицы не элементарны, а представляют собой составные системы, конституентами которых являются истинно элементарные или, как их стали называть, "фундаментальные " частицы − партоны , открытые при изучении структуры протона. Изучение свойств партонов позволило отождествить их с кварками и глюонами , введенными в рассмотрение Гелл-Манном и Цвейгом при классификации наблюдаемых элементарных частиц. Кварки оказались фермионами со спином J = 1/2. Им были приписаны дробные электрические заряды и барионное число В = 1/3 поскольку барион, у которого В = 1, состоит из трех кварков. Кроме того, для объяснения свойств некоторых барионов возникла необходимость введения нового квантового числа − цвета. Каждый кварк имеет три цветовых состояния, обозначаемые индексами 1, 2, 3 или словами красный (R), зеленый (G) и синий (В). Цвет никак не проявляет себя у наблюдаемых адронов и работает только внутри них.
К настоящему времени открыто 6 ароматов (типов) кварков.
В табл. 4 приведены свойства кварков для одного цветового состояния.

Таблица 4. Свойства кварков

Аромат Масса, МэВ/с 2 I I 3 Q q /e s с b t
u up 330; (5) 1/2 1/2 2/3 0 0 0 0
d down 340; (7) 1/2 -1/2 -1/3 0 0 0 0
s strange 450; (150) 0 0 -1/3 -1 0 0 0
с charm 1500 0 0 2/3 0 1 0 0
b beauty 5000 0 0 -1/3 0 0 -1 0
t truth 174000 0 0 2/3 0 0 0 1

Для каждого аромата кварка указаны его масса (приводятся массы конституентных кварков и в скобках массы токовых кварков), изотопический спин I и 3-я проекция изотопического спина I 3 , заряд кварка Q q /e и квантовые числа s, с, b, t. Наряду с этими квантовыми числами часто используется квантовое число гиперзаряд Y = В + s + с + b+ t. Существует связь между проекцией изотопического спина I 3 , электрического заряда Q и гиперзаряда Y: Q = I 3 + (1/2)Y.
Поскольку каждый кварк имеет 3 цвета, в рассмотрении должны участвовать 18 кварков. Кварки не имеют структуры.
Вместе с тем, среди элементарных частиц оказался целый класс частиц, получивших название "лептоны ". Они также являются фундаментальными частицами, т.е. не имеют структуры. Их шесть: три заряженных е, μ, τ и три нейтральных ν e , ν μ , ν τ . Лептоны участвуют только в электромагнитных и слабых взаимодействиях. Лептоны и кварки с полуцелым спином J = (n+1/2)ћ, n = 0, 1,... . относятся к фундаментальным фермионам. Наблюдается удивительная симметрия между лептонами и кварками: шесть лептонов и шесть кварков.
В табл. 5 приведены свойства фундаментальных фермионов: электрический заряд Q i в единицах заряда электрона и масса частиц m. Лептоны и кварки объединяются в три поколения (I, II и III). Для каждого поколения сумма электрических зарядов ∑Q i = 0 с учетом 3 цветовых зарядов у каждого кварка. Каждому фермиону сответствует антифермион.
Кроме характеристик частиц, указанных в таблице, важную роль для лептонов играют лептонные числа: электронное L e , равное +1 для е - и ν e , мюонное L μ , равное +1 для μ - и ν μ и таонное L τ , равное +1 для τ - и ν τ , которые соответствуют ароматам лептонов, участвующих в конкретных реакциях, и являются сохраняющимися величинами. Для лептонов барионное число В = 0.

Таблица 5. Свойства фундаментальных фермионов

Окружающее нас вещество состоит из фермионов первого поколения ненулевой массы. Влияние частиц второго и третьего поколений проявилось в ранней Вселенной. Среди фундаментальных частиц особую роль играют фундаментальные калибровочные бозоны, имеющие целочисленное внутреннее квантовое число спин J = nћ, n = 0, 1, .... Калибровочные бозоны ответственны за четыре типа фундаментальных взаимодействий: сильное (глюон g), электромагнитное (фотон γ), слабое (бозоны W ± , Z 0), гравитационное (гравитон G). Они также являются бесструктурными, фундаментальными частицами.
В табл. 6 приведены свойства фундаментальных бозонов, являющихся полевыми квантами в калибровочных теориях.

Таблица 6. Свойства фундаментальных бозонов

Название Заряд Масса Спин Взаимодействия
Гравитон, G 0 0 2 Гравитационное
Фотон, γ 0 < 3·10 -27 эВ 1 Электромагнитное
Заряженные векторные бозоны, W ± ±1 80.419 ГэВ/с 2 1 Слабое
Нейтральный векторный бозон, Z 0 0 91.188 ГэВ/с 2 1 Слабое
Глюоны, g 1 , ... , g 8 0 0 0 Сильное
Хиггсы, Н 0 , H ± 0 > 100 ГэВ/с 2 0

Помимо свойств открытых калибровочных бозонов γ, W ± , Z 0 , g 1 ,... , g 8 в таблице показаны свойства неоткрытых пока бозонов: гравитона G и Хиггс-бозонов Н 0 , H ± .
Рассмотрим теперь наиболее многочисленную группу элементарных сильновзаимодействующих частиц − адронов, для объяснения структуры которых было введено представление о кварках.
Адроны подразделяются на мезоны и барионы. Мезоны построены из кварка и антикварка (q). Барионы состоят из трех кварков (q 1 q 2 q 3).
В табл. 7 приводится перечень свойств основных адронов. (Подробные таблицы см. The European Physical Journal C, Rev. of Particle Phys., v.15, №1 - 4, 2000.)

Таблица 7. Свойства адронов

Название Масса, МэВ/с 2 Время жизни, с Моды распада Кварковый состав
Пион π ±
1 - (0 -+) π 0
139.567 134.965

2.6·10 -8
0.83·10 -16

π ± → μ ± + ν
π 0 → γ + γ
(u), (d)
(u − d)/√2
η-мезон η 0
0 + (0 -+)
548.8 Г=1.18±0.11 кэВ η 0 → γ + γ; 3π 0
→π + + π -0 + π --
с 1 (u + d) + c 2 (s)
(u), (s)
(d)
(d)
D ±
D 0
1869.3
1864.5
10.69·10 -13
4.28·10 -13

D ± → е ± + X
D 0 → е + + X -

(c), (d)
(c)
F ± = 1969.3 4.36·10 -13 → ρ 0 + π ± (c, s)
B ±
В 0
5277.6 5279.4 13.1·10 -13
13.1·10 -13
B ± → + π ±
В 0 →+ π -0 +
(u), (b)
(d), (b)
б Протон р
Нейтрон n
938.3
939.5
> 10 33 лет
898 ±16

n → р + е - +
uud
udd
Λ 2.63·10 -10 Λ→p + π - uds
Σ +
Σ 0
Σ -
1189.4
1192
1197
0.8·10 -10
5.8·10 -20
1.48·10 -10
Σ + →p + π 0
Σ 0 → Λ+ γ
Σ - →n + π -
uus
uds
dds
Ξ 0
Ξ -
1314.9
1321
2.9·10 -10
1.64·10 -10
Ξ 0 → Λ+ π 0
Ξ - → Λ + π -
uss
dss
Ω - 1672 0.8·10 -10 Ω - → Λ+ K - sss
Σ с
Σ с →+ π
→Ξ - π + π +
l - l
ucs
usc
dsc
udb

Кварковая структура адронов позволяет выделить в этой многочисленной группе частиц нестранные адроны, которые состоят из нестранных кварков (и, d), странные адроны, в состав которых входит странный кварк s, чармированные адроны, содержащие с-кварк, прелестные адроны (боттом-адроны) с b-кварком.
В таблице представлены свойства только незначительной части адронов: мезонов и барионов. Показаны их масса, время жизни, основные моды распада и кварковый состав. Для мезонов барионное число В = О и лептонное число L = 0. Для барионов барионное число В = 1, лептон-ное число L = 0. Мезоны относятся к бозонам (целый спин), барионы − к фермионам (спин полуцелый).
Дальнейшее рассмотрение свойств адронов позволяет объединить их в изотопические мультиплеты, состоящие из частиц с одинаковыми квантовыми числами (барионным числом, спином, внутренней четностью, странностью) и близкими по значению массами, но с различными электрическими зарядами. Каждый изотопический мультиплет характеризуется изотопическим спином I, который определяет полное число частиц, входящих в мультиплет, равное 2I + 1. Изоспин может принимать значения 0, 1/2, 1, 3/2, 2, . .., т.е. возможно существование изотопических синглетов, дублетов, триплетов, квартетов и т.д. Так, протон и нейтрон составляют изотопический дублет, π + -, π - -, π 0 -мезоны рассматриваются как изотопический триплет.
Более сложными объектами в микромире являются атомные ядра. Атомное ядро состоит из Z протонов и N нейтронов. Сумма Z + N = А − число нуклонов в данном изотопе. Часто в таблицах приводится усредненная по всем изотопам величина, тогда она становится дробной. Известны ядра, для которых указанные величины находятся в пределах: 1 < А < 289, 1 < Z < 116.
Перечисленные выше частицы рассматриваются в рамках Стандартной Модели. Предполагается, что за пределами Стандартной Модели может существовать еще одна группа фундаментальных частиц − суперсимметричные частицы (SUSY). Они должны обеспечить симметрию между фермионами и бозонами. В табл. 8 приводятся предполагаемые свойства этой симметрии.

2.3. Полевой подход к проблеме взаимодействий

2.3.1 Свойства фундаментальных взаимодействий

Огромное многообразие физических явлений, происходящих при столкновениях элементарных частиц, определяется всего лишь четырьмя типами взаимодействий: электромагнитным, слабым, сильным и гравитационным. В квантовой теории взаимодействие описывается в терминах обмена специфическими квантами (бозонами), ассоциированными с данным типом взаимодействия.
Для наглядного представления взаимодействия частиц американский физик Р. Фейнман предложил использовать диаграммы, которые получили его имя. Диаграммы Фейнмана описывают любой процесс взаимодействия при столкновении двух частиц. Каждая частица, участвующая в процессе, на диаграмме Фейнмана изображается линией. Свободный левый или правый конец линии обозначает нахождение частицы в начальном или конечном состоянии соответственно. Внутренние линии на диаграммах (т.е. линии, не имеющие свободных концов) соответствуют так называемым виртуальным частицам. Это частицы, рождающиеся и поглощающиеся в процессе взаимодействия. Их нельзя зарегистрировать, в отличие от реальных частиц. Взаимодействие частиц на диаграмме изображается узлами (или вершинами). Тип взаимодействия характеризуется константой связи α которая может быть записана в виде: α = g 2 /ћc, где g − заряд источника взаимодействия, а является основной количественнои характеристикой силы, действующей между частицами. В электромагнитном взаимодействии α е = e 2 /ћc = 1/137.


Рис.6. Диаграмма Фейнмана.

Процесс a + b →с + d в виде диаграммы Фейнмана (рис. 6) выглядит следующим образом: R − виртуальная частица, которой обмениваются частицы а и b при взаимодействии, определяемом константой взаимодействия α = g 2 /ћc, характеризующей силу взаимодействия на расстоянии, равном радиусу взаимодействия.
Виртуальная частица может иметь массу М х и при обмене этой частицей происходит передача 4-импульса t = −q 2 = Q 2 .
В табл. 9 представлены характеристики разных типов взаимодействий.

Электромагнитные взаимодействия . Наиболее полно и последовательно изучены электромагнитные взаимодействия, которым подвержены все заряженные частицы и фотоны. Переносчиком взаимодействия является фотон. Для электромагнитных сил константа взаимодействия численно равна постоянной тонкой структуры α е = e 2 /ћc = 1/137.
Примерами простейших электромагнитных процессов являются фотоэффект, комптон-эффект, образование электрон-позитронных пар, а для заряженных частиц − ионизационное рассеяние и тормозное излучение. Теория этих взаимодействий − квантовая электродинамика − является наиболее точной физической теорией.

Слабые взаимодействия. Впервые слабые взаимодействия наблюдались при β-распаде атомных ядер. И, как оказалось, эти распады связаны с превращениями протона в нейтрон в ядре и обратно:
р → n + е + + ν e , n → р + е - + e . Возможны и обратные реакции: захват электрона е - + р → n + ν e или антинейтрино e + р → е + + n. Слабое взаимодействие было описано Энрико Ферми в 1934 г. в терминах четырехфермионного контактного взаимодействия, определяемого константой Ферми
G F = 1.4·10 -49 эрг·см 3 .
При очень высоких энергиях вместо фермиевского контактного взаимодействия слабое взаимодействие описывается как обменное, при котором осуществляется обмен квантом, наделенным слабым зарядом g w (по аналогии с электрическим зарядом) и действующим между фермионами. Такие кванты были впервые обнаружены в 1983 г. на SppS-коллайдере (ЦЕРН) коллективом под руководством Карла Руббиа. Это заряженные бозоны − W ± и нейтральный бозон − Z 0 , их массы соответственно равны: m W± = 80 ГэВ/с 2 и m Z = 90 ГэВ/с 2 . Константа взаимодействия α W в этом случае выражается через константу Ферми:

Таблица 9. Основные типы взаимодействий и их характеристики

Еще сравнительно недавно элементарными считались несколько сот частиц и античастиц. Детальное изучение их свойств и взаимодействий с другими частицами и развитие теории показали, что большинство из них на самом деле не элементарны, так как сами состоят из простейших или, как сейчас говорят, фундаментальных частиц. Фундаментальные частицы сами уже ни из чего не состоят. Многочисленные эксперименты показали, что все фундаментальные частицы ведут себя как безразмерные точечные объекты, не имеющие внутренней структуры, по крайней мере до наименьших, изученных сейчас расстояний ~10 -16 см.

Введение

Среди бесчисленных и разнообразных процессов взаимодействия между частицами имеются четыре основных или фундаментальных взаимодействия: сильное (ядерное), электромагнитное, и гравитационное. В мире частиц гравитационное взаимодействие очень слабое, его роль еще неясна, и о нем дальше мы говорить не будем.

В природе существуют две группы частиц: адроны, которые участвуют во всех фундаментальных взаимодействиях, и лептоны, не участвующие только в сильном взаимодействии.

Согласно современным представлениям, взаимодействия между частицами осуществляются посредством испускания и последующего поглощения квантов соответствующего поля (сильного, слабого, электромагнитного), окружающего частицу. Такими квантами являются калибровочные бозоны, также являющиеся фундаментальными частицами. У бозонов собственный момент количества движения, называемый спином, равен целочисленному значению постоянной Планка $h = 1,05 \cdot 10^{-27} эрг \cdot с$. Квантами поля и соответственно переносчиками сильного взаимодействия являются глюоны, обозначаемые символом g, квантами электромагнитного поля являются хорошо известные нам кванты света - фотоны, обозначаемые $\gamma $, а квантами слабого поля и соответственно переносчиками слабых взаимодействий являются W ± (дубль ве)- и Z 0 (зет нуль)-бозоны.

В отличие от бозонов все остальные фундаментальные частицы являются фермионами, то есть частицами, имеющими полуцелое значение спина, равное h /2.

В табл. 1 приведены символы фундаментальных фермионов - лептонов и кварков.

Каждой частице, приведенной в табл. 1, соответствует античастица, отличающаяся от частицы лишь знаками электрического заряда и других квантовых чисел (см. табл. 2) и направлением спина относительно направления импульса частицы. Античастицы мы будем обозначать теми же символами, как и частицы, но с волнистой чертой над символом.

Частицы в табл. 1 обозначены греческими и латинскими буквами, а именно: буквой $\nu$ - три различных нейтрино, буквами е - электрон, $\mu$ - мюон, $\tau$ - таон, буквами u, c, t, d, s, b обозначены кварки; их наименования и характеристики приведены в табл. 2.

Частицы в табл. 1 сгруппированы в три поколения I, II и III в соответствии со структурой современной теории . Наша Вселенная построена из частиц первого поколения - лептонов и кварков и калибровочных бозонов, но, как показывает современная наука о развитии Вселенной, на начальной стадии ее развития важную роль играли частицы всех трех поколений.

Лептоны Кварки
I II III
$\nu_e$
e
$\nu_{\mu}$
$\mu$
$\nu_{\tau}$
$\tau$
I II III
u
d
c
s
t
b

Лептоны

Сначала рассмотрим более подробно свойства лептонов. В верхней строке табл. 1 содержатся три разных нейтрино: электронное $\nu_e$, мюонное $\nu_m$ и тау-нейтрино $\nu_t$. Их масса до сих пор точно не измерена, но определен ее верхний предел, например для ne равный 10 -5 от величины массы электрона (то есть $\leq 10^{-32}$ г).

При взгляде на табл. 1 невольно возникает вопрос о том, зачем природе потребовалось создание трех разных нейтрино. Ответа на этот вопрос пока нет, ибо не создана такая всеобъемлющая теория фундаментальных частиц, которая бы указала на необходимость и достаточность всех таких частиц и описала бы их основные свойства. Возможно, эта проблема будет решена в XXI веке (или позже).

Нижняя строка табл. 1 начинается с наиболее изученной нами частицы - электрона. Электрон был открыт еще в конце прошлого века английским физиком Дж. Томсоном. Роль электронов в нашем мире огромна. Они являются теми отрицательно заряженными частицами, которые вместе с атомными ядрами образуют все атомы известных нам элементов Периодической таблицы Менделеева. В каждом атоме число электронов в точности равно числу протонов в атомном ядре, что и делает атом электрически нейтральным.

Электрон стабилен, главной возможностью уничтожения электрона является его гибель при соударении с античастицей - позитроном e + . Этот процесс получил название аннигиляции:

$$e^- + e^+ \to \gamma + \gamma .$$

В результате аннигиляции образуются два гамма-кванта (так называют фотоны высокой энергии), уносящие и энергии покоя e + и e - , и их кинетические энергии. При высокой энергии e + и e - образуются адроны и кварковые пары (см., например, (5) и рис. 4).

Реакция (1) наглядно иллюстрирует справедливость знаменитой формулы А. Эйнштейна об эквивалентности массы и энергии: E = mc 2 .

Действительно, при аннигиляции остановившегося в веществе позитрона и покоящегося электрона вся масса их покоя (равная 1,22 МэВ) переходит в энергию $\gamma$-квантов, которые не имеют массы покоя.

Во втором поколении нижней строки табл. 1 расположен >мюон - частица, являющаяся по всем своим свойствам аналогом электрона, но с аномально большой массой. Масса мюона в 207 раз больше массы электрона. В отличие от электрона мюон нестабилен. Время его жизни t = 2,2 · 10 -6 с. Мюон преимущественно распадается на электрон и два нейтрино по схеме

$$\mu^- \to e^- + \tilde \nu_e +\nu_{\mu}$$

Еще более тяжелым аналогом электрона является $\tau$-лептон (таон). Его масса более чем в 3 тыс. раз превосходит массу электрона ($m_{\tau} = 1777$ МэВ/с 2), то есть таон тяжелее протона и нейтрона. Время его жизни равно 2,9 · 10 -13 с, а из более чем ста разных схем (каналов) его распада возможны следующие:

$$\tau^-\left\langle\begin{matrix} \to e^- + \tilde \nu_e +\nu_{\tau}\\ \to \mu^- + \tilde \nu_\mu +\nu_{\tau} \end{matrix}\right.$$

Говоря о лептонах, интересно сравнить слабые и электромагнитные силы на некотором определенном расстоянии, например R = 10 -13 см. На таком расстоянии электромагнитные силы больше слабых сил почти в 10 млрд раз. Но это вовсе не значит, что роль слабых сил в природе мала. Отнюдь нет.

Именно слабые силы ответственны за множество взаимных превращений различных частиц в другие частицы, как, например, в реакциях (2), (3), и такие взаимопревращения являются одной из характернейших черт физики частиц. В отличие от реакций (2), (3) в реакции (1) действуют электромагнитные силы.

Говоря о лептонах, необходимо добавить, что современная теория описывает электромагнитные и слабые взаимодействия с помощью единой электрослабой теории. Она разработана С. Вайнбергом, А. Саламом и Ш. Глэшоу в 1967 году .

Кварки

Сама идея кварков возникла в результате блестящей попытки классифицировать большое количество частиц, участвующих в сильных взаимодействиях и называемых адронами. М. Гелл-Ман и Г. Цвейг предположили, что все адроны состоят из соответствующего набора фундаментальных частиц - кварков, их антикварков и переносчиков сильного взаимодействия - глюонов .

Полное число адронов, наблюденное в настоящее время, составляет более ста частиц (и столько же античастиц). Много десятков частиц еще не зарегистрировано. Все адроны подразделяются на тяжелые частицы, названные барионами , и средние, названные мезонами .

Барионы характеризуются барионным числом b = 1 для частиц и b  = -1 для антибарионов. Их рождение и уничтожение всегда происходят парами: бариона и антибариона. У мезонов барионный заряд b  = 0. Согласно идее Гелл-Мана и Цвейга, все барионы состоят из трех кварков, антибарионы - из трех антикварков. Поэтому каждому кварку было приписано барионное число 1/3, чтобы в сумме у бариона было b = 1 (или -1 для антибариона, состоящего из трех антикварков). Мезоны имеют барионное число b = 0, поэтому они могут быть составлены из любой комбинации пар любого кварка и любого антикварка. Помимо одинаковых для всех кварков квантовых чисел - спина и барионного числа имеются другие важные их характеристики, такие, как величина их массы покоя m , величина электрического заряда Q /e (в долях заряда электрона е = 1,6 · 10 -19 кулон) и некоторого набора квантовых чисел, характеризующих так называемый аромат кварка . К ним относятся:

1) величина изотопического спина I и величина его третьей проекции, то есть I 3 . Так, u -кварк и d -кварк образуют изотопический дублет, им приписан полный изотопический спин I = 1/2 с проекциями I 3 = +1/2, соответствующей u -кварку, и I 3 = -1/2, соответствующей d -кварку. Обе компоненты дублета имеют близкие значения массы и идентичны по всем остальным свойствам, за исключением электрического заряда;

2) квантовое число S - странность характеризует странное поведение некоторых частиц, имеющих аномально большое время жизни (~10 -8 - 10 -13 с) по сравнению с характерным ядерным временем (~10 -23 с). Сами частицы были названы странными, в их состав входит один или несколько странных кварков и странных антикварков. Рождение или исчезновение странных частиц вследствие сильных взаимодействий происходят парами, то есть в любой ядерной реакции сумма $\Sigma$S до реакции должна быть равна $\Sigma$S после реакции. Однако в слабых взаимодействиях закон сохранения странности не выполняется.

В опытах на ускорителях наблюдали частицы, которые было невозможно описать с помощью u -, d - и s -кварков. По аналогии со странностью потребовалось ввести еще три новых кварка с новыми квантовыми числами С = +1, В = -1 и Т = +1. Частицы, составленные из этих кварков, имеют существенно большую массу (> 2 ГэВ/с 2). Они имеют большое разнообразие схем распадов со временем жизни ~10 -13 с. Сводка характеристик всех кварков приведена в табл. 2.

Каждому кварку табл. 2 соответствует свой антикварк. У антикварков все квантовые числа имеют знак, противоположный тому, который указан для кварка. О величине массы кварков необходимо сказать следующее. Приведенные в табл. 2 значения соответствуют массам голых кварков, то есть собственно кварков без учета окружающих их глюонов. Масса одетых кварков за счет энергии, несомой глюонами, больше. Особенно это заметно для легчайших u - и d -кварков, глюонная шуба которых имеет энергию около 300 МэВ.

Кварки, которые определяют основные физические свойства частиц, называют валентными кварками. Помимо валентных кварков в составе адронов имеются виртуальные пары частиц - кварки и антикварки, которые испускаются и поглощаются глюонами на очень короткое время

(где Е - энергия виртуальной пары), что происходит с нарушением закона сохранения энергии в соответствии с соотношением неопределенности Гейзенберга . Виртуальные пары кварков называют кварками моря или морскими кварками . Таким образом, в структуру адронов входят валентные и морские кварки и глюоны.

Главная особенность всех кварков в том, что они являются обладателями соответствующих сильных зарядов. Заряды сильного поля имеют три равноправные разновидности (вместо одного электрического заряда в теории электрических сил). В исторически сложившейся терминологии эти три разновидности заряда называют цветами кварков, а именно: условно красным, зеленым и синим. Таким образом, каждый кварк в табл. 1 и 2 может быть в трех ипостасях и является цветной частицей. Смешение всех трех цветов, подобно тому как это имеет место в оптике, дает белый цвет, то есть обесцвечивает частицу. Все наблюдаемые адроны бесцветны.

Кварки u (up) d (down) s (strange) c (charm) b (bottom) t (top)
Масса m 0 (1,5-5) МэВ/с 2 (3-9) МэВ/с 2 (60-170) МэВ/с 2 (1,1-4,4) ГэВ/с 2 (4,1-4,4) ГэВ/с 2 174 ГэВ/с 2
Изоспин I +1/2 +1/2 0 0 0 0
Проекция I 3 +1/2 -1/2 0 0 0 0
Электрический заряд Q /e +2/3 -1/3 -1/3 +2/3 -1/3 +2/3
Странность S 0 0 -1 0 0 0
Чарм C 0 0 0 +1 0 0
Боттом B 0 0 0 0 -1 0
Топ T 0 0 0 0 0 +1

Взаимодействия кварков осуществляют восемь разных глюонов. Термин "глюон" означает в переводе с английского языка клей, то есть эти кванты поля есть частицы, которые как бы склеивают кварки между собой. Как и кварки, глюоны являются цветными частицами, но поскольку каждый глюон изменяет цвета сразу двух кварков (кварка, который испускает глюон, и кварка, который поглотил глюон), то глюон окрашен дважды, неся на себе цвет и антицвет, как правило отличный от цвета.

Масса покоя глюонов, как и у фотона, равна нулю. Кроме того, глюоны электрически нейтральны и не обладают слабым зарядом.

Адроны принято также делить на стабильные частицы и резонансы: барионные и мезонные.
Для резонансов характерно чрезвычайно малое время жизни (~10 -20 -10 -24 с), так как их распад обусловлен сильным взаимодействием.

Десятки таких частиц были открыты американским физиком Л.В. Альваресом. Поскольку путь таких частиц до распада столь мал, что они не могут наблюдаться в детекторах, регистрирующих следы частиц (таких, как пузырьковая камера и др.), все они были обнаружены косвенно, по наличию пиков в зависимости вероятности взаимодействия различных частиц друг с другом от энергии. Рисунок 1 поясняет сказанное. На рисунке приведена зависимость сечения взаимодействия (пропорциональное величине вероятности) положительного пиона $\pi^+$ с протоном p от кинетической энергии пиона. При энергии около 200 МэВ виден пик в ходе сечения. Его ширина $\Gamma = 110$ МэВ, а полная масса частицы $\Delta^{++}$ равна $T^{"}_{max}+M_p c^2+M_\pi c^2=1232$ МэВ/с 2 , где $T^{"}_{max}$ - кинетическая энергия соударения частиц в системе их центра масс. Большинство резонансов можно рассматривать как возбужденное состояние стабильных частиц, так как они имеют тот же кварковый состав, что и их стабильные аналоги, хотя масса резонансов больше за счет энергии возбуждения.

Кварковая модель адронов

Кварковую модель адронов начнем описывать с рисунка силовых линий, исходящих из источника - кварка с цветным зарядом и заканчивающихся на антикварке (рис. 2, б ). Для сравнения на рис. 2, а мы показываем, что в случае электромагнитного взаимодействия силовые линии расходятся от их источника - электрического заряда веером, ибо виртуальные фотоны, испущенные одновременно источником, не взаимодействуют друг с другом. В результате получаем закон Кулона.

В отличие от этой картины глюоны сами обладают цветными зарядами и сильно взаимодействуют друг с другом. В результате вместо веера из силовых линий мы имеем жгут, показанный на рис. 2, б . Жгут протянут между кварком и антикварком, но самое удивительное то, что сами глюоны, имея цветные заряды, становятся источниками новых глюонов, число которых нарастает по мере их удаления от кварка.
Такая картина взаимодействия соответствует зависимости потенциальной энергии взаимодействия между кварками от расстояния между ними, показанной на рис. 3. А именно: до расстояния R > 10 -13 см зависимость U(R) имеет воронкообразный характер, причем сила цветного заряда в этой области расстояний относительно невелика, так что кварки при R > 10 -15 cм в первом приближении можно рассматривать как свободные, невзаимодействующие частицы. Это явление имеет специальное название асимптотической свободы кварков при малых R . Однако при R больше некоторого критического $R_{кр} \approx 10^{-13}$ cм величина потенциальной энергии взаимодействия U (R ) становится прямо пропорциональной величине R . Отсюда прямо следует, что сила F = -dU /dR = const, то есть не зависит от расстояния. Никакие другие взаимодействия, которые физики ранее изучили, не обладали столь необычным свойством .

Расчеты показывают, что силы, действующие между кварком и антикварком, действительно, начиная с $R_{кр} \approx 10_{-13}$ см, перестают зависеть от расстояния, оставаясь на уровне огромной величины, близкой 20 т. На расстоянии R ~ 10 -12 см (равном радиусу средних атомных ядер) цветные силы более чем в 100 тыс. раз больше электромагнитных сил. Если сравнить цветную силу с ядерными силами между протоном и нейтроном внутри атомного ядра, то оказывается, что цветная сила в тысячи раз больше! Таким образом, перед физиками открылась новая грандиозная картина цветных сил в природе, на много порядков превышающих ныне известные ядерные силы. Конечно, сразу же возникает и вопрос о том, можно ли такие силы заставить работать как источник энергии. К сожалению, ответ на этот вопрос отрицательный.

Естественно, встает и другой вопрос: до каких расстояний R между кварками потенциальная энергия линейно растет с ростом R ?
Ответ простой: при больших расстояниях жгут силовых линий рвется, так как энергетически более выгодно образовать разрыв с рождением кварк-антикварковой пары частиц. Это происходит, когда потенциальная энергия в месте разрыва больше массы покоя кварка и антикварка. Процесс разрыва жгута силовых линий глюонного поля показан на рис. 2, в .

Такие качественные представления о рождении кварка-антикварка позволяют понять, почему одиночные кварки вообще не наблюдаются и не могут наблюдаться в природе. Кварки навечно заключены внутри адронов. Это явление невылета кварков называется конфайнментом . При высоких энергиях жгуту может быть выгоднее разорваться сразу во многих местах, образовав множество $q \tilde q$-пар. Таким путем мы подошли к проблеме множественного рождения кварк-антикварковых пар и образованию жестких кварковых струй.

Рассмотрим сначала строение легких адронов, то есть мезонов. Они состоят, как мы уже говорили, из одного кварка и одного антикварка.

Чрезвычайно важно, что оба партнера пары имеют при этом одинаковый цветной заряд и такой же антизаряд (например, кварк синий и антикварк антисиний), так что их пара независимо от ароматов кварков не имеет цвета (а только бесцветные частицы мы и наблюдаем).

Все кварки и антикварки имеют спин (в долях от h ), равный 1/2. Поэтому суммарный спин сочетания кварка с антикварком равен либо 0, когда спины антипараллельны, либо 1, когда спины параллельны друг другу. Но спин частицы может быть и больше 1, если сами кварки вращаются по каким-либо орбитам внутри частицы.

В табл. 3 приведены некоторые парные и более сложные комбинации кварков с указанием, каким известным ранее адронам данное сочетание кварков соответствует.

Кварки Мезоны Кварки Барионы
J =0 J =1 J =1/2 J =3/2
частицы резонансы частицы резонансы
$\pi^+$
$\rho^+$
uuu $\Delta^{++}$
$\tilde u d$ $\pi^-$
$\rho^-$
uud p
$\Delta^+$
$u \tilde u - d \tilde d$ $\pi^0$
$\rho^0$
udd n
(нейтрон)
\Delta^0
(дельта0)
$u \tilde u + d \tilde d$ $\eta$
$\omega$
ddd $\Delta^-$
$d \tilde s$ $k^0$
$k^0*$
uus $\Sigma^+$
$\Sigma^+*$
$u \tilde s$ $k^+$
$k^+*$
uds $\Lambda^0$
$\Sigma^0*$
$\tilde u s$ $k^-$
$k^-*$
dds $\Sigma^-$
$\Sigma^-*$
$c \tilde d$ $D^+$
$D^+*$
uss $\Xi^0$
$\Xi^0*$
$c \tilde s$ $D^+_s$
$D^+_s*$
dss $\Xi^-$
$\Xi^-*$
$c \tilde c$ Чармоний $J/\psi$
sss $\Omega^-$
$b \tilde b$ Боттоний Ипсилон udc $\Lambda^+_c$
(лямбда-цэ+)
$c \tilde u$ $D^0$
$D^0*$
uuc $\Sigma^{++}_c$
$b \tilde u$ $B^-$
$B*$
udb $\Lambda_b$

Из наиболее изученных в настоящее время мезонов и мезонных резонансов наибольшую группу составляют легкие неароматные частицы, у которых квантовые числа S = C = B = 0. В эту группу входят около 40 частиц. Таблица 3 начинается с пионов $\pi$ ±,0 , открытых английским физиком С.Ф. Пауэллом в 1949 году. Заряженные пионы живут около 10 -8 с, распадаясь на лептоны по следующим схемам:

$\pi^+ \to \mu + \nu_{\mu}$ и $\pi^- \to \mu^- + \tilde \nu_{\mu}$.

Их "родственники" в табл. 3 - резонансы $\rho$ ±,0 (ро-мезоны) имеют в отличие от пионов спин J = 1, они нестабильны и живут всего около 10 -23 с. Причина распада $\rho$ ±,0 - сильное взаимодействие.

Причина распада заряженных пионов обусловлена слабым взаимодействием, а именно тем, что составляющие частицу кварки способны испускать и поглощать в результате слабого взаимодействия на короткое время t в соответствии с соотношением (4) виртуальные калибровочные бозоны: $u \to d + W^+$ или $d \to u + W^-$, причем в отличие от лептонов осуществляются и переходы кварка одного поколения в кварк другого поколения, например $u \to b + W^+$ или $u \to s + W^+$ и т.д., хотя такие переходы существенно более редкие, чем переходы в рамках одного поколения. Вместе с тем при всех подобных превращениях электрический заряд в реакции сохраняется.

Изучение мезонов, включающих s - и c -кварки, привело к открытию нескольких десятков странных и чармированных частиц. Их исследование проводится сейчас во многих научных центрах мира.

Изучение мезонов, включающих b - и t -кварки, интенсивно началось на ускорителях, и мы пока не будем говорить о них более подробно.

Перейдем к рассмотрению тяжелых адронов, то есть барионов. Все они составлены из трех кварков, но таких, у которых имеются все три разновидности цвета, поскольку, так же как и мезоны, все барионы бесцветны. Кварки внутри барионов могут иметь орбитальное движение. В этом случае суммарный спин частицы будет превышать суммарный спин кварков, равный 1/2 или 3/2 (если спины всех трех кварков параллельны друг другу).

Барионом с минимальной массой является протон p (см. табл. 3). Именно из протонов и нейтронов состоят все атомные ядра химических элементов. Число протонов в ядре определяет его суммарный электрический заряд Z .

Другой основной частицей атомных ядер является нейтрон n . Нейтрон немного тяжелее протона, он неустойчив и в свободном состоянии со временем жизни около 900 с распадается на протон, электрон и нейтрино. В табл. 3 показано кварковое состояние протона uud и нейтрона udd . Но при спине этой комбинации кварков J = 3/2 образуются резонансы $\Delta^+$ и $D^0$ соответственно. Все другие барионы, состоящие из более тяжелых кварков s , b , t , имеют и существенно большую массу. Среди них особый интерес вызывал W - -гиперон, состоящий из трех странных кварков. Он был открыт сначала на бумаге, то есть расчетным образом, с использованием идей кваркового строения барионов. Были предсказаны все основные свойства этой частицы, подтвержденные затем экспериментами.

Многие экспериментально наблюденные факты убедительно говорят сейчас о существовании кварков. В частности, речь идет и об открытии нового процесса в реакции соударения электронов и позитронов, приводящей к образованию кварк-антикварковых струй. Схема этого процесса показана на рис. 4. Эксперимент выполнен на коллайдерах в Германии и США. На рисунке показаны стрелками направления пучков e + и e - , а из точки их столкновения вылет кварка q и антикварка $\tilde q$ под зенитным углом $\Theta$ к направлению полета e + и e - . Такое рождение $q+\tilde q$ пары происходит в реакции

$$e^+ + e^- \to \gamma_{вирт} \to q + \tilde q$$

Как мы уже говорили, жгут силовых линий (чаще говорят струна) при достаточно большом растяжении рвется на составляющие.
При большой энергии кварка и антикварка, как говорилось ранее, струна рвется во многих местах, в результате чего в обоих направлениях вдоль линии полета кварка q и антикварка образуются два узких пучка вторичных бесцветных частиц, как это показано на рис. 4. Такие пучки частиц названы струями. Достаточно часто на опыте наблюдается образование трех, четырех и более струй частиц одновременно.

В экспериментах, которые проводились при сверхускорительных энергиях в космических лучах, в которых принимал участие и автор этой статьи, получены как бы фотографии процесса образования многих струй. Дело в том, что жгут или струна одномерны и поэтому центры образования трех, четырех и более струй также располагаются вдоль прямой линии .

Теория, описывающая сильные взаимодействия, называется квантовой хромодинамикой или сокращенно КХД . Она гораздо сложнее теории электрослабых взаимодействий. Особенно успешно КХД описывает так называемые жесткие процессы, то есть процессы взаимодействия частиц с большой передачей импульса между частицами. Хотя создание теории еще не завершено, многие физики-теоретики уже сейчас заняты созданием "великого объединения" - объединения квантовой хромодинамики и теории электрослабого взаимодействия в единую теорию.

В заключение кратко остановимся на том, исчерпывают ли шесть лептонов и 18 разноцветных кварков (и их античастицы), а также кванты фундаментальных полей - фотон, W ± -, Z 0 -бозоны, восемь глюонов и, наконец, кванты гравитационного поля - гравитоны весь арсенал истинно элементарных, точнее, фундаментальных частиц. По-видимому, нет. Скорее всего, описанные картины частиц и полей суть отражение лишь наших знаний в настоящее время. Недаром уже сейчас есть много теоретических идей, в которые вводятся большая группа еще на наблюденных так называемых суперсимметричных частиц, октет сверхтяжелых кварков и многое другое.

Очевидно, современная физика еще далека от построения завершенной теории частиц. Возможно, был прав великий физик Альберт Эйнштейн, полагая, что лишь учет гравитации, несмотря на ее сейчас кажущуюся малую роль в микромире, позволит построить строгую теорию частиц. Но все это уже в XXI веке или еще позже.

Литература

1. Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1988.

2. Кобзарев И.Ю. Лауреаты Нобелевской премии 1979 г.: С. Вайнберг, Ш. Глэшоу, А. Салам // Природа. 1980. N 1. С. 84.

3. Зельдович Я.Б. Классификация элементарных частиц и кварки в изложении для пешеходов // Успехи физ. наук. 1965. Т. 8. С. 303.

4. Крайнов В.П. Соотношение неопределенности для энергии и времени // Соросовский Образовательный Журнал. 1998. N 5. С. 77-82.

5. Намбу И. Почему нет свободных кварков // Успехи физ. наук. 1978. Т. 124. С. 146.

6. Жданов Г.Б., Максименко В.М., Славатинский С.А. Эксперимент "Памир" // Природа. 1984. N 11. С. 24

Рецензент статьи Л.И. Сарычева

С. А. Славатинский Московский физико-технический институт, Долгопрудный Московской обл.

Эти три частицы (как и другие описываемые ниже) взаимно притягиваются и отталкиваются соответственно своим зарядам , которых всего четыре вида по числу фундаментальных сил природы. Заряды можно расположить в порядке уменьшения соответствующих сил следующим образом: цветовой заряд (силы взаимодействия между кварками); электрический заряд (электрические и магнитные силы); слабый заряд (силы в некоторых радиоактивных процессах); наконец, масса (силы тяготения, или гравитационного взаимодействия). Слово «цвет» здесь не имеет ничего общего с цветом видимого света; это просто характеристика сильного заряда и самых больших сил.

Заряды сохраняются , т.е. заряд, входящий в систему, равен заряду, из нее выходящему. Если суммарный электрический заряд некоторого числа частиц до их взаимодействия равен, скажем, 342 единицам, то он и после взаимодействия независимо от его результата будет равен 342 единицам. Это относится и к другим зарядам: цветовому (заряду сильного взаимодействия), слабому и массовому (массе). Частицы различаются своими зарядами: в сущности, они и «есть» эти заряды. Заряды – это как бы «справка» о праве отвечать на соответствующую силу. Так, только на цветные частицы действуют цветовые силы, только на электрически заряженные частицы действуют электрические силы и т.д. Свойства частицы определяются наибольшей силой, действующей на нее. Только кварки являются носителями всех зарядов и, следовательно, подвержены действию всех сил, среди которых доминирующей является цветовая. Электроны имеют все заряды, кроме цветового, а доминирующей для них является электромагнитная сила.

Наиболее устойчивыми в природе оказываются, как правило, нейтральные комбинации частиц, в которых заряд частиц одного знака компенсируется суммарным зарядом частиц другого знака. Это отвечает минимуму энергии всей системы. (Точно так же два стержневых магнита располагаются в линию, причем северный полюс одного из них обращен к южному полюсу другого, что соответствует минимуму энергии магнитного поля.) Гравитация же является исключением из этого правила: отрицательной массы не существует. Нет тел, которые падали бы вверх.

ВИДЫ МАТЕРИИ

Обычная материя образуется из электронов и кварков, группирующихся в объекты, нейтральные по цветовому, а затем и по электрическому заряду. Цветовая сила нейтрализуется, о чем подробнее будет сказано ниже, когда частицы объединяются в триплеты. (Отсюда и сам термин «цвет», взятый из оптики: три основных цвета при смешении дают белый.) Таким образом, кварки, для которых цветовая сила является главной, образуют триплеты. Но кварки, а они подразделяются на u -кварки (от англ. up – верхний) и d -кварки (от англ. down – нижний), имеют еще и электрический заряд, равный для u -кварка и для d -кварка. Два u -кварка и один d -кварк дают электрический заряд +1 и образуют протон, а один u -кварк и два d -кварка дают нулевой электрический заряд и образуют нейтрон.

Стабильные протоны и нейтроны, притягиваемые друг к другу остаточными цветовыми силами взаимодействия между составляющими их кварками, образуют нейтральное по цвету ядро атома. Но ядра несут положительный электрический заряд и, притягивая отрицательные электроны, вращающиеся вокруг ядра наподобие планет, обращающихся вокруг Солнца, стремятся образовать нейтральный атом. Электроны на своих орбитах удалены от ядра на расстояния, в десятки тысяч раз превышающие радиус ядра, – свидетельство того, что удерживающие их электрические силы гораздо слабее ядерных. Благодаря силе цветового взаимодействия 99,945% массы атома заключено в его ядре. Масса u - и d -кварков примерно в 600 раз больше массы электрона. Поэтому электроны намного легче и подвижнее ядер. Их движением в веществе обусловлены электрические явления.

Существует несколько сот природных разновидностей атомов (включая изотопы), различающихся числом нейтронов и протонов в ядре и соответственно числом электронов на орбитах. Самый простой – атом водорода, состоящий из ядра в виде протона и обращающегося вокруг него единственного электрона. Вся «видимая» материя в природе состоит из атомов и частично «разобранных» атомов, которые называются ионами. Ионы – это атомы, которые, потеряв (или приобретя) несколько электронов, стали заряженными частицами. Материя, состоящая почти из одних ионов, называется плазмой. Звезды, горящие за счет идущих в центрах термоядерных реакций, состоят в основном из плазмы, а поскольку звезды – самая распространенная форма материи во Вселенной, можно сказать, что и вся Вселенная состоит в основном из плазмы. Точнее, звезды – это преимущественно полностью ионизованный газообразный водород, т.е. смесь отдельных протонов и электронов, а стало быть, из нее и состоит почти вся видимая Вселенная.

Это – видимая материя. Но во Вселенной есть еще невидимая материя. И есть частицы, выступающие в роли носителей сил. Существуют античастицы и возбужденные состояния некоторых частиц. Все это приводит к явно чрезмерному изобилию «элементарных» частиц. В этом изобилии можно найти указание на действительную, истинную природу элементарных частиц и сил, действующих между ними. Согласно самым последним теориям, частицы в своей основе могут представлять собой протяженные геометрические объекты – «струны» в десятимерном пространстве.

Невидимый мир.

Во Вселенной имеется не только видимая материя (а также черные дыры и «темная материя», например холодные планеты, которые станут видимыми, если их осветить). Существует и подлинно невидимая материя, пронизывающая всех нас и всю Вселенную ежесекундно. Она представляет собой быстро движущийся газ из частиц одного сорта – электронных нейтрино.

Электронное нейтрино является партнером электрона, но не имеет электрического заряда. Нейтрино несут лишь так называемый слабый заряд. Их масса покоя, по всей вероятности, равна нулю. Но с гравитационным полем они взаимодействуют, поскольку обладают кинетической энергией E , которой соответствует эффективная масса m , согласно формуле Эйнштейна E = mc 2 , где c – скорость света.

Ключевая роль нейтрино заключается в том, что оно способствует превращению и -кварков в d -кварки, в результате чего протон превращается в нейтрон. Нейтрино играет роль «иглы карбюратора» для звездных термоядерных реакций, в которых четыре протона (ядра водорода) объединяются, образуя ядро гелия. Но поскольку ядро гелия состоит не из четырех протонов, а из двух протонов и двух нейтронов, для такого ядерного синтеза нужно, чтобы два и -кварка превратились в два d -кварка. От интенсивности превращения зависит, насколько быстро будут гореть звезды. А процесс превращения определяется слабыми зарядами и силами слабого взаимодействия между частицами. При этом и -кварк (электрический заряд +2/3, слабый заряд +1/2), взаимодействуя с электроном (электрический заряд - 1, слабый заряд –1/2), образует d -кварк (электрический заряд –1/3, слабый заряд –1/2) и электронное нейтрино (электрический заряд 0, слабый заряд +1/2). Цветовые заряды (или просто цвета) двух кварков в этом процессе компенсируются без нейтрино. Роль нейтрино состоит в том, чтобы уносить нескомпенсированный слабый заряд. Поэтому скорость превращения зависит от того, насколько слабы слабые силы. Если бы они были слабее, чем они есть, то звезды вообще не горели бы. Если же они были бы более сильными, то звезды давно бы выгорели.

А что же нейтрино? Поскольку эти частицы крайне слабо взаимодействуют с другим веществом, они почти сразу уходят из звезд, в которых родились. Все звезды сияют, испуская нейтрино, а нейтрино днем и ночью просвечивают наши тела и всю Землю. Так они странствуют по Вселенной, пока не вступят, может быть, в новое взаимодействие ЗВЕЗДЫ) .

Переносчики взаимодействий.

За счет чего возникают силы, действующие между частицами на расстоянии? Современная физика отвечает: за счет обмена другими частицами. Представьте себе двух конькобежцев, перебрасывающихся мячом. Сообщая мячу импульс при броске и получая импульс с принятым мячом, оба получают толчок в направлении друг от друга. Так можно объяснить возникновение сил отталкивания. Но в квантовой механике, рассматривающей явления в области микромира, допускаются необычные растяжение и делокализация событий, что приводит, казалось бы, к невозможному: один из конькобежцев бросает мяч в направлении от другого, но тот тем не менее может этот мяч поймать. Нетрудно сообразить, что, будь такое возможно (а в мире элементарных частиц это возможно), между конькобежцами возникло бы притяжение.

Частицы, благодаря обмену которыми возникают силы взаимодействия между четырьмя рассмотренными выше «частицами материи», называются калибровочными частицами. Каждому из четырех взаимодействий – сильному, электромагнитному, слабому и гравитационному – соответствует свой набор калибровочных частиц. Частицами-переносчиками сильного взаимодействия являются глюоны (их всего восемь). Фотон – переносчик электромагнитного взаимодействия (он один, а фотоны мы воспринимаем как свет). Частицами-переносчиками слабого взаимодействия являются промежуточные векторные бозоны (в 1983 и 1984 были открыты W + -, W - -бозоны и нейтральный Z -бозон). Частицей-переносчиком гравитационного взаимодействия является пока еще гипотетический гравитон (он должен быть один). Все эти частицы, кроме фотона и гравитона, которые могут пробегать бесконечно большие расстояния, существуют лишь в процессе обмена между материальными частицами. Фотоны заполняют Вселенную светом, а гравитоны – гравитационными волнами (пока еще с достоверностью не обнаруженными).

О частице, способной испускать калибровочные частицы, говорят, что она окружена соответствующим полем сил. Так, электроны, способные испускать фотоны, окружены электрическими и магнитными полями, а также слабыми и гравитационными полями. Кварки тоже окружены всеми этими полями, но еще и полем сильного взаимодействия. На частицы с цветовым зарядом в поле цветовых сил действует цветовая сила. То же самое относится к другим силам природы. Поэтому можно сказать, что мир состоит из вещества (материальных частиц) и поля (калибровочных частиц). Об этом подробнее ниже.

Антивещество.

Каждой частице отвечает античастица, с которой частица может взаимно уничтожиться, т.е. «аннигилировать», в результате чего высвобождается энергия. «Чистой» энергии самой по себе, однако, не существует; в результате аннигиляции возникают новые частицы (например, фотоны), уносящие эту энергию.

Античастица в большинстве случаев обладает противоположными по отношению к соответствующей частице свойствами: если частица под действием сильного, слабого или электромагнитного полей движется влево, то ее античастица будет двигаться вправо. Короче говоря, античастица имеет противоположные знаки всех зарядов (кроме массового заряда). Если частица составная, как, например, нейтрон, то ее античастица состоит из компонент с противоположными знаками зарядов. Так, антиэлектрон имеет электрический заряд +1, слабый заряд +1/2 и называется позитроном. Антинейтрон состоит из и -антикварков с электрическим зарядом –2/3 и d -антикварков с электрическим зарядом +1/3. Истинно нейтральные частицы являются своими собственными античастицами: античастица фотона – фотон.

Согласно современным теоретическим представлениям, своя античастица должна быть для каждой существующей в природе частицы. И многие античастицы, в том числе позитроны и антинейтроны, действительно были получены в лаборатории. Следствия этого исключительно важны и лежат в основе всей экспериментальной физики элементарных частиц. Согласно теории относительности, масса и энергия эквивалентны, и в определенных условиях энергия может быть превращена в массу. Поскольку заряд сохраняется, а заряд вакуума (пустого пространства) равен нулю, из вакуума, как кролики из шляпы фокусника, могут возникать любые пары частиц и античастиц (с нулевым суммарным зарядом), лишь бы энергия была достаточной для создания их массы.

Поколения частиц.

Эксперименты на ускорителях показали, что четверка (квартет) материальных частиц по крайней мере дважды повторяется при более высоких значениях массы. Во втором поколении место электрона занимает мюон (с массой, примерно в 200 раз большей массы электрона, но с прежними значениями всех остальных зарядов), место электронного нейтрино – мюонное (которое сопутствует в слабых взаимодействиях мюону так же, как электрону сопутствует электронное нейтрино), место и -кварка занимает с -кварк (очарованный ), а d -кварка – s -кварк (странный ). В третьем поколении квартет состоит из тау-лептона, тау-нейтрино, t -кварка и b -кварка.

Масса t -кварка примерно в 500 раз больше массы самого легкого – d -кварка. Экспериментально установлено, что существуют только три типа легких нейтрино. Таким образом, четвертое поколение частиц или не существует вовсе, или соответствующие нейтрино являются очень тяжелыми. Это согласуется с космологическими данными, в соответствии с которыми могут существовать не более четырех типов легких нейтрино.

В экспериментах с частицами высоких энергий электрон, мюон, тау-лептон и соответствующие нейтрино выступают как обособленные частицы. Они не несут цветового заряда и вступают только в слабые и электромагнитные взаимодействия. В совокупности они называются лептонами .

Таблица 2. ПОКОЛЕНИЯ ФУНДАМЕНТАЛЬНЫХ ЧАСТИЦ
Частица Масса покоя, МэВ/с 2 Электрический заряд Цветовой заряд Слабый заряд
ВТОРОЕ ПОКОЛЕНИЕ
с -кварк 1500 +2/3 Красный, зеленый или синий +1/2
s -кварк 500 –1/3 То же –1/2
Мюонное нейтрино 0 0 +1/2
Мюон 106 0 0 –1/2
ТРЕТЬЕ ПОКОЛЕНИЕ
t -кварк 30000–174000 +2/3 Красный, зеленый или синий +1/2
b -кварк 4700 –1/3 То же –1/2
Тау-нейтрино 0 0 +1/2
Тау 1777 –1 0 –1/2

Кварки же под действием цветовых сил объединяются в сильно взаимодействующие частицы, преобладающие в большинстве экспериментов физики высоких энергий. Такие частицы называются адронами . В них входят два подкласса: барионы (например, протон и нейтрон), которые состоят из трех кварков, и мезоны , состоящие из кварка и антикварка. В 1947 в космических лучах был открыт первый мезон, названный пионом (или пи-мезоном), и некоторое время считалось, что обмен этими частицами – главная причина ядерных сил. Особой известностью в физике элементарных частиц пользовались также адроны омега-минус, открытые в 1964 в Брукхейвенской национальной лаборатории (США), и джей-пси-частица (J /y -мезон), открытая одновременно в Брукхейвене и в Стэнфордском центре линейных ускорителей (тоже в США) в 1974. Существование омега-минус-частицы было предсказано М.Гелл-Манном в его так называемой «SU 3 -теории» (другое название – «восьмеричный путь»), в которой впервые было высказано предположение о возможности существования кварков (и было дано им это название). Десятилетие спустя открытие частицы J /y подтвердило существование с -кварка и заставило, наконец, всех поверить и в кварковую модель, и в теорию, объединившую электромагнитные и слабые силы (см. ниже) .

Частицы второго и третьего поколения не менее реальны, чем первого. Правда, возникнув, они за миллионные или миллиардные доли секунды распадаются на обычные частицы первого поколения: электрон, электронное нейтрино, а также и - и d -кварки. Вопрос о том, почему в природе существуют несколько поколений частиц, до сих пор остается загадкой.

О разных поколениях кварков и лептонов часто говорят (что, конечно, несколько эксцентрично) как о разных «ароматах» частиц. Необходимость их объяснения называется проблемой «аромата».

БОЗОНЫ И ФЕРМИОНЫ, ПОЛЕ И ВЕЩЕСТВО

Одним из принципиальных различий между частицами является различие между бозонами и фермионами. Все частицы делятся на эти два основных класса. Одинаковые бозоны могут налагаться друг на друга или перекрываться, а одинаковые фермионы – нет. Наложение происходит (или не происходит) в дискретных энергетических состояниях, на которые квантовая механика делит природу. Эти состояния представляют собой как бы отдельные ячейки, в которые можно помещать частицы. Так вот, в одну ячейку можно поместить сколько угодно одинаковых бозонов, но только один фермион .

В качестве примера рассмотрим такие ячейки, или «состояния», для электрона, вращающегося вокруг ядра атома. В отличие от планет Солнечной системы, электрон по законам квантовой механики не может обращаться по любой эллиптической орбите, для него существует только дискретный ряд разрешенных «состояний движения». Наборы таких состояний, группируемые в соответствии с расстоянием от электрона до ядра, называются орбиталями . В первой орбитали имеются два состояния с разными моментами импульса и, следовательно, две разрешенные ячейки, а в более высоких орбиталях – восемь и более ячеек.

Поскольку электрон относится к фермионам, в каждой ячейке может находиться только один электрон. Отсюда вытекают очень важные следствия – вся химия, поскольку химические свойства веществ определяются взаимодействиями между соответствующими атомами. Если идти по периодической системе элементов от одного атома к другому в порядке увеличения на единицу числа протонов в ядре (число электронов тоже будет соответственно увеличиваться), то первые два электрона займут первую орбиталь, следующие восемь расположатся на второй и т.д. Этим последовательным изменением электронной структуры атомов от элемента к элементу и обусловлены закономерности в их химических свойствах .

Если бы электроны были бозонами, то все электроны атома могли бы занимать одну и ту же орбиталь, соответствующую минимальной энергии. При этом свойства всего вещества во Вселенной были бы совершенно другими, и в том виде, в котором мы ее знаем, Вселенная была бы невозможна.

Все лептоны – электрон, мюон, тау-лептон и соответствующие им нейтрино – являются фермионами. То же можно сказать о кварках. Таким образом, все частицы, которые образуют «вещество», основной наполнитель Вселенной, а также невидимые нейтрино, являются фермионами. Это весьма существенно: фермионы не могут совмещаться, так что то же самое относится к предметам материального мира.

В то же время все «калибровочные частицы», которыми обмениваются взаимодействующие материальные частицы и которые создают поле сил (см. выше ), являются бозонами, что тоже очень важно. Так, например, много фотонов могут находиться в одном состоянии, образуя магнитное поле вокруг магнита или электрическое поле вокруг электрического заряда. Благодаря этому же возможен лазер .

Спин.

Различие между бозонами и фермионами связано с еще одной характеристикой элементарных частиц – спином . Как это ни удивительно, но все фундаментальные частицы имеют собственный момент импульса или, проще говоря, вращаются вокруг своей оси. Момент импульса – характеристика вращательного движения, так же как суммарный импульс – поступательного. В любых взаимодействиях момент импульса и импульс сохраняются.

В микромире момент импульса квантуется, т.е. принимает дискретные значения. В подходящих единицах измерения лептоны и кварки имеют спин, равный 1/2, а калибровочные частицы – спин, равный 1 (кроме гравитона, который экспериментально пока не наблюдался, а теоретически должен иметь спин, равный 2). Поскольку лептоны и кварки – фермионы, а калибровочные частицы – бозоны, можно предположить, что «фермионность» связана со спином 1/2, а «бозонность» – со спином 1 (или 2). Действительно, и эксперимент, и теория подтверждают, что если у частицы полуцелый спин, то она – фермион, а если целый – то бозон.

КАЛИБРОВОЧНЫЕ ТЕОРИИ И ГЕОМЕТРИЯ

Во всех случаях силы возникают вследствие обмена бозонами между фермионами. Так, цветовая сила взаимодействия между двумя кварками (кварки – фермионы) возникает за счет обмена глюонами. Подобный обмен постоянно происходит в протонах, нейтронах и атомных ядрах. Точно так же фотоны, которыми обмениваются электроны и кварки, создают электрические силы притяжения, удерживающие электроны в атоме, а промежуточные векторные бозоны, которыми обмениваются лептоны и кварки, создают силы слабого взаимодействия, ответственные за превращение протонов в нейтроны при термоядерных реакциях в звездах.

Теория такого обмена изящна, проста и, вероятно, правильна. Она называется калибровочной теорией . Но в настоящее время существуют лишь независимые калибровочные теории сильного, слабого и электромагнитного взаимодействий и сходная с ними, хотя кое в чем и отличающаяся, калибровочная теория гравитации. Одной из важнейших физических проблем является сведение этих отдельных теорий в единую и вместе с тем простую теорию, в которой все они стали бы разными аспектами единой реальности – как грани кристалла.

Таблица 3. НЕКОТОРЫЕ АДРОНЫ
Таблица 3. НЕКОТОРЫЕ АДРОНЫ
Частица Символ Кварковый состав * Масса покоя, МэВ/с 2 Электрический заряд
БАРИОНЫ
Протон p uud 938 +1
Нейтрон n udd 940 0
Омега-минус W – sss 1672 –1
МЕЗОНЫ
Пи-плюс p + u 140 +1
Пи-минус p du 140 –1
Фи f 1020 0
Джей-пси J /y 3100 0
Ипсилон Ў b 9460 0
* Кварковый состав: u – верхний; d – нижний; s – странный; c – очарованный; b – красивый. Чертой над буквой обозначены антикварки.

Простейшей и самой старой из калибровочных теорий является калибровочная теория электромагнитного взаимодействия. В ней заряд электрона сравнивается (калибруется) с зарядом другого электрона, удаленного от него. Как можно сравнивать заряды? Можно, например, приблизить второй электрон к первому и сравнивать их силы взаимодействия. Но не меняется ли заряд электрона при его перемещении в другую точку пространства? Единственный способ проверки – послать от ближнего электрона к дальнему сигнал и посмотреть, как он среагирует. Сигналом является калибровочная частица – фотон. Чтобы можно было проверить заряд на удаленных частицах, необходим фотон.

В математическом отношении эта теория отличается чрезвычайной точностью и красотой. Из описанного выше «калибровочного принципа» вытекает вся квантовая электродинамика (квантовая теория электромагнетизма), а также теория электромагнитного поля Максвелла – одно из величайших научных достижений 19 в.

Почему же столь простой принцип оказывается столь плодотворным? Видимо, он выражает некую соотнесенность разных частей Вселенной, позволяя проводить измерения во Вселенной. В математическом плане поле интерпретируется геометрически как кривизна некоторого мыслимого «внутреннего» пространства. Измерение же заряда – это измерение полной «внутренней кривизны» вокруг частицы. Калибровочные теории сильного и слабого взаимодействий отличаются от электромагнитной калибровочной теории только внутренней геометрической «структурой» соответствующего заряда. На вопрос о том, где именно находится это внутреннее пространство, пытаются ответить многомерные единые теории поля, которые здесь не рассматриваются.

Таблица 4. ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ
Взаимо-действие Относительная интенсивность на расстоянии 10 –13 см Радиус действия Переносчик взаимодействия Масса покоя переносчика, МэВ/с 2 Спин переносчика
Сильное 1 Глюон 0 1
Электро-
магнитное
0,01 Ґ Фотон 0 1
Слабое 10 –13 W + 80400 1
W 80400 1
Z 0 91190 1
Гравита-
ционное
10 –38 Ґ Гравитон 0 2

Физика элементарных частиц пока не завершена. Еще далеко не ясно, достаточно ли имеющихся данных для полного понимания природы частиц и сил, а также истинной природы и размерности пространства и времени. Нужны ли нам для этого эксперименты с энергиями 10 15 ГэВ или же будет достаточно усилий мысли? Ответа пока нет. Но можно сказать с уверенностью, что окончательная картина будет проста, изящна и красива. Возможно, что принципиальных идей окажется не так много: калибровочный принцип, пространства высших размерностей, коллапс и расширение, а прежде всего – геометрия.

Интересная статья

Недавно физикам, наблюдавшим за очередным экспериментом, проходившем в Большом адронном коллайдере, наконец-то удалось найти следы бозона Хиггса, или, как его называют многие журналисты, "божественной частицы". Это значит, что постройка коллайдера себя полностью оправдала - ведь его сделали именно для того, чтобы поймать этот неуловимый бозон.


Физики, работающие на Большом адронном коллайдере с помощью детектора CMS впервые зафиксировали рождение двух Z-бозонов - один из типов событий, которые могут быть свидетельством существования "тяжелого" варианта бозона Хиггса. Если быть совсем точным, то 10 октября детектор CMS впервые обнаружил появление четырех мюонов. Предварительные результаты реконструкции позволили ученым интерпретировать это событие как кандидата в рождение двух нейтральных калибровочных Z-бозонов.

Думаю, сейчас нам следует немножко отвлечься и поговорить о том, что такое эти мюоны, бозоны и прочие элементарные частицы. Согласно стандартной модели квантовой механики весь мир состоит из различных элементарных частиц, которые, контактируя друг с другом, порождают все известные типы массы и энергии.

Все вещество, например, состоит из 12 фундаментальных частиц-фермионов: 6 лептонов, таких как электрон, мюон, тау-лептон, и три сорта нейтрино и 6 кварков (u, d, s, c, b, t), которые можно объединить в три поколения фермионов. Фермионы - это частицы, которые могут находиться в свободном состоянии, а кварки - нет, они входят в состав других частиц, например хорошо известных всем протонов и нейтронов.
При этом каждая из частиц участвует в определенном типе взаимодействий, которых, как мы помним, всего четыре: электромагнитное, слабое (взаимодействие частиц при β-распаде ядра атомов), сильное (оно как бы скрепляет атомное ядро) и гравитационное. Последнее, результатом которого является, например, земное притяжение, стандартной моделью не рассматривается, поскольку гравитон (частица, обеспечивающая его) до сих пор не найден.

С остальными типами все проще - частицы, которые в них участвуют, физики знают "в лицо". Так, например, кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряженные лептоны (электрон, мюон, тау-лептон) - в слабых и электромагнитных; нейтрино - только в слабых взаимодействиях.

Однако кроме этих "массовых" частиц есть еще и так называемые виртуальные частицы, некоторые из которых (например, фотон) вообще не обладают массой. Честно говоря, виртуальные частицы - это в большей степени математическое явление, чем физическая реальность, поскольку их до сих пор никто никогда не "видел". Однако в разных экспериментах физики могут заметить следы их существования, поскольку оно, увы, весьма недолговечно.

Что же это за такие интересные частички? Они рождаются только в момент какого-нибудь взаимодействия (из описанных выше), после чего либо распадаются, либо поглощаются какой-нибудь из фундаментальных частиц. Считается, что они как бы "переносят" взаимодействие, то есть, контактируя с фундаментальными частицами, изменяют их характеристики, благодаря чему взаимодействие, собственно говоря, и происходит.

Так, например, при электромагнитных взаимодействиях, которые изучены лучше всего, электроны постоянно поглощают и испускают виртуальные безмассовые частицы фотоны, в результате чего свойства самих электронов несколько изменяются и они становятся способными на такие подвиги, как, например, направленное движение (то есть электрический ток), или "перескок" на другой энергетический уровень (как это происходит при фотосинтезе у растений). Так же виртуальные частицы работают и при других типах взаимодействий.

Современной физике кроме фотона известны также еще два типа виртуальных частиц, получивших название бозонов и глюонов. Для нас сейчас особенно интересны бозоны - считается, что при всех взаимодействиях фундаментальные частицы постоянно обмениваются ими и тем самым оказывают воздействие друг на друга. Сами бозоны при этом считаются безмассовыми частицами, хотя некоторые эксперименты показывают, что это не совсем так - W- и Z-бозоны могут получать массу на короткое время.

Одним из самых таинственных бозонов является тот самый бозон Хиггса, для обнаружения следов которого, собственно говоря, и был построен Большой адронный коллайдер. Считается, что эта загадочная частица является одной из самых распространенных и важных бозонов во Вселенной.

Еще в 1960-е годы английский профессор Питер Хиггс предложил гипотезу, согласно которой все вещество, имеющееся во Вселенной, создано при взаимодействии различных частиц с некоей исходной первоосновой (получившейся в результате Большого взрыва), которую позже назвали в честь него. Он выдвинул предположение, что Вселенная пронизана незримым полем, проходя сквозь которое некоторые элементарные частицы "обрастают" некоторыми бозонами, обретая тем самым массу, другие же, например фотоны, остаются не обремененными весом.

Ученые сейчас рассматривают две возможности - существование "легкого" и "тяжелого" вариантов. "Легкий" Хиггс с массой от 135 до 200 гигаэлектронвольт должен распадается на пары W-бозонов, а если масса бозона составляет 200 гигаэлектронвольт или больше, то на пары Z-бозонов, которые, в свою очередь, порождают пары электронов или мюонов.

Получается, что таинственный бозон Хиггса является как бы "творцом" всего во Вселенной. Может быть, именно поэтому нобелевский лауреат Леон Ледерман как-то раз назвал его "частицей-богом". Но в средствах массовой информации это высказывание несколько исказили, и оно стало звучать как "частица Бога" или "божественная частица".

Как же можно получить следы присутствия "частицы-бога"? Считается, что бозон Хиггса может образовываться в ходе столкновений протонов с нейтрино в ускорительном кольце коллайдера. При этом, как мы помним, он должен сразу же распадаться на ряд других частиц (в частности, Z-бозонов), которые могут быть зарегистрированы.

Правда, сами Z-бозоны детекторы зафиксировать не могут из-за чрезвычайно короткого времени жизни этих элементарных частиц (около 3×10-25 секунды), однако они могут "поймать" мюоны, в которые превращаются Z-бозоны.

Напомню, что мюон - неустойчивая элементарная частица с отрицательным электрическим зарядом и спином ½. В обычных атомах он не встречается, до этого его находили лишь в космических лучах, имеющих скорости, близкие к скорости света. Время жизни мюона весьма невелико - он существует лишь 2,2 микросекунды, а потом распадается на электрон, электронное антинейтрино и мюонное нейтрино.

Искусственным способом мюоны можно получить, столкнув на больших скоростях протон и нейтрино. Однако долгое время не удавалось добиться подобных скоростей. Это удалось сделать лишь при постройке Большого адронного коллайдера.

И вот наконец первые результаты были получены. При эксперименте, который прошел 10 октября нынешнего года, в результате столкновения протона с нейтрино было зафиксировано рождение четырех мюонов. Это доказывает то, что появление двух нейтральных калибровочных Z-бозонов имело место быть (они всегда проявляются при подобных событиях). А значит, существование бозона Хиггса - это не миф, а реальность.

Правда, ученые отмечают, что само по себе это событие не обязательно указывает на рождение бозона Хиггса, поскольку к появлению четырех мюонов могут вести и другие события. Однако это первое из событий такого типа, которые в конце концов могут выдать хиггсовскую частицу. Чтобы с уверенностью говорить о существовании бозона Хиггса в том или ином диапазоне масс, необходимо накопить значительное число подобных событий и проанализировать, как распределены массы рождающихся частиц.

Однако, что ни говори, первый шаг к доказательству существования "частицы-бога" уже сделан. Возможно, дальнейшие эксперименты смогут дать еще больше информации о загадочном бозоне Хиггса. Если ученые смогут наконец-то "поймать" его, то у них получится воссоздать условия, существовавшие 13 миллиардов лет назад после Большого взрыва, то есть те, при которых зарождалась наша Вселенная.

лептоны - не участвуют в сильном взаимодействии.

электрон . позитрон. мюон.

нейтрино - легкая нейтральная частица, участвующая только в слабом и гравитационном

взаимодействии.

нейтринный (# поток).

переносчики взаимодействий:

фотон - квант света, переносчик электромагнитного взаимодействия.

глюон - переносчик сильного взаимодействия.

промежуточные векторные бозоны - переносчики слабого взаимодействия;

частицы с целым спином.

"фундаментальная частица" в книгах

Глава 1 Частица океана

Из книги Кровь: река жизни [От древних легенд до научных открытий] автора Азимов Айзек

Глава 1 Частица океана Любое одноклеточное существо, живущее в море, настолько крошечное, что его можно разглядеть только под микроскопом, имеет запас крови, в миллиарды раз превосходящий человеческий.Поначалу это может показаться невозможным, но, когда вы поймете, что

ЧАСТИЦА «-СЯ» ПОБЕЖДАЕТ

Из книги Как говорить правильно: Заметки о культуре русской речи автора Головин Борис Николаевич

Фундаментальная асимметрия

Из книги Антихрупкость [Как извлечь выгоду из хаоса] автора Талеб Нассим Николас

Фундаментальная асимметрия Выразим асимметрию Сенеки в четком правиле.Я уже использовал концепцию большей потери при неблагоприятном исходе. Если от перемены обстоятельств вы больше теряете, чем обретаете, вы имеете дело с асимметрией, и это скверная асимметрия.

Что такое частица?

Из книги Гиперпространство автора Каку Мичио

Что такое частица? Суть теории струн в том, что она может объяснить природу и материи, и пространства-времени, т. е. природу и «дерева», и «мрамора». Теория струн дает ответы на ряд головоломных вопросов о частицах: например, почему в природе их так много. Чем глубже мы

Бозе-частица

Из книги Большая Советская Энциклопедия (БО) автора БСЭ

Ферми-частица

Из книги Большая Советская Энциклопедия (ФЕ) автора БСЭ

Фундаментальная астрометрия

БСЭ

Фундаментальная длина

Из книги Большая Советская Энциклопедия (ФУ) автора БСЭ

8.5. КАК РАБОТАЕТ ЧАСТИЦА «НЕ»

автора Самсонова Елена

8.5. КАК РАБОТАЕТ ЧАСТИЦА «НЕ» Уважаемый коллега! Если у вас есть ребенок, то вы можете вспомнить, как вы кричали ему, когда он был еще маленьким: «Не беги!», «Не упади!» или «Не испачкайся!» И сразу после вашего крика ребенок начинал бежать еще быстрее, падал или пачкался. Вы

8.6. КАК РАБОТАЕТ ЧАСТИЦА «НО»

Из книги Танец продавца, или Нестандартный учебник по системным продажам автора Самсонова Елена

8.6. КАК РАБОТАЕТ ЧАСТИЦА «НО» Знаете ли вы, что частица «но» полностью «зачеркивает» то, что вы сказали перед ее употреблением?– Вы очень симпатичный человек, но…– Вы правы, но…– То, что вы говорите, интересно, но…Когда вы разговариваете с клиентом или покупателем,

Третья частица

Из книги Атомный проект. История сверхоружия автора Первушин Антон Иванович

Третья частица Как мы видели, период с 1895 по 1919 год был густо насыщен важными открытиями в области ядерной физики. Но после 1919 года развитие этой науки, казалось, приостановилось. И это неслучайно.Вспомним, что для исследования атома физики использовали явление

Фундаментальная стратегия

Из книги Истоки нейро-лингвистического программирования автора Гриндер Джон

Фундаментальная стратегия Фрэнк и я поразмышляли над тем, как справляться с подобными моментами. Мы выработали особую стратегию. Мы решили придерживаться курса минимизации таких отдельных искажений, призвав на помощь большое количество людей, которые физически

Фундаментальная подлость

Из книги Глобальный человейник автора Зиновьев Александр Александрович

Фундаментальная подлость Судьба поступила со мной так, что я невольно прикоснулся к самым фундаментальным явлениям нашего общественного строя и смог посмотреть на них без всяких скрывающих их покровов и иллюзий. Как мне казалось тогда, я увидел, в чем заключалась самая

3. Фундаментальная напряженность

Из книги Единство и многообразие в Новом Завете Исследование природы первоначального христианства автора Данн Джеймс Д.

3. Фундаментальная напряженность В самой сущности христианства заложено то, что оно происходит от иудаизма I в. Иисус был евреем. Самые первые христиане были сплошь евреями. Христианство началось изнутри иудаизма, из мессианской секты в рамках иудаизма. Оно воспринимало

ФУНДАМЕНТАЛЬНАЯ ИСТИНА

Из книги Движимые вечностью автора Бивер Джон

ФУНДАМЕНТАЛЬНАЯ ИСТИНА В нашей притче Джалин является прообразом Иисуса Христа, а царь Отец? это Всемогущий Бог Отец. Дагон представляет!собой дьявола; жизнь в Энделе? это человеческая жизнь на земле; Аффабель представляет небесный город Бога. Отверженная земля Лон?

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....