Фракталы. Большая энциклопедия нефти и газа

Язык науки стремительно меняется в современном мире. История развития физики насчитывает уже не одно столетие. За это время изучено огромное количество разнообразных явлений природы, открыты фундаментальные законы физики, объясняющие различные экспериментальные факты. Каждый раз, сталкиваясь с новыми природными объектами, ученые вводят в язык науки новые категории, термины и понятия.

До недавнего времени геометрические модели различных природных конструкций традиционно строились на основе сравнительно простых геометрических фигур: прямых, многоугольников, окружностей, многогранников, сфер. Однако очевидно, что этот классический набор, вполне достаточный для описания элементарных структур, становится плохо применимым для характеристики таких сложных объектов, как очертание береговых линий материков, поле ско­ростей в турбулентном потоке жидкости, разряд молнии в воздухе, пористые материалы, форма облаков, снежинки, пламя костра, контуры дерева, кровеносно-сосудистая система человека, поверхность клеточной мембраны и др. В последние 15-20 лет для описания этих и им подобных образований ученые все чаще используют новые геометрические понятия. Одним из таких понятий, изменившим многие традиционные представления о геометрии, явилось понятие фрактала. Оно было введе­но в обращение замечательным французским математиком польского происхождения Бенуа Мандельбротом в 1975 году. И хотя в математике похожие конструкции в той или иной форме появились уже много десятков лет назад, в физике ценность подобных идей была осознана лишь в 70-е годы нашего столетия.

Основой новой геометрии является идея самоподобия. Она выражает собой тот факт, что иерархический принцип организации фрактальных структур не претерпевает значительных изменений при рассмотрении их через микроскоп с различным увеличением. В результате эти структуры на малых масштабах выглядят в среднем так же, как и на больших. Здесь следует провести разницу между геометрией Евклида, имеющей дело исключительно с гладкими кривыми, и бесконечно изрезанными самоподобными фрактальными кривыми. Элементы кривых у Евклида всегда самоподобны, но тривиальным образом: все кривые являются локально прямыми, а прямая всегда самоподобна. Фрактальная же кривая, в идеале, на любых, даже самых маленьких масштабах не сводится к прямой и является в общем случае геометрически нерегулярной, хаотичной. Для нее, в частности, не существует и понятия касательной в точке, так как функции, описывающие эти кривые, являются в общем случае недифференцируемыми.

Возможно, что наиболее убедительным аргументом в пользу изучения фракталов является их бросающаяся в глаза красота.

Многие крупные достижения науки о фракталах стали возможны только с использованием методов вычислительной математики, которая в настоящее время немыслима без применения современных компьютеров. "Компьютерные эксперименты" позволили получить достаточно полное представление о разнообразных фрактальных структурах и причинах их возникновения. Часто теоретическое моделирование этих структур подчас даже опережало экспериментальные методы изучения реальных природных объектов сложной формы.

В настоящее время при помощи сравнительно простых алгоритмов появилась возможность создавать трехмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в еще более захватывающие картины. С другой стороны, часто искусственные изображения фракталов столь схожи с естественными, природными формами, что их невозможно отличить друг от друга.

Примеры различных фрактальных структур можно встретить во многих явлениях природы. Фрактальные образы с успехом используются при описании хаотического поведения нелинейных динамических и диссипативных систем, неоднородного распределения материи во Вселенной, при исследовании трещин и дислокационных скоплений в твердых телах, при изучении электрического пробоя, диффузии и агрегации частиц, роста кристаллов и т. д.

Язык фрактальной геометрии необходим, например, при изучении поглощения или рассеяния излучения в пористых средах, для характеристики сильно развитой турбулентности, при моделировании свойств поверхности твердых тел, для описания молнии, при анализе процессов усталостного разрушения материалов, при исследовании различных стадий роста вещества за счет диффузии и последующей агрегации, в квантовой механике при описании геометрической структуры волновых функций в точке перехода Андерсона металл-диэлектрик. Удивительно то, что сходные геометрические формы встречаются в совершенно различных областях науки: в астрофизике при описании процессов кластеризации галактик во Вселенной, в картографии при изучении форм береговых линий и разветвленной сети речных русел и, например, в биологии, при анализе строения кровеносной системы или рассмотрении сложных поверхностей клеточных мембран.

Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации.

· Геометрические фракталы

· Алгебраические фракталы

· Стохастические фракталы

Рассмотрим эти различные виды фракталов более подробно.

Геометрические фрак талы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох. Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент, обозначенный на рис.1 через n=1. В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3. Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n-го поколения при любом конечном n называется предфракталом. На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом.


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя.

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта).

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z[i] * Z[i] + C,

где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z[i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z[i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z[i] оставалась внутри окружности, можно установить цвет точки C (если Z[i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

Фракталами называются геометрические объекты: линии, поверхности, пространственные тела, имеющие сильно изрезанную форму и обладающие свойством самоподобия. Слово фрактал произошло от латинского слова fractus и переводится как дробный, ломаный. Самоподобие как основная характеристика фрактала означает, что он более или менее единообразно устроен в широком диапазоне масштабов. Так, при увеличении маленькие фрагменты фрактала получаются очень похожими на большие. В идеальном случае такое самоподобие приводит к тому, что фрактальный объект оказывается инвариантным относительно растяжений, т. е. ему, как говорят, присуща дилатационная симметрия. Она предполагает неизменность основных геометрических особенностей фрактала при изменении масштаба.

Конечно, для реального природного фрактала существует некоторый минимальный масштаб длины , такой, что на расстояниях его основное свойство - самоподобие - пропадает. Кроме того, на достаточно больших масштабах длин , где - характерный геометрический размер объектов, это свойство самоподобия также нарушается. Поэтому свойства природных фракталов рассматриваются лишь на масштабах l , удовлетворяющих соотношению – Такие ограничения являются довольно естественными, потому что, когда мы приводим в качестве примера фрактала - изломанную, негладкую траекторию броуновской частицы, то мы понимаем, что этот образ является очевидной идеализацией. Дело в том, что на маленьких масштабах сказывается конечность массы и размеров броуновской частицы, а также конечность времени соударения. При учете этих обстоятельств траектория броуновской частицы становится плавной кривой.


Наткнулся тут на упоминание "Теории фракталов" в сериале "Иеремия" и заинтресовался этой довольно изящной теорией, которые современные метафизики применяют для доказательства существования Бога. Теория фракталов имеет совсем небольшой возраст. Она появилась в конце шестидесятых годов на стыке математики, информатики, лингвистики и биологии. В то время компьютеры все больше проникали в жизнь людей, ученые начинали применять их в своих исследованиях, росло число пользователей вычислительных машин. Для массового использования компьютеров необходимо стало облегчить процесс общения человека с машиной. Если в самом начале компьютерной эры немногочисленные программисты-пользователи самоотверженно вводили команды в машинных кодах и получали результаты в виде бесконечных лент бумаги, то при массовом и загруженном режиме использования компьютеров возникла необходимость в изобретении такого языка программирования, который был бы понятен для машины, и в то же время, был бы прост в изучении и применении. То есть пользователю требовалось бы ввести только одну команду, а компьютер разложил бы ее на более простые, и выполнил бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики и лингвистики возникла теория фракталов, позволяющая строго задавать взаимоотношения между алгоритмическими языками. А датский математик и биолог А. Линденмеер придумал в 1968 году одну такую грамматику, названную им L-системой, которая, как он полагал, моделирует также рост живых организмов, в особенности образование кустов и веток у растений.

Фрактал (лат. fractus — дробленый, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической. Фрактальная форма подвида цветной капусты (Brassica cauliflora). Фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Отцом фракталов по праву можно считать Бенуа Мандельброта. Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт. На рисунке как раз классическая модель фрактала - Множество Мандельброта.

Если излагать примтивно, то теория фрактала - это сопособность хаотичгных стукртур самоорагнизовываться в систему. Аттра́ктор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Большинство типов движения описывается простыми аттракторами, являющиеся ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz)- одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера (Rössler), котороя имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например отображения Хенона (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Так вот, свойство хаотических систем самоорганизовываться с помощью неправильных аттракторов, по мнению некоторых математиков, и явялется недоказуемым доказательством существования Бога и Его энергии творения всего сущего. Загадка!

Теория фракталов

Странные аттракторы всегда имеют фрактальную размерность. Поэтому для описания хаотических аттракторов используется аппарат геометрии фракталов, описывающей «структуры хаоса».

Термин «фрактал» принадлежит Бенуа Мандельброту. В трех своих книгах («Фрактальные объекты: форма, случай и размерность», 1975; «Фракталы: форма, случай и размерность», 1977; «Фрактальная геометрия природы», 1977) Мандельброт предложил неевклидову геометрию негладких, шероховатых, зазубренных, изъеденных ходами и отверстиями, шершавых и т.п. объектов. Именно «неправильные» объекты составляют подавляющее большинство объектов в природе. Сам Б. Мандельброт охарактеризовал созданную им теорию как морфологию бесформенного.

«Фрактальная геометрия природы» Б. Мандельброта открывается следующими словами: «Почему геометрию часто называют «холодной» и «сухой»? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно» Данилов Ю.А. Красота фракталов. Web: http://sky.kuban.ru/socio_etno/iphrRAS/~mifs/work.htm.

Евклид свел природу к чистым и симметричным объектам: точка, одномерная линия, двумерная плоскость, трехмерное тело. Ни одни из этих объектов не имеет в себе отверстий и внешних неровностей. У каждого правильная гладкая форма. Природные объекты огрубленных форм не являются разновидностями чистых евклидовых структур. Большинство природных форм и временных рядов наилучшим образом описываются фракталами.

Мандельброт ввел в употребление термин фрактал (от латинского слова «fractus» - дробный, фрагментированный), основываясь на теории фрактальной (дробной) размерности Безиковича-Хаусдорфа, предложенной в 1919 году.

Размерность Безиковича-Хаусдорфа совпадает с евклидовой для регулярных геометрических объектов (для кривых, поверхностей и тел, изучаемых в современном учебнике евклидовой геометрии). Размерность Безиковича-Хаусдорфа странного аттрактора Лоренца больше 2, но меньше 3: аттрактор Лоренца уже не гладкая поверхность, но еще не объемное тело.

Мы склонны думать, что всякий плоский объект является двумерным. Однако, с точки зрения математики, это не так. Евклидова плоскость есть ровная поверхность без щелей и проломов. Подобным же образом мы полагаем, что объект, имеющий глубину, является трехмерным. Но в евклидовой геометрии трехмерный объект - сплошное тело, не имеющее отверстий или трещин. Большинство реальных объектов не сплошные - они имеют бреши и полости и просто располагаются в трехмерном пространстве. Например, горы и облака имеют размерность между двумя и тремя. Одна из характеристик фрактальных объектов состоит в том, что они оставляют свою собственную размерность, будучи помещены в пространство размерности большей, чем их фрактальная. Случайные распределения (белый шум) не имеют этой характеристики. Белый шум заполняет свое пространство подобно тому, как газ заполняет объем. Если определенное количество газа поместить в контейнер большего объема, газ просто растечется в большем пространстве, поскольку молекулы газа ничто не связывает между собой. С другой стороны, твердое тело имеет молекулы, сцепленные друг с другом. Аналогично этому во фрактальном временном ряде положения точек определены корреляциями, которых не существует в случайном ряде. Временной ряд будет только тогда случаен, когда он является следствием большого количества равновероятных событий. В терминах статистики - он имеет большое количество степеней свободы. Неслучайный временной ряд будет отражать неслучайную природу влияний. Скачки данных будут соответствовать скачкам влияющих факторов, отражая присущую им корреляцию. Иными словами, временной ряд будет фракталом. Фрактальная размерность определяется тем, как объект или временной ряд заполняет пространство. Фрактальный объект заполняет пространство неравномерно, поскольку его части зависимы, или коррелированы. Чтобы определить фрактальную размерность, мы должны определить, каким образом объект группируется в единое целое в своем пространстве Петерс. Э. Хаос и порядок на рынках капитала. Новый аналитический взгляд на циклы, цены и изменчивость рынка. М.: Мир, 2000. С.80..

В евклидовой геометрии чем больше мы приближаем свой взгляд к объекту, тем проще он становится. Трехмерный блок становится двумерной плоскостью, затем одномерной линией, до тех пор пока не станет точкой. Во фрактальных (природных) объектах по мере увеличения выявляется все больше деталей. Отличительным признаком фрактальных объектов является то, что каждая из деталей содержит в себе общую структуру. Одно из определений фрактала гласит: фрактал - самоподобная структура. Самоподобие (масштабная инвариантность) - явление, состоящее в том, что малые части объекта качественно одинаковы с целостным объектом или подобны ему, другими словами, это свойство выглядеть в любом, сколь угодно мелком масштабе примерно одинаково. Во фрактальных временных рядах малые интервалы времени будут статистически подобны большим интервалам. Фрактальные формы обнаруживают пространственное самоподобие. Фрактальные временные ряды имеют статистическое самоподобие во времени.

Итак, мы уже встретились с двумя определениями фрактала (через дробную размерность и через свойство масштабной инвариантности). Окончательного определения фрактала до сих пор не найдено. Возможно, что этого не произойдет никогда, поскольку фрактальная геометрия - геометрия природы.

Как известно, метод итерации определяет положение точки в некий момент времени через ее положение в предыдущий момент времени, то есть работает обратная связь. В виде алгоритма это можно отобразить следующим образом: «начальные состояния» + «порождающая пошаговая процедура» = «развернутая фрактальная структура». Фрактальные множества задаются с помощью нелинейных уравнений, описывающих динамические системы с обратными связями. Фрактал есть предельное множество порождающего правила. Фрактал является самоорганизующейся структурой, причем порождающее правило можно воспринимать как репликант, «субъект» самоорганизации.

В принципе, фрактальная геометрия является совершенно самостоятельной наукой, однако ее идеи уже в значительной степени «ассимилированы» синергетикой, а синергетика в свое время вдохновляла Бенуа Мандельброта при исследовании фрактальных объектов. Поэтому мы не будем проводить жестких границ между синергетическим подходом и теорией фракталов.

Существуют два типа фракталов: детерминистические и случайные. Детерминистические фракталы в большинстве случаев симметричны. Но природа отвергает симметрию, поэтому естественные объекты описываются при помощи случайных фракталов. Случайные фракталы не всегда включают в себя части, которые выглядят похожими на целое. Части и целое могут соотноситься качественно. Случайные фракталы представляют собой комбинацию порождающих правил, выбранных наугад в разных масштабах.

Всем здравствуйте! Меня зовут,Рибенек Валерия, г.Ульяновск и сегодня я выложу несколько своих научных статей на сайте ЛКИ.

Первая моя научная статья в этом блоге будет посвящена фракталам . Скажу сразу, что мои статьи рассчитаны почти на любую аудиторию. Т.е. они, надеюсь, будут интересны, как школьникам, так и студентам.

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математике. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем . Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний. В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.

Как стало ясно в последние десятилетия (в связи с развитием теории самоорганизации), самоподобие встречается в самых разных предметах и явлениях. Например, самоподобие можно наблюдать в ветках деревьев и кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах льда, при развитии экономических систем, в строении горных систем, облаков.

Все перечисленные объекты и другие, подобные им по своей структуре являются фрактальными. То есть они обладают свойствами самоподобия, или масштабной инвариантности. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. И в природе, и в обществе на достаточно больших масштабах происходит самоповторение. Так, облако повторяет свою клочковатую структуру от 10 4 м (10 км) до 10 -4 м (0,1 мм). Ветвистость повторяется у деревьев от 10 -2 до 10 2 м. Разрушающиеся материалы, порождающие трещины, также повторяют свое самоподобие на нескольких масштабах. Снежинка, упавшая на руку, тает. В период таяния, перехода от одной фазы к другой снежинка-капля также - фрактал.

Фрактал - это объект, обладающий бесконечной сложностью, позволяющий вблизи рассмотреть не меньше деталей, чем издалека. Классический пример тому - Земля. Из космоса она выглядит как шар. Приближаясь к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Позднее взору предстанут более мелкие детали: кусочек земли на поверхности горы, столь же сложный и неровный, как сама гора. Потом покажутся крошечные частички грунта, каждая из которых сама является фрактальным объектом

Фрактал является нелинейной структурой, сохраняющей самоподобие при бесконечном увеличении или уменьшении масштаба. Только на малых длинах нелинейность переходит в линейность. Это особенно ярко проявляется в математической процедуре дифференцирования.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернатив путей и определенного темпа эволюции, а также необратимость эволюционных процессов. В математическом смысле нелинейность - это определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. То есть, когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное. И мы можем предсказать его, зная прошлое объекта (исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие.

Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести.

Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. При исследовании систем, которые, на первый взгляд, развиваются хаотически, часто пользуются теорией фракталов, т.к. именно этот подход позволяет увидеть некую закономерность в возникновении "случайных" отклонений в развитии системы.

Изучение естественных фрактальных структур дает нам возможность глубже понять процессы самоорганизации и развития нелинейных систем. Мы уже выяснили, что естественные фракталы самых различных, извилистых линий встречаются повсюду вокруг нас. Это берег моря, деревья, облака, разряд молнии, структура металла, нервная или сосудистая система человека. Эти замысловатые линии и шероховатые поверхности оказались в поле зрения научных исследований, потому что природа демонстрировала нам совершенно другой уровень сложности, нежели в идеальных геометрических системах. Изучаемые структуры в пространственно-временном отношении оказались самоподобными. Они бесконечно самовоспроизводились и повторяли себя в различных масштабах длин и времени. Любой нелинейный процесс в конечном итоге приводит к развилке. Система в таком случае, в точке ветвления, выбирает тот или иной путь. Траектория развития системы будет выглядеть в виде фрактала, то есть ломаной линии, форма которой может быть описана в виде ветвистого, запутанного пути, имеющего свою логику и закономерность.

Ветвление системы можно сравнить с ветвлением дерева, где каждая ветвь соответствует трети всей системы. Ветвление позволяет линейной структуре заполнить объемное пространство или, говоря точнее: фрактальная структура согласовывает различные пространства. Фрактал может расти, заполняя окружающее пространство, так же, как растет кристалл в пересыщенном растворе. При этом характер ветвления будет связан не со случайностью, а с определенной закономерностью.

Фрактальная структура самоподобно повторяется и на других уровнях, на более высоком уровне организации жизни человека, например на уровне самоорганизации коллектива или команды. Самоорганизация сетей и форм переходит с микроуровня на макроуровень. В совокупности они представляют собой целостное единство, где по части можно судить о целом. В данной курсовой работе как пример рассматриваются фрактальные свойства социальных процессов, что говорит об универсальности теории фракталов и ее лояльности к разным областям науки.

Делается вывод, что фрактал - это способ организованного взаимодействия пространств различной размерности и природы. К вышесказанному следует добавить, что не только пространственного, но и временного. Тогда даже человеческий мозг и нейронные сети будут представлять собой фрактальную структуру.

Природа очень любит фрактальные формы. Фрактальный объект обладает расползающейся, разряженной структурой. При наблюдении таких объектов с возрастающим увеличением можно видеть, что они проявляют повторяющийся на разных уровнях рисунок. Мы уже говорили о том, что фрактальный объект может выглядеть совершенно одинаково независимо от того, наблюдаем ли мы его в метровом, миллиметровом или микронном (1:1 000 000 доли метра масштабе). Свойство симметрии фрактальных объектов проявляется в инвариантности по отношению к масштабу. Фракталы симметричны относительно центра растяжения или изменения масштаба так же, как круглые тела симметричны относительно оси вращения.

Сегодня разработки в рамках теории фракталов ведутся в любой частной науке - физике, социологии, психологии, лингвистике и т.п. Тогда и общество, и социальные институты, и язык, и даже мысль - фракталы.

Современная наука достаточно успешно адаптировала теорию фракталов для разных областей знания. Так, в экономике теория фракталов используется при техническом анализе финансовых рынков, которые существуют в развитых странах мира уже не одну сотню лет. Впервые возможность прогнозировать дальнейшее поведение цены на акции, если известно ее направление за какой-то последний период, заметил Ч. Доу. В девяностых годах XIX в, опубликовав ряд статей, Доу заметил, что цены на акции подвержены циклическим колебаниям: после продолжительного роста следует продолжительное падение, потом опять рост и падение.

В середине XX века, когда весь научный мир увлекался только что появившейся теорией фракталов, другой известный американский финансист Р. Эллиот предложил свою теорию поведения цен на акции, которая была основана на использовании теории фракталов. Эллиот исходил из того, что геометрия фракталов имеет место быть не только в живой природе, но и в общественных процессах. К общественным процессам он относил и торговлю акциями на бирже.

Основой теории служит так называемая волновая диаграмма. Эта теория позволяет прогнозировать дальнейшее поведение тренда цены, основываясь на знании предыстории его поведения и следуя правилам развития массового психологического поведения.

Теория фракталов нашла применение и в биологии. Фрактальную природу, некоторое ее подобие, имеют многие, если не все, биологические структуры и системы растений, животных и человека: нервная система, система легких, кровеносная и лимфатическая системы и т.д. Появились данные, что развитие злокачественной опухоли так же идет по фрактальному принципу. Для фрактальных объектов так же характерна такая особенность, как проявление комплементарности. Комплементарность в биохимии - взаимное соответствие в химическом строении двух макромолекул, обеспечивающее их взаимодействие - спаривание двух нитей ДНК, соединение фермента с субстратом, антигена с антителом. Комплементарные структуры подходят друг к другу как ключ к замку. Этим свойством обладают полинуклеотидные цепи ДНК.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. При этом для сжатия, записи информации необходимо самоподобное уменьшение фрактала, а для ее считывания соответственно - самоподобное увеличение.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших частей изображения подобных некоторым маленьким частям. И в выходной файл записывается только информация о подобии одной части другой. При сжатии обычно используют квадратную сетку, что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...