Эволюция звезд в зависимости от исходной массы. Эволюция звёзд разной массы

  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    4. Эволюция звезд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек. Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых "ассоциаций") в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных "радиоизображений" некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии "зоны HII", т. е. облака ионизованного межзвездного газа. В гл. 3 уже говорилось, что причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых (см. ниже). Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4х10 33 эрг, а за 3 млрд лет оно излучило 4х10 50 эрг. Несомненно, что возраст Солнца около 5 млрд лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце "моложе" Земли. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Как мы увидим ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода. Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие "протозвезды" наблюдаются в отдельных Туманностях в виде очень темных компактных образований, так называемых глобул (рис. 12). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты (см. гл. 9).

    Рис. 12. Глобулы в диффузионной туманности

    При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы егo поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс. В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет, вследствие чего спектр становится все более "ранним". Таким образом, двигаясь по диаграмме "спектр - светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой. Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности. В 1966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Мы уже упоминали в третьей главе этой книги об открытии методом радиоастрономии ряда молекул в межзвездной среде, прежде всего гидроксила ОН и паров воды Н2О. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" - "небулия" и "корония". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам - "небулию" и "коронию". Не будем снисходительно улыбаться над невежеством астрономов начала нашего века: ведь теории атома тогда еще не было! Развитие физики не оставило в периодической системе Менделеева места для экзотических "небожителей": в 1927 г. был развенчан "небулий", линии которого с полной надежностью были отождествлены с "запрещенными" линиями ионизованных кислорода и азота, а в 1939 -1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция. Если для "развенчания" "небулия" и "кодония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях. Дальнейшие наблюдения, прежде всего, выявили, что источники "мистериума" имеют исключительно малые угловые размеры. Это было показано с помощью тогда еще нового, весьма эффективного метода исследовании, получившего название "радиоинтерферометрия на сверхдлинных базах". Суть метода сводится к одновременным наблюдениям источников на двух радиотелескопах, удаленных друг от друга на расстояния в несколько тысяч км. Как оказывается, угловое разрешение при этом определяется отношением длины волны к расстоянию между радиотелескопами. В нашем случае эта величина может быть ~3х10 -8 рад или несколько тысячных секунды дуги! Заметим, что в оптической астрономии такое угловое разрешение пока совершенно недостижимо. Такие наблюдения показали, что существуют по крайней мере три класса источников "мистериума". Нас здесь будут интересовать источники 1 класса. Всё они находятся внутри газовых ионизованных туманностей, например в знаменитой туманности Ориона. Как уже говорилось, их размеры чрезвычайно малы, во много тысяч раз меньше размеров туманности. Всего интереснее, что они обладают сложной пространственной структурой. Рассмотрим, например, источник, находящийся в туманности, получившей название W3.

    Рис. 13. Профили четырех компонент линии гидроксила

    На рис. 13 приведен профиль линии ОН, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает ~10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10 -2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца. Возникают вопросы: что это за облака и почему они так сильно излучают в радиолиниях гидроксила? На второй вопрос ответ был получен довольно скоро. Оказалось, что механизм излучения вполне подобен тому, который наблюдался в лабораторных мазерах и лазерах. Итак, источники "мистериума" - это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах - в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров пока еще окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом "накачки" могут быть некоторые химические реакции. Стоит прервать наш рассказ о космических мазерах для того, чтобы подумать, с какими удивительными явлениями сталкиваются астрономы в космосе. Одно из величайших технических изобретений нашего бурного века, играющее немалую роль в переживаемой нами теперь научно-технической революции, запросто реализуется в естественных условиях и притом - в громадном масштабе! Поток радиоизлучения от некоторых космических мазеров настолько велик, что мог бы быть обнаружен даже при техническом уровне радиоастрономии лет 35 тому назад, т. е. еще до изобретения мазеров и лазеров! Для этого надо было "только" знать точную длину волны радиолинии ОН и заинтересоваться проблемой. Кстати, это не первый случай, когда в естественных условиях реализуются важнейшие научно-технические проблемы, стоящие перед человечеством. Термоядерные реакции, поддерживающие излучение Солнца и звезд (см. ниже), стимулировали разработку и осуществление проектов получения на Земле ядерного "горючего", которое в будущем должно решить все наши энергетические проблемы. Увы, мы пока еще далеки от решения этой важнейшей задачи, которую природа решила "запросто". Полтора века тому назад основатель волновой теории света Френель заметил (по другому поводу, конечно): "Природа смеется над нашими трудностями". Как видим, замечание Френеля еще более справедливо в наши дни. Вернемся, однако, к космическим мазерам. Хотя механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 -10 9 частиц, причем существенная (а может быть и большая) часть их - молекулы. Температура вряд ли превышает две тысячи кельвинов, скорее всего она порядка 1000 Кельвинов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд - сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды (см. ниже). Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно. Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции -различна: для более массивных сгустков она будет больше (см. дальше табл. 2). Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего - сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами)... Спустя 2 года после открытия космических мазеров на гидроксиле (линия 18 см) - было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность "водяного" мазера даже больше, чем "гидроксильного". Облака, излучающие линию Н2О, хотя и находятся в том же малом объеме, что и "гидроксильные" облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии * . Таким образом, совершенно неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии ** . Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр-светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности. Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10-15 млрд лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.

    Таблица 2


    лет

    Спектральный класс

    Светимость

    гравитационного сжатия

    пребывания на главной после-довательности

    G2 (Солнце)

    Из таблицы следует, что время пребывания на главной последовательности звезд, более "поздних", чем КО, значительно больше возраста Галактики, который по существующим оценкам близок к 15-20 млрд лет. "Выгорание" водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме "спектр-светимость", построенная для этой группы, будет как бы загибаться вправо. Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость. На рис. 14 приведены теоретически рассчитанные эволюционные треки на диаграмме "светимость - температура поверхности" для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Для проверки теории большое значение имеет построение диаграммы "спектр - светимость" для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например. Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы "спектр - светимость" для разных скоплений - "старых" и "молодых", можно выяснить, как эволюционируют звезды. На рис. 15 и 16 приведены диаграммы "показатель цвета - светимостью для двух различных звездных скоплений. Скопление NGC 2254 - сравнительно молодое образование.

    Рис. 14. Эволюционные треки для звезд разной массы на диаграмме "светимость-температура"

    Рис. 15. Диаграмма Герцшпрунга - Рессела для звездного скопления NGC 2254


    Рис. 16. Диаграмма Герцшпрунга - Рессела для шарового скопления М 3. По вертикальной оси - относительная звездная величина

    На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю-цвета - 0,2 соответствует температура 20 тыс. К, т.е. спектр класса В). Шаровое скопление М 3 - "старый" объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у М 3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления М 3 большое число звезд уже успело "сойти" с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для М 3 идет довольно круто вверх, а у NGC 2254 она - почти горизонтальна. С точки зрения теории это можно объяснить значительно более низким содержанием тяжелых элементов у М 3. И действительно, у звезд шаровых скоплений (так же как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно. На диаграмме "показатель цвета - светимость" для М 3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды - красного гиганта - достигнет 100-150 млн К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится. В дальнейшем поверхностные слои

    звезды увеличивают свою температуру и звезда на диаграмме "спектр - светимость" будет перемещаться влево. Именно из таких звезд образуется третья горизонтальная ветвь диаграммы для М 3.

    Рис. 17. Сводная диаграмма Герцшпрунга - Рессела для 11 звездных скоплений

    На рис. 17 схематически приведена сводная диаграмма "цвет - светимость" для 11 скоплений, из которых два (М 3 и М 92) шаровые. Ясно видно, как "загибаются" вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 17 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, "двойное" скопление Х и h Персея молодое. Оно "сохранило" значительную часть главной последовательности. Скопление М 41 старше, еще старше скопление Гиады и совсем старым является скопление М 67, диаграмма "цвет - светимость" для которого очень похожа на аналогичную диаграмму для шаровых скоплений М 3 и М 92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше. Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм "цвет - светимость" потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной вычислительной техники, основанной на применении быстродействующих электронных счетных машин. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах. Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия. Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в

    Звезды, как известно, получают свою энергию из реакций термоядерного синтеза, и у каждой звезды рано или поздно наступает момент, когда термоядерное топливо подходит к концу. Чем выше масса звезды, тем быстрее она сжигает все, что может, и переходит на заключительную стадию своего существования. Дальнейшие события могут идти по разным сценариям, какой именно – в первую очередь зависит опять же от массы.
    В то время, когда «догорает» водород в центре звезды, в ней выделяется гелиевое ядро, сжимающееся и выделающее энергию. В дальнейшем в нем могут начаться реакции горения гелия и последующих элементов (см. ниже). Внешние слои увеличиваются во много раз под действием увеличившегося давления, идущего из нагретого ядра, звезда становится красным гигантом.
    В зависимости от массы звезды, в ней могут протекать разные реакции. От этого зависит, какой состав будет иметь звезда к моменту угасания синтеза.

    Белые карлики

    Для звезд с массой до примерно 10 M C ядро весит менее 1,5 M C . После завершения термоядерных реакций прекращается давление излучения, и ядро начинает сжиматься под действием гравитации. Сжимается оно до тех пор, пока не начнет мешать давление вырожденного электронного газа, обусловленное принципом Паули. Внешние слои сбрасываются и рассеиваются, образуя планетарную туманность. Первую такую туманность открыл французский астроном Шарль Мессье в 1764 году и занес ее в каталог под номером M27.
    То, что получилось из ядра, называется белым карликом. Белые карлики имеют плотностьбольше 10 7 г/см 3 и температуру поверхости порядка 10 4 К. Светимость на 2-4 порядка ниже светимости Солнца. Термоядерный синтез в нем не идет, вся излучаемая им энергия была накоплена ранее.Таким образом, белые карлики медленно остывают и перестают быть видимыми.
    У белого карлика еще есть шанс проявить активность, если он входит в состав двойной звезды и перетягивает на себя массу компаньона (например, компаньон стал красным гигантом и заполнил своейй массой всю свою полость Роша). В таком случае может начаться либо синтез водорода в CNO-цикле с помощью углерода, содержащегося в белом карлике, заканчивающийся сбросом внешнего водородного слоя («новая» звезда). Либо масса белого карлика может вырасти настолько, что загорится ее углеродно-кислородная составляющая, волной взрывного горения, идущей из центра. В результате образуются тяжелые элементы с выделением большого количества энергии:

    12 С + 16 O → 28 Si + 16.76 МэВ
    28 Si + 28 Si → 56 Ni + 10.92 МэВ

    Светимость звезды сильно возрастает в течение 2 недель, затем в течение еще 2 недель быстро спадает, после чего продолжает падать примерно в 2 раза за 50 дней. Основная энергия (около 90%) испускается в виде гамма-квантов из цепочки распада изотопа никеля.Такое явление называется сверхновой 1 типа.
    Белых карликов массой в 1.5 и выше масс Солнца не бывает. Это объясняется тем, что для существования белого карлика необходимо уравновесить гравитационное сжатие давлением электронного газа, но происходит это при массах не более 1.4 M C , это ограничение называется пределом Чандрасекара. Величину можно получить как условие равенства сил давления силам гравитационного сжатия в предположении, что импульсы электронов определяются соотношением неопределенности для занимаемого ими объема, а движутся они со скоростью, близкой к скорости света.

    Нейтронные звезды

    В случае с более массивными (> 10 M C) звездами все происходит несколько иначе.Высокая температура в ядре активизирует реакции с поглощением энергии, такие как выбивание протонов, нейтронов и альфа-частиц из ядер, а также e-захват высокоэнергетичных электронов, компенсирующих разницу масс двух ядер. Вторая реакция создает избыток нейтронов в ядре. Обе реакции ведут к его охлаждению и общему сжатию звезды. Когда энергия ядерного синтеза заканчивается, сжатие превращается в почти свободное падение оболочки на сжимающееся ядро. При этом резко ускоряется скорость термоядерного синтеза во внешних падающих слоях, что приводит к испусканию огромного количества энергии за несколько минут (сопоставимую с энергией, которую легкие звезды испускают за все свое существование).
    Сжимающееся ядро за счет высокой массы преодолевает давление электронного газа и сжимается дальше. При этом происходят реакии p + e - → n + ν e , после которых электронов, мешающих сжатию, в ядре почти не остается. Сжатие происходит до размеров в 10 − 30 км, соответствующих плотности, установленной давлением нейтронного вырожденного газа. Падающее на ядро вещество получает отраженную от нейтронного ядра ударную волну и часть выделившейся при его сжатии энергии, что приводит к стремительному выбросу внешней оболочки в стороны. Получившийся объект называется нейтронной звездой. Большую часть (90%) энергии, выделившейся от гравитационного сжатия, уносят нейтрино в первые секунды после коллапса. Вышеописанный процесс называется взрывом сверхновой второго типа. Энергия взрыва такова, что некоторые их них (редко) видны невооруженным глазом даже в дневное время. Первая сверхновая была зарегистрирована китаййскими астрономами в 185 году н.э. В настоящее время регистрируется несколько сотен вспышек в год.
    Получившаяся нейтронная звезда имеет плотность ρ ~ 10 14 − 10 15 г/см 3 . Сохранение момента импулься при сжатии звезды приводит к очень малым периодам обращения, обычно в пределах от 1 до 1000 мс. Для обычных звезд такие периоды невозможны, т.к. Их гравитация не сможет противодействовать центробежным силам такого вращения. Нейтронная звезда имеет очень большое магнитное поле, достигающее 10 12 -10 13 Гс на поверхности, что приводит к сильному электромагнитному излучению. Несовпадающая с осью вращения магнитная ось приводит к тому, что в заданное направление нейтронная звезда посылает периодические (с периодом вращения) импульсы излучения. Такая звезда называется пульсаром. Этот факт помог их экспериментальному открытию и используется для обнаружения. Обнаружить нейтронную звезду оптическими методами намного сложнее из-за малой светимости. Период обращения постепенно уменьшается из-за перехода энергии в излучение.
    Внешний слой нейтронной звезды состоит из кристаллического вещества, в основном железа и соседних с ним элементов. Большая часть остальной массы - нейтроны, в самом центре могут находиться пионы и гипероны. Плотность звезды растет к центру и может достигать величин, заметно больших плотности ядерной материи. Поведение материи при таких плотностях плохо изучено. Существуют теории о свободных кварках, в том числе не только первого поколения, при таких экстремальных плотностях адронной материи. Возможны сверхпроводимое и сверхтекучее состояние нейтронного вещества.
    Существует 2 механизма охлаждения нейтронной звезды. Один из них – излучение фотонов, как и всюду. Второй механизм – нейтринный. Он преобладает до тех пор, пока температура ядра выше 10 8 K. Обычно это соответствует температуре поверхности выше 10 6 K и длится 10 5 −10 6 лет. Существует несколько способов излучения нейтрино:

    Черные дыры

    В случае, если масса исходной звезды превышала 30 масс Солнца, то образующееся во взрыве сверхновой ядро будет тяжелее 3 M C . При такой массе давление нейтронного газа больше не может сдерживать гравитацию, и ядро не останавливается на стадии нейтронной звезды, а продолжает коллапсировать (тем не менее, экспериментально обнаруженные нейтронные звезды имеют массы не более 2 масс Солнца, а не трех). На этот раз коллапсу уже ничего не помешает, и образуется черная дыра. Этот объект имеет чисто релятивистскую природу и не может быть объяснен без ОТО. Несмотря на то, что вещество, по теории, сколлапсировало в точку − сингулярность, черная дыра имеет ненулевой радиус, называемый радиусом Шварцшильда:

    R Ш = 2GM/c 2 .

    Радиус обозначает границу непреодолимого даже для фотонов гравитационного поля черной дыры, называемую горизонтом событий. К примеру, радиус Шварцшильда Солнца − всего 3 км. Вне горизонта событий гравитационное поле черной дыры такое же, как поле обычного объекта ее массы. Наблюдать черную дыру можно только по косвенным эффектам, так как сама она сколько-нибудь заметной энергии не излучает.
    Несмотря на то, что покинуть горизонт событий ничто не может, черная дыра все же может создавать излучение. В квантовом физическом вакууме постоянно рождаются и исчезают виртуальные пары частица-античастица. Сильнейшее гравитационное поле черной дыры может успеть провзаимодействовать с ними до того, как они исчезнут, и поглотить античастицу. В случае, если полная энергия виртуальной античастицы была отрицательна, черная дыра при этом теряет массу, а оставшаяся частица становится реальной и получает энергию, достаточную, чтобы улететь из поля черной дыры. Это излучение называется излучением Хокинга и имеет спектр абсолютно черного тела. Ему можно приписать некоторую температуру:

    Влияние этого процесса на массу большинства черных дыр ничтожно по сравнению с той энергией, которую они получают даже от реликтового излучения. Исключение составляют реликтовые микроскопические черные дыры, которые могли образоваться на ранних стадиях эволюции Вселенной. Малые размеры ускоряют процесс испарения и замедляют процесс набора массы. Последние стадии испарения таких черных дыр должны заканчиваться взрывом. Подходящих под описание взрывов зарегистрировано ни разу не было.
    Вещество, падающее на черную дыру, нагревается и становится источником рентгеновского излучения, которое служит косвенным признаком наличия черной дыры. При падении на черную дыру вещества с большим моментом импульса оно образует вращающийся аккреционный диск вокруг нее, в котором частицы теряют энергию и момент импульса перед падением на черныю дыру. В случае с сверхмассивной черной дырой, возникают два выделенных направления вдоль оси диска, в которых давление испускаемого излучения и электромагнитные эффекты ускоряют выбившиеся из диска частицы. Это создает мощные струи вещества в обе стороны, которые также можно зарегистрировать. По одной из теорий, именно так устроены активные ядра галактик и квазары.
    Вращающаяся черная дыра представляет собой более сложный объект. Своим вращением она «захватывает» некоторую область пространства за горизонтом событий («Эффект Лензе-Тирринга»). Эта область называется эргосферой, ее граница называется пределом статичности. Предел статичности представляет собой эллипсоид, совпадающий с горизонтом событий в двух полюсах вращения черной дыры.
    Вращающиеся черные дыры имеют дополнительный механизм потери энергии через передачу ее частицам, попавшим в эргосферу. Такая потеря энергии сопровождается потерей момента импульса и замедляет вращение.

    Список литературы

    1. С.Б.Попов, М.Е.Прохоров "Астрофизика одиночных нейтронных звезд: радиотихие нейтронные звезды и магнитары" ГАИШ МГУ, 2002
    2. Уильям Дж. Кауфман "Космические рубежи теории относительности" 1977
    3. Другие источники в интернет

    декабрь 2010 г.

    Вселенная представляет собой постоянно меняющийся макромир, где каждый объект, субстанция или материя пребывают в состоянии трансформации и изменений. Эти процессы длятся миллиарды лет. В сравнении с продолжительностью человеческой жизни этот непостижимый умом временной отрезок времени огромен. В масштабах космоса эти изменения достаточно скоротечны. Звезды, которые мы сейчас наблюдаем на ночном небосклоне, были такими же и тысячи лет назад, когда их могли видеть египетские фараоны, однако на самом деле все это время ни на секунду не прекращалось изменение физических характеристик небесных светил. Звезды рождаются, живут и непременно стареют — эволюция звезд идет своим чередом.

    Положение звезд созвездия Большая Медведица в разные исторические периоды в интервале 100000 лет назад — наше время и через 100 тыс. лет

    Интерпретация эволюции звезд с точки зрения обывателя

    Для обывателя космос представляется миром спокойствия и безмолвия. На самом деле Вселенная является гигантской физической лабораторией, где происходят грандиозные преобразования, в ходе которых меняется химический состав, физические характеристики и строение звезд. Жизнь звезды длится до тех пор, пока она светит и отдает тепло. Однако такое блистательное состояние не вечно. За ярким рождением следует период зрелости звезды, который неизбежно заканчивается старением небесного тела и его смертью.

    Образование протозвезды из газопылевого облака 5-7 млрд. лет назад

    Вся наша информация о звездах сегодня умещается в рамки науки. Термодинамика дает нам объяснение процессов гидростатического и теплового равновесия, в котором пребывает звездная материя. Ядерная и квантовая физика позволяют понять сложный процесс ядерного синтеза, благодаря которому звезда существует, излучая тепло и даря свет окружающему пространству. При рождении звезды формируется гидростатическое и тепловое равновесие, поддерживаемое за счет собственных источников энергии. На закате блистательной звездной карьеры это равновесие нарушается. Наступает черед необратимых процессов, итогом которых становится разрушение звезды или коллапс — грандиозный процесс мгновенной и блестящей смерти небесного светила.

    Взрыв сверхновой — яркий финал жизни звезды, родившейся в первые годы существования Вселенной

    Изменение физических характеристик звезд обусловлено их массой. На скорость эволюции объектов оказывает влияние их химический состав и в некоторой степени существующие астрофизические параметры — скорость вращения и состояние магнитного поля. Точно говорить о том, как все происходит на самом деле, не представляется возможным ввиду огромной продолжительности описываемых процессов. Скорость эволюции, этапы трансформации зависят от времени рождения звезды и ее месторасположения во Вселенной на момент рождения.

    Эволюция звезд с научной точки зрения

    Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.

    Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции

    В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.

    Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:

    • ядерная временная шкала;
    • тепловой отрезок жизни звезды;
    • динамический отрезок (финальный) жизни светила.

    В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.

    Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом

    Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.

    Учитывая тот факт, что светимость звезд определяется их массой, в момент сжатия объекта его яркость в пространстве не меняется.

    Звезда на пути к главной последовательности

    Формирование звезды происходит в соответствии с динамической временной шкалой. Звездный газ свободно падает внутрь к центру, увеличивая плотность и давление в недрах будущего объекта. Чем выше плотность в центре газового шара, тем больше температура внутри объекта. С этого момента основной энергией небесного тела становится тепло. Чем больше плотность и выше температура, тем больше давление в недрах будущей звезды. Свободное падение молекул и атомов прекращается, процесс сжатия звездного газа приостанавливается. Такое состояние объекта обычно называют протозвездой. Объект на 90% состоит из молекулярного водорода. При достижении температуры 1800К водород переходит в атомарное состояние. В процессе распада расходуется энергия, повышение температуры замедляется.

    Вселенная на 75% состоит из молекулярного водорода, который в процессе формирования протозвезд превращается в атомарный водород — ядерное топливо звезды

    В подобном состоянии давление внутри газового шара уменьшается, тем самым давая свободу силе сжатия. Такая последовательность повторяется каждый раз, когда сначала ионизируется весь водород, а затем наступает черед ионизации гелия. При температуре 10⁵ К газ ионизируется полностью, сжатие звезды останавливается, возникает гидростатическое равновесие объекта. Дальнейшая эволюция звезды будет происходить в соответствии с тепловой временной шкалой, гораздо медленнее и последовательнее.

    Радиус протозвезды с момента начала формирования сокращается с 100 а.е. до ¼ а.е. Объект пребывает в середине газового облака. В результате аккреции частиц из внешних областей облака звездного газа масса звезды будет постоянно увеличиваться. Следовательно, температура внутри объекта будет расти, сопровождая процесс конвекции — перенос энергии от внутренних слоев звезды к ее внешнему краю. Впоследствии с ростом температуры в недрах небесного тела конвекция сменяется лучистым переносом, сдвигаясь к поверхности звезды. В этом момент светимость объекта стремительно увеличивается, растет и температура поверхностных слоев звездного шара.

    Процессы конвекции и лучистый перенос во вновь образовавшейся звезде перед началом реакций термоядерного синтеза

    К примеру, для звезд, у которых масса идентична массе нашего Солнца, сжатие протозвездного облака происходит всего за несколько сотен лет. Что касается финальной стадии образования объекта, то конденсация звездной материи растягивается уже на миллионы лет. Солнце движется к главной последовательности достаточно быстро, и этот путь займет сотню миллионов или миллиарды лет. Другими словами, чем больше масса звезды, тем больше промежуток времени, затрачиваемый на формирование полноценной звезды. Звезда с массой в 15М будет двигаться по пути к главной последовательности уже значительно дольше — порядка 60 тыс. лет.

    Фаза главной последовательности

    Несмотря на то, что некоторые реакции термоядерного синтеза запускаются при более низких температурах, основная фаза водородного горения стартует при температуре в 4 млн. градусов. С этого момента начинается фаза главной последовательности. В дело вступает новая форма воспроизводства звездной энергии — ядерная. Кинетическая энергия, высвобождаемая в процессе сжатия объекта, отходит на второй план. Достигнутое равновесие обеспечивает долгую и спокойную жизнь звезды, оказавшейся в начальной фазе главной последовательности.

    Деление и распад атомов водорода в процессе термоядерной реакции, происходящей в недрах звезды

    С этого момента наблюдение за жизнью звезды четко привязано к фазе главной последовательности, которая является важной частью эволюции небесных светил. Именно на этом этапе единственным источником звездной энергии является результат горения водорода. Объект пребывает в состоянии равновесия. По мере расхода ядерного топлива меняется только химический состав объекта. Пребывание Солнца в фазе главной последовательности продлится ориентировочно 10 млрд. лет. Столько времени потребуется, чтобы наше родное светило израсходовало весь запас водорода. Что касается массивных звезд, то их эволюция происходит быстрее. Излучая больше энергии, массивная звезда пребывает в фазе главной последовательности всего 10-20 млн. лет.

    Менее массивные звезды горят на ночном небосклоне значительно дольше. Так, звезда с массой 0,25М будет пребывать в фазе главной последовательности десятки миллиардов лет.

    Диаграмма Герцшпрунга – Рассела, оценивающая взаимосвязь спектра звезд с их светимостью. Точки на диаграмме – месторасположение известных звезд. Стрелки указывают смещение звезд от главной последовательности в фазы гигантов и белых карликов.

    Чтобы представить эволюцию звезд, достаточно взглянуть на диаграмму, характеризующую путь небесного светила в главной последовательности. Верхняя часть графика выглядит менее насыщенной объектами, так как именно здесь сосредоточены массивные звезды. Это месторасположение объясняется их непродолжительным жизненным циклом. Из известных на сегодняшний день звезд некоторые имеют массу 70М. Объекты, масса которых превышает верхний предел — 100М, могут вообще не сформироваться.

    У небесных светил, масса которых меньше 0,08М, нет возможности преодолеть критическую массу, необходимую для начала термоядерного синтеза и остаются всю свою жизнь холодными. Самые маленькие протозвезды сжимаются и образуют планетоподобные карлики.

    Планетоподобный коричневый карлик в сравнении с нормальной звездой (наше Солнце) и планетой Юпитер

    В нижней части последовательности сосредоточены объекты, где доминируют звезды с массой равной массе нашего Солнца и немногим больше. Мнимой границей между верхней и нижней части главной последовательности являются объекты, масса которых составляет – 1,5М.

    Последующие этапы эволюции звезд

    Каждый из вариантов развития состояния звезды определяется ее массой и отрезком времени, в течение которого происходит трансформация звездной материи. Однако Вселенная представляет собой многогранный и сложный механизм, поэтому эволюция звезд может идти другими путями.

    Путешествуя по главной последовательности, звезда с массой, примерно равной массе Солнца, имеет три основных варианта маршрута:

    1. спокойно прожить свою жизнь и мирно почить в бескрайних просторах Вселенной;
    2. перейти в фазу красного гиганта и медленно стареть;
    3. перейти в категорию белых карликов, вспыхнуть сверхновой и превратиться в нейтронную звезду.

    Возможные варианты эволюции протозвезд в зависимости от времени, химического состав объектов и их массы

    После главной последовательности наступает фаза гиганта. К этому времени запасы водорода в недрах звезды полностью заканчиваются, центральная область объекта представляет собой гелиевое ядро, а термоядерные реакция смещаются к поверхности объекта. Под действием термоядерного синтеза оболочка расширяется, а вот масса гелиевого ядра растет. Обычная звезда превращается в красного гиганта.

    Фаза гиганта и ее особенности

    У звезд с небольшой массой плотность ядра становится колоссальной, превращая звездную материю в вырожденный релятивистский газ. Если масса звезды чуть больше 0,26М, рост давления и температуры приводит к началу синтеза гелия, охватывающего всю центральную область объекта. С этого момента температура звезды стремительно растет. Главная особенность процесса заключается в том, что вырожденный газ не имеет способности расширяться. Под воздействием высокой температуры увеличивается только скорость деления гелия, что сопровождается взрывной реакцией. В такие моменты мы можем наблюдать гелиевую вспышку. Яркость объекта увеличивается в сотни раз, однако агония звезды продолжается. Происходит переход звезды в новое состояние, где все термодинамические процессы происходят в гелиевом ядре и в разряженной внешней оболочке.

    Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза

    Такое состояние является временным и не отличается устойчивостью. Звездная материя постоянно перемешивается, при этом значительная ее часть выбрасывается в окружающее пространство, образуя планетарную туманность. В центре остается горячее ядро, которое называется белым карликом .

    Для звезд большой массы перечисленные процессы протекают не так катастрофически. На смену гелиевому горению приходит ядерная реакция деления углерода и кремния. В конце концов звездное ядро превратится в звездное железо. Фаза гиганта определяется массой звезды. Чем больше масса объекта, тем меньше температура в его центре. Этого явно недостаточно для запуска ядерной реакции деления углерода и других элементов.

    Судьба белого карлика – нейтронная звезда или черная дыра

    Оказавшись в состоянии белого карлика, объект пребывает в крайне неустойчивом состоянии. Прекратившиеся ядерные реакции приводят к падению давления, ядро переходит в состояние коллапса. Энергия, выделяемая в данном случае, расходуется на распад железа до атомов гелия, который дальше распадается на протоны и нейтроны. Запущенный процесс развивается со стремительной скоростью. Коллапс звезды характеризует динамический отрезок шкалы и занимает по времени долю секунды. Возгорание остатков ядерного топлива происходит взрывным образом, освобождая в доли секунды колоссальный объем энергии. Этого вполне достаточно, чтобы взорвать верхние слои объекта. Финальной стадией белого карлика является вспышка сверхновой.

    Ядро звезды начинает схлопываться (слева). Схлопывание формирует нейтронную звезду и создает поток энергии во внешние слои звезды (в центре). Энергия, выделяемая в результате сброса внешних слоев звезды при вспышке сверхновой (справа).

    Оставшееся сверхплотное ядро будет представлять собой скопление протонов и электронов, которые сталкиваясь друг с другом, образуют нейтроны. Вселенная пополнилась новым объектом — нейтронной звездой. Из-за высокой плотности ядро становится вырожденным, процесс коллапсирования ядра останавливается. Если бы масса звезды была достаточно большой, коллапс мог бы продолжаться до тех пор, пока остатки звездной материи не упадут окончательно в центре объекта, образуя черную дыру.

    Объяснение финальной части эволюции звезд

    Для нормальных равновесных звезд описанные процессы эволюции маловероятны. Однако существование белых карликов и нейтронных звезд доказывает реальное существование процессов сжатия звездной материи. Незначительное количество подобных объектов во Вселенной свидетельствует о скоротечности их существования. Финальный этап эволюции звезд можно представить в виде последовательной цепочки двух типов:

    • нормальная звезда — красный гигант – сброс внешних слоев – белый карлик;
    • массивная звезда – красный сверхгигант – взрыв сверхновой – нейтронная звезда или черная дыра – небытие.

    Схема эволюции звезд. Варианты продолжения жизни звезд вне главной последовательности.

    Объяснить с точки зрения науки происходящие процессы достаточно трудно. Ученые-ядерщики сходятся во мнении, что в случае с финальным этапом эволюции звезд мы имеем дело с усталостью материи. В результате длительного механического, термодинамического воздействия материя меняет свои физические свойства. Усталостью звездной материи, истощенной длительными ядерными реакциями, можно объяснить появление вырожденного электронного газа, его последующую нейтронизацию и аннигиляцию. Если все перечисленные процессы проходят от начала до конца, звездная материя перестает быть физической субстанцией – звезда исчезает в пространстве, не оставляя после себя ничего.

    Межзвездные пузыри и газопылевые облака, являющиеся местом рождения звезд, не могут пополняться только за счет исчезнувших и взорвавшихся звезд. Вселенная и галактики находятся в равновесном состоянии. Постоянно происходит потеря массы, плотность межзвездного пространства уменьшается в одной части космического пространства. Следовательно, в другой части Вселенной создаются условия для образования новых звезд. Другими словами, работает схема: если в одном месте убыло определенное количество материи, в другом месте Вселенной такой же объем материи появился в другой форме.

    В заключение

    Изучая эволюцию звезд, мы приходим к выводу, что Вселенная представляет собой гигантский разряженный раствор, в котором часть материи трансформируется в молекулы водорода, являющегося строительным материалом для звезд. Другая часть растворяется в пространстве, исчезая из сферы материальных ощущений. Черная дыра в этом смысле является местом перехода всего материального в антиматерию. Постичь до конца смысл происходящего достаточно трудно, особенно если при изучении эволюции звезд делать ставку только на законы ядерной, квантовой физики и термодинамики. К изучению данного вопроса следует подключать теорию относительной вероятности, которая допускает искривление пространства, позволяющее трансформироваться одной энергии в другую, одного состояния в другое.

    Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

    На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

    Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

    Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

    Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

    Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

    Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

    По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

    Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

    Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

    Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

    Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

    Эволюция звезд – это изменение со временем физических характеристик, внутреннего строения и химического состава звезд. Современная теория эволюции звезд способна объяснить общий ход развития звезд в удовлетворительном согласии с данными астрономических наблюдений. Ход эволюции звезды зависит от ее массы и исходного химического состава. Звезды первого поколения сформировались из вещества, состав которого определялся космологическими условиями (около 70% водорода, 30% гелия, ничтожная примесь дейтерия и лития). В ходе эволюции звезд первого поколения образовались тяжелые элементы, которые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались из вещества, содержащего 3 – 4% тяжелых элементов.

    Рождение звезды – это образование объекта, излучение которого поддерживается за счет собственных источников энергии. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время.

    Для объяснения структуры мегамира наиболее важным является гравитационное взаимодействие. В газопылевых туманностях под действием сил гравитации происходит формирование неустойчивых неоднородностей, благодаря чему диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной звезды, а звездных ассоциаций. Образовавшиеся газовые тела притягиваются друг к другу, но не обязательно объединяются в одно громадное тело. Они, как правило, начинают вращаться относительно друг друга, и центробежные силы этого движения противодействуют силам притяжения, ведущим к дальнейшей концентрации.

    К молодым относятся звезды, которые находятся еще в стадии первоначального гравитационного сжатия. Температура в центре таких звезд еще недостаточна для протекания термоядерных реакций. Свечение звезд происходит только за счет превращения гравитационной энергии в теплоту. Гравитационное сжатие – первый этап эволюции звезд. Оно приводит к разогреву центральной зоны звезды до температуры начала термоядерной реакции (10 – 15 млн К) – превращения водорода в гелий.

    Огромная энергия, излучаемая звездами, образуется в результате ядерных процессов, происходящих внутри звезд. Энергия, образующаяся внутри звезды, позволяет ей излучать свет и тепло в течение миллионов и миллиардов лет. Впервые предположение о том, что источником энергии звезд являются термоядерные реакции синтеза гелия из водорода, выдвинул в 1920 г. английский астрофизик А.С.Эддингтон. В недрах звезд возможны два типа термоядерных реакций с участием водорода, называемые водородным (протон-протонным) и углеродным (углеродно-азотным) циклами. В первом случае для протекания реакции требуется только водород, во втором необходимо еще наличие углерода, служащего катализатором. Исходным веществом служат протоны, из которых в результате ядерного синтеза образуются ядра гелия .


    Поскольку при превращении четырех протонов в ядро гелия рождаются два нейтрино, в недрах Солнца ежесекундно генерируются 1,8∙10 38 нейтрино. Нейтрино слабо взаимодействует с веществом и обладает большой проникающей способностью. Пройдя сквозь огромную толщу солнечного вещества, нейтрино сохраняют всю ту информацию, которую они получили в термоядерных реакциях в недрах Солнца. Плотность потока солнечных нейтрино, падающих на поверхность Земли, равна 6,6∙10 10 нейтрино на 1 см 2 в 1 с. Измерение потока нейтрино, падающих на Землю, позволяет судить о процессах, происходящих внутри Солнца.

    Таким образом, источником энергии у большинства звезд являются водородные термоядерные реакции в центральной зоне звезды. В результате термоядерной реакции возникает поток энергии, направленный наружу, в виде излучения в широком интервале частот (длин волн). Взаимодействие между излучением и веществом приводит к установившемуся равновесию: давление направленной наружу радиации уравновешивается давлением гравитации. Дальнейшее сжатие звезды прекращается, пока в центре производится достаточное количество энергии. Это состояние довольно устойчиво, и размер звезды остается постоянным. Водород – главная составная часть космического вещества и важнейший вид ядерного горючего. Запасов водорода звезде хватает на миллиарды лет. Это объясняет, почему звезды устойчивы столь длительное время. До тех пор, пока в центральной зоне весь водород не выгорит, свойства звезды изменяются мало.

    Поле выгорания водорода в центральной зоне у звезды образуется геливое ядро. Водородные реакции продолжают протекать, но только в тонком слое около поверхности ядра. Ядерные реакции перемещаются на периферию звезды. Структура звезды на этой стадии описывается моделями со слоевым источником энергии. Выгоревшее ядро начинает сжиматься, а внешняя оболочка – расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой. Звезда переходит в стадию красного гиганта. С этого момента жизнь звезды начинает клониться к закату. Красные гиганты отличаются низкими температурами и огромными размерами (от 10 до 1000 R c). Средняя плотность вещества в них не достигает и 0,001 г/см 3 . Их светимость в сотни раз превышает светимость Солнца, но температура значительно ниже (около 3000 – 4000 К).

    Полагают, что наше Солнце при переходе в стадию красного гиганта может увеличиться настолько, что заполнит орбиту Меркурия. Правда, Солнце станет красным гигантом через 8 млрд лет.

    Для красного гиганта характерна низкая внешняя температура, но очень высокая внутренняя. С ее повышением в термоядерные реакции включаются всё более тяжелые ядра. При температуре 150 млн К начинаются гелиевые реакции, которые являются не только источником энергии, но в ходе них осуществляется синтез более тяжелых химических элементов. После образования углерода в гелиевом ядре звезды возможны следующие реакции:

    Следует отметить, что синтез очередного более тяжелого ядра требует все более и более высоких энергий. К моменту образования магния весь гелий в ядре звезды истощается, и, чтобы стали возможными дальнейшие ядерные реакции, необходимо новое сжатие звезды и повышение ее температуры. Однако это возможно не для всех звезд, лишь для достаточно больших, масса которых превышает массу Солнца более чем в 1,4 раза (так называемый предел Чандрасекара). В звездах меньшей массы реакции заканчиваются на стадии образования магния. В звездах, масса которых превышает предел Чандрасекара, за счет гравитационного сжатия температура повышается до 2 млрд градусов, реакции продолжаются, образуя более тяжелые элементы – вплоть до железа. Элементы тяжелее железа образуются при взрывах звезд.

    В результате роста давления, пульсаций и других процессов красный гигант непрерывно теряет вещество, которое выбрасывается в межзвездное пространство в виде звездного ветра. Когда внутренние термоядерные источники энергии полностью истощаются, дальнейшая судьба звезды зависит от ее массы.

    При массе меньше 1,4 массы Солнца звезда переходит в стационарное состояние с очень большой плотностью (сотни тонн на 1 см 3). Такие звезды называются белыми карликами. В процессе превращения красного гиганта в белый карлик заезда может сбросить свои наружные слои, как легкую оболочку, обнажив при этом ядро. Газовая оболочка ярко светится под действием мощного излучения звезды. Так образуются планетарные туманности. При высоких плотностях вещества внутри белого карлика электронные оболочки атомов разрушаются, и вещество звезды представляет собой электронно-ядерную плазму, причем ее электронная составляющая представляет собой вырожденный электронный газ. Белые карлики находятся в равновесном состоянии за счет равенства сил между гравитацией (фактор сжатия) и давлением вырожденного газа в недрах звезды (фактор расширения). Белые карлики могут существовать миллиарды лет.

    Тепловые запасы звезды постепенно истощаются, звезда медленно охлаждается, что сопровождается выбросами оболочки звезд в межзвездное пространство. Звезда постепенно изменяет свой цвет от белого к желтому, затем к красному, наконец, она перестает излучать, становится маленьким безжизненным объектом, мертвой холодной звездой, размеры которой меньше размеров Земли, а масса сравнима с массой Солнца. Плотность такой звезды в миллиарды раз больше плотности воды. Такие звезды называются черными карликами. Так заканчивают свое существование большинство звезд.

    При массе звезды более 1,4 массы Солнца стационарное состояние звезды без внутренних источников энергии становится невозможным, т.к. давление внутри звезды не может уравновесить силу тяготения. Начинается гравитационный коллапс – сжатие вещества к центру звезды под действием гравитационных сил.

    Если отталкивание частиц и другие причины останавливают коллапс, то происходит мощный взрыв ─ вспышка сверхновой звезды с выбросом значительной части вещества в окружающее пространство и образованием газовых туманностей. Название было предложено Ф.Цвикки в 1934 г. Взрыв сверхновой является одним из промежуточных этапов эволюции звезд перед превращением их в белые карлики, нейтронные звезды или черные дыры. При взрыве выделяется энергия 10 43 ─ 10 44 Дж при мощности излучения 10 34 Вт. При этом блеск звезды увеличивается на десятки звездных величин за несколько суток. Светимость сверхновой может превосходить светимость всей галактики, в которой она вспыхнула.

    Газовая туманность, образующаяся при взрыве сверхновой, состоит частично из выброшенных взрывом верхних слоев звезды, а частично – из межзвездного вещества, уплотненного и разогретого разлетающимися продуктами взрыва. Наиболее известной газовой туманностью является Крабовидная туманность в созвездии Тельца – остаток сверхновой 1054 г. Молодые остатки сверхновых расширяются со скоростями 10-20 тыс. км/с. Столкновение расширяющейся оболочки с неподвижным межзвездным газом порождает ударную волну, в которой газ нагревается до миллионов Кельвин и становится источником рентгеновского излучения. Распространение ударной волны в газе приводит к появлению быстрых заряженных частиц (космических лучей), которые, двигаясь в сжатом и усиленном этой же волной межзвездном магнитном поле, излучают в радиодиапазоне.

    Астрономы зафиксировали вспышки сверхновых в 1054, 1572, 1604 годах. В 1885 году появление сверхновой было отмечено в туманности Андромеды. Ее блеск превышал блеск всей Галактики и оказался в 4 млрд раз более интенсивным, чем блеск Солнца.

    Уже к 1980 г. было открыто более 500 вспышек сверхновых звезд, но ни одна не наблюдалась в нашей Галактике. Астрофизики подсчитали, что в нашей Галактике сверхновые звезды вспыхивают с периодом 10 млн лет в непосредственной близости от Солнца. В среднем в Метагалактике происходит вспышка сверхновой каждые 30 лет.

    Дозы космического излучения на Земле при этом могут превышать нормальный уровень в 7000 раз. Это приведет к серьезнейшим мутациям в живых организмах на нашей планете. Некоторые ученые так объясняют внезапную гибель динозавров.

    Часть массы взорвавшейся сверхновой звезды может остаться в виде сверхплотного тела – нейтронной звезды или черной дыры. Масса нейтронных звезд составляет (1,4 – 3)М с, диаметр – около 10 км. Плотность нейтронной звезды очень велика, выше плотности атомных ядер ─ 10 15 г/см 3 . При нарастании сжатия и давления становится возможной реакция поглощения электронов протонами В итоге все вещество звезды будет состоять из нейтронов. Нейтронизация звезды сопровождается мощной вспышкой нейтринного излучения. При вспышке сверхновой SN1987A продолжительность нейтринной вспышки составляла 10 с, а энергия, унесенная всеми нейтрино, достигала 3∙10 46 Дж. Температура нейтронной звезды достигает 1 млрд К. Нейтронные звезды очень быстро остывают, светимость их слабеет. Зато они интенсивно излучают радиоволны в узком конусе по направлению магнитной оси. Для звезд, у которых магнитная ось не совпадает с осью вращения, характерно радиоизлучение в виде повторяющихся импульсов. Поэтому нейтронные звезды называют пульсарами. Первые пульсары были открыты в 1967 г. Частота пульсаций излучения, определяемая скоростью вращения пульсара, от 2 до 200 Гц, что указывает на их малые размеры. Например, пульсар в Крабовидной туманности имеет период испускания импульсов 0,03 с. В настоящее время известны сотни нейтронных звезд. Нейтронная звезда может появиться в результате так называемого «тихого коллапса». Если белый карлик входит в двойную систему из близко расположенных звезд, то возникает явление аккреции, когда вещество со звезды-соседа перетекает на белый карлик. Масса белого карлика растет и в определенный момент превосходит предел Чандрасекара. Белый карлик превращается в нейтронную звезду.

    Если конечная масса белого карлика превышает 3 массы Солнца, то вырожденное нейтронное состояние неустойчиво, и гравитационное сжатие продолжается до образования объекта, называемого черной дырой. Термин «черная дыра» введен Дж. Уилером в 1968 г. Однако представление о подобных объектах возникло на несколько столетий раньше, после открытия И. Ньютоном в 1687 г. закона всемирного тяготения. В 1783 г. Дж. Митчелл предположил, что в природе должны существовать темные звезды, гравитационное поле которых столь сильно, что свет не может вырваться из них наружу. В 1798 г. такая же идея была высказана П. Лапласом. В 1916 г. физик Шварцшильд, решая уравнения Эйнштейна, пришел к выводу о возможности существования объектов с необычными свойствами, позже названные черными дырами. Черная дыра – область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость для находящихся в этой области тел должна превышать скорость света, т.е. из черной дыры ничто не может вылететь – ни частицы, ни излучение. В соответствии с общей теорией относительности характерный размер черной дыры определяется гравитационным радиусом: R g =2GM/c 2 , где М – масса объекта, с – скорость света в вакууме, G – постоянная тяготения. Гравитационный радиус Земли равен 9 мм, Солнца 3 км. Границу области, за которую не выходит свет, называют горизонтом событий черной дыры. У вращающихся черных дыр радиус горизонта событий меньше гравитационного радиуса. Особый интерес вызывает возможность захвата черной дырой тел, прилетающих из бесконечности.

    Теория допускает существование черных дыр массой 3 –50 масс Солнца, образующихся на поздних стадиях эволюции массивных звезд с массой более 3 масс Солнца, сверхмассивных черных дыр в ядрах галактик массой в миллионы и миллиарды масс Солнца, первичных (реликтовых) черных дыр, формировавшихся на ранних стадиях эволюции Вселенной. До наших дней должны были дожить реликтовые черные дыры массой более 10 15 г (масса средней горы на Земле) из-за действия механизма квантового испарения черных дыр, предложенного С. Хокингом (S.W.Hawking).

    Астрономы обнаруживают черные дыры по мощному рентгеновскому излучению. Примером такого типа звезд является мощный рентгеновский источник Лебедь Х-1, масса которого превышает 10М с. Часто черные дыры встречаются в рентгеновских двойных звездных системах. Уже обнаружены десятки черных дыр звездной массы в таких системах (m ч.д. = 4-15 М с). По эффектам гравитационного линзирования открыто несколько одиночных черных дыр звездной массы (m ч.д. =6-8 М с). В случае тесной двойной звезды наблюдается явление аккреции – перетекание плазмы с поверхности обычной звезды под действием гравитационных сил на черную дыру. Вещество, перетекающее на черную дыру, обладает моментом импульса. Поэтому плазма образует вращающийся диск вокруг черной дыры. Температура газа в этом вращающемся диске может достигать 10 млн градусов. При этой температуре газ излучает в рентгеновском диапазоне. По этому излучению можно определить наличие в данном месте черной дыры.

    Особый интерес представляют сверхмассивные черные дыры в ядрах галактик. На основании изучения рентгеновского изображения центра нашей Галактики, полученного с помощью спутника CHANDRA, установлено наличие сверхмассивной черной дыры, масса которой в 4 млн. раз превышает массу Солнца. В результате последних исследований американским астрономам удалось обнаружить уникальную сверхтяжелую черную дыру, расположенную в центре очень отдаленной галактики, масса которой в 10 млрд. раз превышает массу Солнца. Для того чтобы достичь таких невообразимо огромных размеров и плотности, черная дыра должна была формироваться на протяжении многих миллиардов лет, непрерывно притягивая и поглощая материю. Ученые оценивают ее возраст в 12,7 млрд лет, т.е. она начала формироваться примерно через один миллиард лет после Большого взрыва. К настоящему времени обнаружено более 250 сверхмассивных черных дыр в ядрах галактик (m ч.д. =(10 6 – 10 9) М с).

    С эволюцией звезд тесно связан вопрос о происхождении химических элементов. Если водород и гелий являются элементами, которые остались от ранних стадий эволюции расширяющейся Вселенной, то более тяжелые химические элементы могли образоваться только в недрах звезд при термоядерных реакциях. Внутри звезд при термоядерных реакциях может образоваться до 30 химических элементов (по железо включительно).

    По своему физическому состоянию звезды можно разделить на нормальные и вырожденные. Первые состоят в основном из вещества малой плотности, в их недрах идут термоядерные реакции синтеза. К вырожденным звездам относятся белые карлики и нейтронные звезды, они представляют собой конечную стадию эволюции звезд. Реакции синтеза в них закончились, а равновесие поддерживается квантово-механическими эффектами вырожденных фермионов: электронов в белых карликах и нейтронов в нейтронных звездах. Белые карлики, нейтронные звезды и черные дыры объединяют общим названием «компактные остатки».

    В конце эволюции в зависимости от массы звезда либо взрывается, либо сбрасывает более спокойно вещество, уже обогащенное тяжелыми химическими элементами. При этом образуются остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Например, Солнце – звезда второго поколения, образовавшаяся из вещества, уже однажды побывавшего в недрах звезд и обогащенного тяжелыми элементами. Поэтому о возрасте звезд можно судить по их химическому составу, определенному методом спектрального анализа.

    Последние материалы раздела:

    Реферат: Школьный тур олимпиады по литературе Задания
    Реферат: Школьный тур олимпиады по литературе Задания

    Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

    Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

    Кир II Великий - основатель Персидской империи
    Кир II Великий - основатель Персидской империи

    Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...