Элементы бактерий. Строение клеток бактерий

Структурные компоненты бактериальной клетки делят на 2 вида:

- основные структуры (клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид);

- временные структуры (капсула, слизистый чехол, жгутики, ворсинки, эндоспоры, образующиеся лишь на определенных этапах жизненного цикла бактерий).

Основные структуры.

Клеточная стенка находится с внешней стороны от цитоплазматической мембраны. Цитоплазматическая мембрана не входит в состав клеточной стенки. Функции клеточной стенки:

Защита бактерий от осмотического шока и других повреждающих факторов;

Определение формы бактерий;

Участие в метаболизме бактерий.

Клеточная стенка пронизана порами, через которые происходит транспорт экзотоксинов бактерий. Толщина клеточной стенки составляет 10–100 нм. Основной компонент клеточной стенки бактерий - пептидогликан или муреин, состоящий из чередующихся остатков N-ацетил-N-глюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидными связями.

В 1884 году Х. Грам предложил метод окраски бактерий с помощью генцианвиолета, йода, этилового спирта и фуксина. Все бактерии в зависимости от окраски по Граму подразделяют на 2 группы: грамположительные и грамотрицательные бактерии. Клеточная стенка грамположительных бактерий плотно прилегает к цитоплазматической мембране, ее толщина составляет 20-100 нм. В ней имеются тейхоевые кислоты (полимеры глицерина или рибита), а также в небольших количествах полисахариды, белки и липиды. Клеточная стенка грамотрицательных бактерий многослойна, ее толщина составляет 14-17 нм. Внутренний слой (пептидогликан) образует тонкую непрерывную сетку. Внешний слой состоит из фосфолипидов, липопротеина и белков. Белки наружной мембраны прочно связаны с пептидогликановым слоем.

В некоторых условиях бактерии лишаются способности полностью или частично синтезировать компоненты клеточной стенки, в результате чего образуются протопласты, сферопласты и L-формы бактерий. Сферопласты – это бактерии с частично разрушенной клеточной стенкой. Они наблюдаются у грамотрицательных бактерий. Протопласты - это формы, полностью лишенные клеточной стенки. Они образуются грамположительными бактериями. L-формы бактерий - это мутанты бактерий, частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки (бактерии с дефектной клеточной стенкой). Свое название они получили от названия института Листера в Англии, где были открыты в 1935 году.

Цитоплазматическая мембрана (ЦПМ) и ее производные. Цитоплазматическая мембрана (плазмолемма) - это полупроницаемая липопротеидная структура бактериальной клетки, отделяющая цитоплазму от клеточной стенки. Она составляет 8-15% сухой массы клетки. Ее разрушение приводит к гибели клетки. При электронной микроскопии выявлено ее трехслойное строение. Цитоплазматическая мембрана представляет собой комплекс белков (50-75%) и липидов (15-20%). Основная масса липидов представлена фосфолипидами. Кроме того, в составе мембраны обнаружено небольшое ко­личество углеводов.

ЦПМ бактерий выполняет следующие функции:

Барьерная функция (молекулярное “сито”);

Энергетическая;

Избирательный перенос различных органических и неорганических молекул и ионов с помощью специальных переносчиков – транслоказ или пермеаз;

Репликация и последующее разделение хро­мосомы.

В процессе роста клетки цитоплазматическая мембрана образует многочисленные впячивания (инвагинаты), получившие название мезосом .

Цитоплазма - это содержимое бактериальной клетки, ограниченное цитоплазматической мембраной. Она состоит из цитозоля и структурных элементов.

Цитозоль - гомогенная фракция, включающая растворимые компоненты РНК, ферменты, продукты метаболизма.

Структурные элементы - это рибосомы, внутрицитоплазматические мембраны, включения и нуклеоид.

Рибосомы - органоиды, осуществляющие биосинтез белка. Они состоят из белка и РНК. Представляют собой гранулы диаметром 15-20 нм. Одна бактериальная клетка содержит от 5000 до 50000 рибосом. Рибосомы являются местом синтеза белка.

В цитоплазме прокариотов обнаруживаются различные включения, представляющие запасные вещества клетки. Из полисахаридов в клетках откладываются гликоген, крахмал и крахмалоподобное вещество - гранулеза. Полифосфаты содержатся в гранулах, называемых волютиновыми , или метахроматиновыми , зернами.

Нуклеоид является ядром у прокариотов. Он состоит из одной замкнутой в кольцо двуспиральной нити ДНК, которую рассматривают как бактериальную хромосому. У нуклеоида отсутствует ядерная оболочка.

Кроме нуклеоида в бактериальной клетке обнаружены внехромосомные генетические элементы – плазмиды , которые представляют собой небольшие кольцевые молекулы ДНК, способные к автономной репликации. Роль плазмид состоит в том, что они кодируют дополнительные признаки, дающие клетке преимущества в определенных условиях существования. Наиболее распространены плазмиды, детерминирующие признаки антибиотикорезистентности бактерий (R-плазмиды), синтез энтеротоксинов (Ent-плазмиды) или гемолизинов (Hly-плазмиды).

К временным структурам относятся капсула, жгутики, пили, эндоспоры бактерий.

Капсула - это слизистый слой над клеточной стенкой бактерии. Вещество капсул состоит из нитей полисахаридов. Капсула синтезируется на наружной поверхности цитоплазматической мембраны и выделяется на поверхность клеточной стенки в специфических участках.

Функции капсулы:

Место локализации капсульных антигенов, определяющих вирулентность, антигенную специфичность и иммуногенность бактерий;

Защита клеток от механических повреждений, высыхания, токсических веществ, заражения фагами, действия защитных факторов макроорганизма;

Способность прикрепления клеток к субстрату.

Жгутики – это органы движения бактерий. Жгутики не являются жизненно важными структурами, поэтому могут присутствовать у бактерий или отсутствовать в зависимости от условий выращивания. Количество жгутиков и места их расположения у разных бактерий неодинаково. В зависимости от этого выделяют следующие группы жгутиковых бактерий:

- монотрихи – бактерии с одним полярно расположенным жгутиком;

- амфитрихи – бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах;

- лофотрихи – бактерии, имеющие пучок жгутиков на одном конце клетки;

- перитрихи – бактерии с множеством жгутиков, расположенных по бокам клетки или на всей ее поверхности.

Химический состав жгутиков представлен белком флагеллином .

К поверхностным структурам бактериальной клетки относятся также ворсинки и пили . Эти структуры участвуют в адсорбции клеток на субстрате (ворсинки, пили общего типа) и в процессах переноса генетического материала (половые пили). Они образованы специфическим гидрофобным белком пилином.

У некоторых бактерий в определенных условиях образуются покоящиеся формы, которые обеспечивают переживание клеток в течение длительного времени в неблагоприятных условиях - эндоспо­ры . Они устойчивы к неблагоприятным факторам внешней среды.

Расположение спор в клетке:

Центральное (возбудитель сибирской язвы);

Субтерминальное - ближе к концу (возбудитель ботулизма);

Терминальное – на конце палочки (возбудитель столбняка).

Форма. Различают несколько основных форм бактерий - кокковидные, палочковидные, извитые и ветвящиеся (рис.).

Шаровидные (кокковые) микробы по форме напоминают шар, но бывают овальные, плоские, односторонне вогнутые или слегка вытянутые. Шаровидные формы образуются в результате деления клеток в одной, двух, трех взаимно перпендикулярных или разных плоскостях. При делении клеток в одной плоскости клетки могут располагаться попарно, в связи с чем такие формы получили название диплококков. Если деление происходит последовательно в одной плоскости и клетки соединены в виде цепочки - это стрептококки (2). Деление кокка в двух взаимно перпендикулярных плоскостях ведет к образованию четырех клеток, или тетракокка. Пакетообразные кокки, или сарцины (3), - результат деления кокков в трех взаимно перпендикулярных плоскостях.

Палочковидные, или цилиндрические, формы принято делить на бактерии и бациллы (рисунок 3). Бактерии - па­лочковидные формы, не образующие спор (пишут Bact., например Bact. aceti). Бациллы - палочковидные формы, образующие споры (пишут Вас., например Вас. subtilis). Бактерии и бациллы бывают разными по форме и размерам. Концы палочек чаще закруглены, но могут быть срезаны под прямым углом (возбудитель сибирской язвы), иногда сужены.


Рисунок - Основные формы бактерий:

1- стафилококки; 2 - стрептококки; 3 - сарцины; 4 - гонококки; 5 - пневмококки; 6 - капсула пневмококков; 7 - коринебактерии дифтерии; 8 - клостридии; 9 – бациллы; 10 - вибрионы; 11 - спириллы; 12 - трепонемы; 13 - бореллии; 14 - лептоспиры; 15 - актиномицеты; 16 - расположение жгутиков: а - монотрих; б - лофотрих; в - амфитрих, г – перитрих

Среди палочковидных форм, образующих споры (бациллы), различают бациллы (9 ) и клостридии (8 ). Бациллы, за исключением Вас. anthracis , подвижны. Бациллы - аэробы. У бацилл споры не превышают толщины вегетативной клетки. Клостридии - анаэробы. Споры толще вегетативной клетки. Такие формы напоминают веретено, ракетку, лимон, барабанную палочку. Клостридии принимают участие во многих процессах в природе. Являются возбудителями анаэробных инфекций. Вызывают аммонификацию белковых ве­ществ, мочевины. Разлагают фосфорорганические соединения. Фиксируют молекулярный азот и др.

Палочки, как и кокки, могут располагаться попарно или цепочкой. При соединении бактерий попарно образуются дипло-бактерии, при таком же соединении бацилл - диплобациллы. Со­ответственно образуются стрептобактерии и стрептобациллы, если клетки располагаются цепочкой. Тетрад и пакетов палочко­видные формы не образуют, так как они делятся в одной плоско­сти, перпендикулярной продольной оси.

Извитые формы микробов определяют не только по длине и диаметру, но и по количеству завитков. Вибрионы(10) напоминают по форме запятую. Спириллы (11) - извитые формы, образующие до 5 завитков. Спирохеты - тонкие длинные извитые формы с множеством завитков. Они занимают промежуточное положение между бактериями и простейшими. Микобактерии - палочки с боковыми выростами (возбудители туберкулеза, паратуберкулеза). Коринебактерии напоминают микобактерии, но отличаются от них образующимися на концах утолщениями и включениями зерен в цитоплазме (дифтерийная палочка). Нитчатые бактерии - многоклеточные организмы, имеющие форму нити. Миксобактерии - скользящие микробы, по форме напоминающие палочки или веретено. Простекобактерии могут быть треугольной или иной формы. У некоторых из них лучевая симметрия. Свое название такие организмы получили по наличию остроконечных выростов - простек. Размножаются они делением, или почкованием.

Размеры. Размеры микроорганизмов определяются в микрометрах (мкм) (10 -6 м по системе СИ). Диаметр шаровидных форм 0,7-1,2 мкм; длина палочковидных 1,6-10 мкм, ширина 0,3-1 мкм. Вирусы - еще более мелкие существа. Их размеры определяются в нанометрах (1 нм = 10 -9 м). Нитчатые формы микробов достигают длины в несколько десятков микрометров. Для того чтобы представить размеры этих существ, достаточно сказать, что в одной капле воды может вмещаться несколько миллионов или миллиардов микроорганизмов.

Строение. Бактериальная клетка состоит из оболочки, наружный слой которой называется клеточная стенка, а внутренний - цитоплазматическая мембрана, а также цитоплазмы с включениями и нуклеоида. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили, плазмиды; некоторые бактерии в неблагоприятных условиях способны обра­зовывать споры.

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она защищает клетку от дейст­вии вредных факторов внешней среды, участвует в процессе ее деления и транспорте метаболитов.

Наиболее толстая клеточная стенка у грамположительных бактерий (до 50-60 нм); у грамотрицательных бактерий она составляет 15-20 нм.

В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки грамположительных бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% ее массы. У грамотрицательных бактерий количество пептидогликана в клеточной стенке - 5- 20%.

Цитоплазматическая мембрана прилегает к внутренней поверхности клеточной стенки бактерий и окружает наружную часть цитоплазмы. Она состоит из двойного слоя липидов, а также интегральных белков, пронизывающих ее насквозь. Цитоплазматическая мембрана участвует в регуляции осмотическогодавления, транспорте веществ и энергетическом метаболизмеклетки.

Цитоплазма бактериальной клетки представляет собой полужидкую, вязкую, коллоидную систему. Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, жирных кислот и полифосфатов (волютин).

Местами цитоплазма пронизана мембранными структурами - мезосомами , кото­рые произошли от цитоплазматической мембраны и сохранили с ней связь. Мезосомы выполняют различные функции, в них и в связанной с ними цитоплазматической мембране располо­жены ферменты, участвующие в энергетических процессах - в снабжении клетки энергией.

Рибосомы рассеяны в цитоплазме в виде мелких гра­нул размером 20-30 нм; рибосомы состоят примерно наполо­вину из РНК и белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке их может быть 5-50 тыс.

Нуклеоид - эквивалент ядра у бактерий. Он расположен в цитоплазмебактерий в виде двухнитчатой ДНК, замкнутой в кольцо и плотноуложенной наподобие клубка. В отличие от ядра эукариот нуклеоид бактерий не имеет ядерной оболочки, ядрышка и основ­ных белков (гистонов). Обычно в бактериальной клетке содер­жится одна хромосома, представленная замкнутой в кольцо мо­лекулой ДНК.

Кроме нуклеоида в бактериальной клетке могут находиться внехромосомные факторы наследственности - плазмиды , пред­ставляющие собой ковалентно замкнутые кольца ДНК и способ­ные к репликации независимо от бактериальной хромосомы.

Капсула - слизистая структура, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние грани­цы. Обычно капсула состоит из полисахаридов, иногда из поли­пептидов, например, у сибиреязвенной бациллы. Капсула препят­ствует фагоцитозу бактерий. Капсулы присущи некоторым видам бактерий или могут образовываться при попадании микроба в макроорганизм.

Жгутики бактерий определяют подвижность клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, они прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками, имеют большую длину, чем сама клетка. Они состоят из белка - флагеллина, закрученного в виде спирали.

Ворсинки, или пили (фимбрии) , - нитевидные образования, более тонкие и короткие, чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Они ответст­венны за прикрепление бактерий к поражаемой клетке, за пита­ние, водно-солевой обмен; половые пили (F-пили) характерны для так называемых «мужских» клеток-доноров.

Споры - своеобразная форма покоящихся грамположительных бактерий, образующихся во внешней среде при неблагопри­ятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). Процесс спорообразования про­ходит несколько стадий, в течение которых часть цитоплазмы и хромосома отделяются, окружаются цитоплазматической мембра­ной; образуется проспора, затем формируется многослойная, плохо проницаемая оболочка, придающая споре устойчивость к темпера­туре и другим неблагоприятным факторам. При этом внутри одной бактерии образуется одна спора. Спорообразование спо­собствует сохранению вида и не является способом размножения, как у грибов. Споры бактерий могут долго сохраняться в почве (возбудители сибирской язвы и столбняка - десятки лет). В благоприятных условиях споры прорастают, при этом из одной споры образуется одна бактерия.

Подвижность. Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвиж­ными, так и неподвижными. Изогнутые и спиралевидные бакте­рии подвижны. Движение бактерий осуществляется с помощью жгутиков. Жгутики могут осуществлять вращательные движения. Наличие жгутиков, их расположение являются постоянным для вида признаком и имеют диагностическое значение. Скорость передвижения велика: за секунду клетка со жгутиками может пройти расстояние в 20-50 раз больше, чем длина ее тела.

Жгутики располагаются на поверхности тела бактерий по одиночке - монотрихиальное жгутикование , пуч­ком на одном конце клетки - лофотрихиальное , пуч­ком на обеих концах клетки - амфитрихиальное ; они могут находиться на всей поверх­ности клетки - перитрихиальное жгутикование . При неблагоприятных условиях жизни, при старении клетки, при механическом воздействии подвижность может быть ут­рачена.


Похожая информация.


Бактериальная клетка, несмотря на внешнюю простоту строения, представляет собой весьма сложный организм, для которого характерны процессы, свойственные всем живым существам. Клетка бактерий одета плотной оболочкой, состоящей из клеточной стенки, цитоплазматической мембраны, а у некоторых видов и из капсулы.

Клеточная стенка – один из главных элементов структуры бактериальной клетки представляет собой поверхностный слой, расположенный снаружи от цитоплазматической мембраны. Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка), т.к. обладает определенной ригидностью (жесткостью), и представляет собой наружный скелет клетки. Внутри бактериальной клетки осмотические давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка. Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин. Поверхность клеточной стенки некоторых палочковидных форм бактерий покрыта выростами, шипами или буграми. С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на две группы: грамположительные и грамотрицательные. Клеточная стенка ответственная за окрашивание бактерий по Граму. Способность или неспособность окрашиваться по Граму связана с различием в химическом составе клеточных стенок бактерий. Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.

К клеточной стенке бактериальной клетки тесно прилегает внешний слой цитоплазмы – цитоплазматическая мембрана , состоящая обычно из двойного слоя липидов, каждая из поверхностей которого покрыта мономолекулярным слоем белка. Мембрана составляет около 8-15% липидов клетки. Общая толщина мембраны равняется приблизительно 9 нм. Цитоплазматическая мембрана играет роль осмотического барьера, контролирующего транспорт веществ в бактериальную клетку и из нее.

Клеточная стенка многих бактерий сверху окружена слоем слизистого материала – капсулой. Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула. Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.

Под цитоплазматической мембраной у бактерий находится цитоплазма, представляющая собой все содержимое клетки, за исключением ядра и клеточной стенки. Цитоплазма бактерий представ-ляяет собой дисперсную смесь коллоидов, состоящую из воды, белков, углеводов, липидов, минеральных соединений и других веществ. В жидкой бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, пластиды и другие структуры, а также запасные питательные вещества.

У бактерий нет такого ядра, как у высших организмов, а есть его аналог «ядерный эквивалент» – нуклеоид, который является эволюционно более примитивной формой организации ядерного вещества. Нуклеоид бактериальной клетки находится в ее центральной части.

В покоящейся бактериальной клетке обычно содержится один нуклеоид; клетки, находящиеся в фазе, предшествующей делению, имеют два нуклеоида; в фазе логарифмического роста – размножения – до четырех и более нуклеоидов. Кроме нуклеоида, в цитоплазме бактериальной клетки могут находиться в сотни раз более короткие нити ДНК – так называемые внехромосомные факторы наследственности, получившие название плазмид. Как выяснено, плазмиды не обязательно имеются у бактерий, но они придают организму дополнительные, полезные для него свойства, в частности связанные с размножением, устойчивостью к лекарственным препаратам, болезнетворностью и др.

На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики – органы движения бактерий. У бактерий может быть один, два или несколько жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности и т.д.

Бактерия с одним жгутиком называется монотрихом ; бактерия с пучком жгутиков на одном конце клетки – лофотрихом; на обоих концах - амфитрихом; бактерия со жгутиками, расположенными по всей поверхности клетки, называется перитрихом. Число жгутиков различно у разных видов бактерий и может достигать до 100. Толщина жгутиков колеблется от 10 до 20 нм, длина – от 3 до 15 мкм, причем у одной и той же бактериальной клетки длина может изменяться в зависимости от состояния культуры и факторов внешней среды.


Биологами XIX – начала ХХ века бактерии расценивались как примитивные организмы с точки зрения клеточной организации, считались крайним пределом жизни. Авторитетный немецкий ученый Кон писал, что бактерии «мельчайшие» и «простейшие» из всех живых форм образуют пограничную линию жизни, за пределами этих форм жизни не существует.

Однако, по мере развития науки была создана более совершенная микроскопическая техника и новые методы исследования. Применение современных методов исследований при изучении бактериальной клетки – электролитная и фазовоконтрастная микроскопия, дифференцированное центрифугирование, применение изотопов – позволили выявить отдельные клеточные структуры и выяснить их биологическую роль.

Бактериальная клетка имеет сложное строго упорядоченное строение. С анатомической точки зрения бактерия морфологически дифференцирована. В ней различают основные и временные структуры. К основным компонентам клетки относят клеточную стенку, цитоплазмотическую мембрану, цитоплазму с рибосомами, различные включения, нуклеоид. Эти структуры встречаются только на определенных стадиях развития бактерий.

Клеточная стенка – прочная, упругая структура, располагающаяся между цитоплазмотической мембраной и капсулой, а у бескапсульных видов бактерий – это внешняя оболочка клетки. клеточная стенка – тонкая бесцветная структура, она не видима в обыкновенный микроскоп без специальной обработки. Клеточная стенка придает бактериям постоянную форму и представляет собой скелет клетки. Ее можно рассматривать при световой микроскопии только у крупных форм бактерий. Например, у серобактерии Beggiatoa mirabilis стенка отчетливо видна и имеет двухконтурное строение. Стенку бактериальной клетки можно рассмотреть при плазмолизе в затемненном поле зрения микроскопа. Клеточной стенки не имеют микоплазмы и L-формы бактерий, для всех остальных прокариот она является обязательной структурой. Стенка клетки составляет в среднем 20 % сухого веса бактерий, толщина ее может достигать до 50 нм и более. Клеточная оболочка выполняет жизненно необходимые функции: защищает бактерию от повреждающих факторов внешней среды, осмотического шока, участвует в обмене веществ и в процессе деления клетки, содержит поверхностные антигены и специфические рецепторы для фагов, осуществляет транспортирование метаболитов. Оболочка бактерии полупроницаема, что обеспечивает избирательное проникновение питательных веществ в клетку из внешней среды. Опорный полимер клеточной стенки называется пептидогликаном (синонимы: мукопептид, муреин – от латинского murus – стенка) образует сетчатую структуру ковалентно связан тейховыми кислотами (от греческого teichos – стенка). При исследовании ультратонких срезов клеточной стенки было установлено, что она равномерно прилегает к подлежащим структурам, пронизана порами, благодаря которым осуществляется поступление различных веществ в клетку и, наоборот. Полученные фотограммы показали, что клеточная стенка характеризуется не одинаковой электроннооптической плотностью, т. е. обладает слоистостью. Стенка обрамляет бактерию, ее толщина и плотность одинаковы по всему периметру микробной клетки. На долю клеточной стенки приходится от 5 до 50 % сухих веществ клетки.

При изучении анатомии микроорганизмов с помощью светового микроскопа возникла необходимость в их окраске. Эта необходимость была реализована Х. Грамом, который в 1884 году предложил метод окраски, названный его именем и широко используемый для дифференцирования бактерий и в наше время. По отношению к окраске по Граму, все микроорганизмы подразделяются на две группы: грамположительные (грампозитивные) и грамотрицательные (грамнегативные). Сущность метода заключается в том, что грамположительные бактерии прочно связывают комплекс генцианвиолета и йода, который не обесцвечивается этанолом и не воспринимает дополнительный краситель фуксин, оставаясь окрашенными в сине-фиолетовый цвет. У грамотрицательных бактерий, упомянутый комплекс, вымывается из тела бактерий этанолом и они окрашиваются при обработке фуксином в красный цвет (цвет фуксина).

Такое окрашивание прокариот по Граму объясняется специфическим химическим составом и строением их клеточной стенки. Клеточная стенка грамположительных бактерий массивная, толстая (20-100 нм), плотно прилегает к цитоплазмотической мембране, большая часть ее химического состава представлена пептидогликаном (40-90 %), который связан с тейховыми кислотами. Стенка грамположительных микроорганизмов содержит в небольшом количестве полисахариды, липиды, белки. Структурные микрофибриллы пептидогликана сшиты прочно, компактно, поры в нем узкие и поэтому фиолетовый комплекс не вымывается, бактерии окрашиваются в сине-фиолетовый цвет.

Строение и состав грамотрицательных микроорганизмов характеризуется некоторыми особенностями. Клеточная стенка у грамнегативных бактерий тоньше, чем у грамположительных и составляет 14-17 нм. Она состоит из двух слоев: внешнего и внутреннего. Внутренний слой представлен пептидогликаном, который в виде тонкой (2 нм) непрерывной сетки опоясывает клетку. Пептидогликан у грамотрицательных бактерий составляет 1-10 %, микрофибриллы его сшиты менее прочно, чем у грамположительных бактерий, поры шире и поэтому комплекс генцианвиолета и йода вымывается из стенки этанолом, микроорганизмы окрашиваются в красный цвет (цвет дополнительного красителя – фуксина). Внешний слой содержит фосфолипиды, монополисахариды, липопротеин и белки. Липополисахарид (ЛПС) клеточных стенок грамотрицательных бактерий, токсичный для животных, получил название эндотоксина. Тейховые кислоты у грамотрицательных бактерий не обнаружены. Промежуток между клеточной стенкой и цитоплазмотической мембраной получил название периплазматического пространства, в котором содержатся ферменты.

Под влиянием лизоцима, пенициллина и других соединений синтез клеточной стенки нарушается и образуются клетки с измененной формой: протопласты – бактерии полностью лишенные клеточной стенки и сферопласты – бактерии с частично разрушенной клеточной стенкой. Протопласты и сферопласты имеют сферическую форму и в 3-10 раз крупнее исходных клеток. В условиях повышенного осмотического давления они могут расти и даже размножаться, а в обычных условиях наступает их лизис и гибель. При снятии ингибирующего фактора протопласты и сферопласты могут реверсировать в исходную форму, иногда трансформируются в L-формы бактерий. L-формы бактерий были выделены в 1935 году в институте Листера. Образуются они в результате воздействия на бактерии различного рода L-трансформирующих агентов (антибиотиков, аминокислот, ультрофиолетовых лучей, рентгенизлучения и т. д.). Это бактерии частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки. По сравнению с протопластами и сферопластами они более устойчивы и обладают способностью к репродукции. Возбудители многих инфекционных болезней могут образовывать L-формы.

Цитоплазмотическая мембрана (плазмолемма) – полупроницаемая, трехслойная многопротеидная структура клетки, отграничивающая цитоплазму от клеточной стенки. Это обязательный компонент клетки, составляющий 8-15 % ее сухого вещества. При разрушении цитоплазмотической мембраны клетка гибнет. В химическом отношении мембрана представляет собой белково-липидный комплекс, состоящий из белков (50-70 %) и липидов (15-50 %). Цитоплазматическая мембрана выполняет важные функции в жизнедеятельности клетки. Она является осмотическим барьером клетки, участвует в процессах метаболизма, роста клетки, осуществляет избирательный перенос молекул органических и не органических веществ и т. д. В процессе роста клетки цитоплазматическая мембрана образует инвагинаты – выпячивания, которые получили название мезосом. Мезосомы хорошо выражены у грамположительных бактерий, хуже у грамотрицательных и совсем плохо у риккетсий и микоплазм. Мезосомы, связанные с нуклеоидом бактерии называются нуклеосомами. Они принимают участие в кариопинезе и кариокенезе микробной клетки. Значение мезосом окончательно не выяснено. Предполагают, что они принимают активное участие в процессе дыхания бактерий, поэтому их по аналогии сравнивают с митохондриями. Возможно, мезосомы выполняют структурную функцию и разделяя клетку на отдельные участки способствуют упорядоченности протекания обменных процессов.

Цитоплазма клетки представляет собой полужидкую массу, занимает основной объем бактерии, содержащий до 90 % воды. Состоит она из гомогенной фракции, называемой цитозолем, включающим структурные элементы – рибосомы, внутрицитоплазмотические мембраны, различного типа образования, нуклеоид. Кроме того в цитоплазме наличествуют растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма.

Цитоплазма образует внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их между собой.

Важнейший структурный компонент клетки проплазмотического типа – нуклеоид, который является аналогом ядра у эукариот. Он свободно располагается в цитоплазме, в центральной зоне клетки, представляет собой замкнутую в кольцо и плотно уложенную на подобие клубка двухнитчатую ДНК. Нуклеоид в отличае от четко оформленного ядра эукариот не имеет ядерной оболочки, ядрышков, основных белков (гистонов). Несмотря на это, считают, что нуклеоид – дифференцированная структура. В зависимости от функционального состояния клетки нуклеоид может быть дискретным и состоять из отдельных фрагментов. Дискретность его объясняется делением клетки и репликацией молекулы ДНК. ДНК нуклеоида является носителем генетической информации бактериальной клетки. При световой микроскопии нуклеоид может быть выявлен в результате окраски бактерий специальными методами (по Фельгену, по Романоскому-Гимзе). Кроме нуклеоида в клетках многих видов прокариот обнаружены внехромосомальные факторы наследственности – плазмиды, которые представляют собой молекулы ДНК, способные к автономной репликацией.

К органоидам клетки относят рибосомы – сферической формы рибонуклеиновые частицы диаметром 15-20 нм. Клетка прокариотического типа может содержать от 5 до 20 тысяч рибосом. Рибосома состоит из малой и большой субъединиц, обладающих по Свербергу константами сидиментации от 30 и 50 S, соответственно. Одна молекула матричной РНК обычно объединяет несколько рибосом наподобие бус, нанизанных на нить. Такие объединения рибосом называют полисомами. Рибосомы обладают высокой синтезирующей активностью, они синтезируют необходимые для жизнедеятельности микробной клетки белки.

В цитоплазме бактерий ваыявлены различного рода включения, которые бывают твердыми, жидкими и газообразными. Они представляют собой запасные питательные вещества (полисахариды, липиды, отложения серы и др.) и продукты обмена веществ.

Капсула – слизистая структура, толщиной более 0,2 мкм, связанная с клеточной стенкой и четко отграниченная от окружающей среды. Она выявляется при световой микроскопии в случае окрашивания бактерий специальными методами (по Ольту, Михину, Бурри-Гинсу). Многие бактерии образуют микрокапсулу – слизистое образование менее 0,2 мкм, выявленное только при электронной микроскопии или же химическими и иммунохимическими методами. Капсула не является обязательной структурой клетки, утрата ее не вызывает гибели бактерии. От капсулы необходимо отличать слизь – мукоидные экзополисахариды. Слизистые вещества откладываются на поверхности клетки, часто превосходя ее диаметр и не имеет четких границ.

Вещество капсул прокариот состоит в основном из гомо- или гетерополисахарид. У некоторых бактерий (например, лейконостока) в капсулу заключено несколько микробных клеток. Заключенные в одну капсулу бактерии представляют собой скопления называемые зоогелями.

Капсула выполняет важные биологические функции. В ней локализуются капсульные антигены, определяющие вирулентность, специфичность и иммуногенность бактерий. Капсула защищает микробную клетку от механических воздействий, высыхания, заражения фагами, токсических веществ, фагоцитоза. У некоторых видов бактерий, в том числе и патогенных, способствует прикреплению клеток к субстрату.

Жгутики являются органоидами движения бактерий. Они представляют собой тонкие, длинные, нитевидные структуры, состоящие из белка флагеллина (от латинского flagellum – жгутик). Этот белок обладает антигенной специфичностью. Длина жгутиков превышает длину бактериальной клетки в несколько раз и составляет 3-12 мкм, а толщина 12-20 нм. Жгутики прикреплены к цитоплазмотической мембране и клеточной стенке специальными дисками. Выявляют жгутики с помощью электронной микроскопии или же в световом микроскопе, но после обработки препаратов специальными методами. Жгутики не являются жизненноважными структурами клетки. Количество жгутиков различно у различных видов бактерий (от 1 до 50) и места их локализации тоже различны, но стабильны для каждого вида. В зависимости от локализации жгутиков различают: монотрихи – бактерии с одним полярно расположенным жгутиком; амфитирихи – бактерии с двумя полярно расположенными жгутиками, или по пучку жгутиков на каждом конце; лофотрихи – бактерии с пучком жгутиков на одном конце клетки; перитрихи – бактерии с множеством жгутиков, располагающихся по всему периметру клетки. Бактерии не имеющие жгутиков называются атрихиями. Жгутики типичны для плавающих палочковидных и извитых форм и в виде исключения встречаются у кокков. Монотрихи и лофотрихи движутся со скоростью 50 мкм в секунду. Обычно бактерии движутся беспорядочно. Под влиянием факторов внешней среды бактерии способны к направленным формам движения – таксисам. Таксис может быть положительным и отрицательным. Различают хемотаксис – обусловлен разницей концентрации химических веществ в среде, аэротаксис – кислорода, фототаксис – интенсивности освещения, магнитотаксис – характеризуется способностью микроорганизмов ориентироваться в магнитном поле.

Пили (ворсинки) – нитевидные образования более короткие, чем жгутики. Длина их достигает от 0,3 до 10 мкм, толщина 3-10 нм. Пили берут начало от цитоплазмотической мембраны, они обнаружены у подвижных и не подвижных форм микроорганизмов. Выявить их можно только с помощью электронной микроскопии. На поверхности бактериальной клетки может быть от 1-2 до нескольких десятков, сотен и даже тысяч пилей. Пили состоят из белка пилина, они обладают антигенной активностью.

Различают пили общего типа и половые. Первые ответственны за адгезию, т. е. прикрепление бактерий к поражаемой клетке, питание, водно-солевой обмен, слипание бактерий в агломераты, вторые – передачу наследственного материала (ДНК) от донора к реципиенту. У одного и того же вида бактерий могут быть пили обоих типов.

Споры (эндоспоры) – это особая форма покоящихся клеток, характеризующаяся резким снижением уровня метаболизма и высокой резистентностью. Споры образуются при неблагоприятных условиях существования бактерий. Внутри одной клетки образуется одна спора. Спорообразование наблюдается при дефиците питательных веществ, изменении рН, недостатке С, N, Р, высушивании, накоплении в окружающей клетку среде продуктов метаболизма и т. д. Споры характеризуются репрессией генома, анаболизмом, малым содержанием воды в цитоплазме, повышением концентрации катионов кальция, появление дипиколиновой кислоты.

Споры в поле зрения светового микроскопа имеют вид овальных, сильно преломляющих свет образований размером 0,8-1,5 мкм. Бактерии у которых размер споры не превышает диаметр клетки называются бациллами, а у которых превышает – клостридиями. Спора в клетке может располагаться центрально, ближе к концу – субтерминально, на конце бактерии – терминально. Строение споры сложное, но однотипное у разных видов бактерий. Центральная часть споры называется спороплазмой, в состав ее входят нуклеиновые кислоты, белки и дипиколиновая кислота. В спороплазме располагаются нуклеоид, рибосомы и нечетко выраженные мембранные структуры. Спороплазму обрамляет цитоплазмотическая мембрана, за которой следует зачаточный пептидогликановый слой, затем располагается массивный слой коры или иначе кортекса. На поверхности кортекса имеется наружная мембрана. Снаружи спора одета многослойной оболочкой, которая вместе со специфическими элементами споры и дипиколинатом кальция обуславливают ее устойчивость. Основное назначение спор – сохранение бактерий в неблагополучных условиях внешней среды. Споры устойчивы к действию высоких температур, химических веществ, могут длительное время существовать в покоящемся состоянии десятками и даже сотнями лет.

Видео: Ядро клетки листа комнатного растения undermicroscope



Бактерии - микроскопические одноклеточные организмы. Строение бактериальной клетки имеет особенности, которые являются причиной выделения бактерий в отдельное царство живого мира.

Оболочки клетки

Большинство бактерий имеет три оболочки:

  • клеточная мембрана;
  • клеточная стенка;
  • слизистая капсула.

Непосредственно с содержимым клетки - цитоплазмой, соприкасается клеточная мембрана. Она тонкая и мягкая.

Клеточная стенка - плотная, более толстая оболочка. Её функция - защита и опора клетки. Клеточная стенка и мембрана имеют поры, через которые в клетку поступают необходимые ей вещества.

Многие бактерии имеют слизистую капсулу, которая выполняет защитную функцию и обеспечивает слипание с разными поверхностями.

ТОП-4 статьи которые читают вместе с этой

Именно благодаря слизистой оболочке стрептококки (один из видов бактерий) прилипают к зубам и вызывают кариес.

Цитоплазма

Цитоплазма - это внутреннее содержимое клетки. На 75% состоит из воды. В цитоплазме находятся включения - капли жира и гликогена. Они являются запасными питательными веществами клетки.

Рис. 1. Схема строения бактериальной клетки.

Нуклеоид

Нуклеоид означает «подобный ядру». У бактерий нет настоящего, или, как ещё говорят, оформленного ядра. Это значит, что у них нет ядерной оболочки и ядерного пространства, как у клеток грибов, растений и животных. ДНК находится прямо в цитоплазме.

Функции ДНК:

  • сохраняет наследственную информацию;
  • реализует эту информацию, управляя синтезом белковых молекул, характерных для данного вида бактерий.

Отсутствие истинного ядра - самая важная особенность бактериальной клетки.

Органоиды

В отличие от клеток растений и животных, бактерии не имеют органоидов, построенных из мембран.

Но клеточная мембрана бактерий в некоторых местах проникает в цитоплазму, образуя складки, которые называются мезосомой. Мезосома участвует в размножении клетки и обмене энергии и как бы заменяет мембранные органоиды.

Единственный органоид, имеющийся у бактерий - рибосомы. Это маленькие тельца, которые размещены в цитоплазме и синтезируют белки.

У многих бактерий есть жгутик, с помощью которого они перемещаются в жидкой среде.

Формы бактериальных клеток

Форма клеток бактерий различна. Бактерии в виде шара называются кокками. В виде запятой - вибрионами. Палочкообразные бактерии - бациллы. Спириллы имеют вид волнистой линии.

Рис. 2. Формы клеток бактерий.

Бактерии можно увидеть только под микроскопом. Средние размеры клетки 1-10 мкм. Встречаются бактерии длиной до 100 мкм. (1 мкм = 0,001 мм).

Спорообразование

При наступлении неблагоприятных условий бактериальная клетка переходит в спящее состояние, которое называется спорой. Причинами спорообразования могут быть:

  • пониженные и повышенные температуры;
  • засуха;
  • недостаток питания;
  • опасные для жизни вещества.

Переход происходит быстро, в течение 18-20 часов, а находиться клетка в состоянии споры может сотни лет. При восстановлении нормальных условий бактерия за 4-5 часов прорастает из споры и переходит в обычный режим жизнедеятельности.

Рис. 3. Схема образования споры.

Размножение

Бактерии размножаются делением. Период от рождения клетки до её деления составляет 20-30 минут. Поэтому бактерии широко распространены на Земле.

Что мы узнали?

Мы узнали, что, в общих чертах, клетки бактерий подобны клеткам растений и животных, они имеют мембрану, цитоплазму, ДНК. Основным отличием бактериальных клеток является отсутствие оформленного ядра. Поэтому бактерии называют доядерными организмами (прокариотами).

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 295.

Последние материалы раздела:

Английский с носителем языка по skype Занятия английским по скайпу с носителем
Английский с носителем языка по skype Занятия английским по скайпу с носителем

Вы могли слышать о таком замечательном сайте для языкового обмена, как SharedTalk. К сожалению, он закрылся, но его создатель возродил проект в...

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...