Что такое нанороботы? Для чего они нужны? Что такое наномедицина.

Современная наука и инженерия нуждаются в помощи роботизированной техники для решения различных задач. При этом проблемы, все чаще встающие перед учеными, требуют создания не гигантов, способных вырыть котлован одним движением ковша, а крошечных, невидимых глазу машин. Эти продукты инженерии не похожи на роботов в привычном понимании, однако способны самостоятельно выполнять сложные задачи по имеющимся алгоритмам. Такие машины называют нанороботами.

Сфера применения нанороботов очень широка. По сути, они могут быть необходимы при создании, отладке и поддержании функционирования любой сложной системы. Наномашины могут применяться в электронике для создания миниустройств или электрических цепей - данная технология называется молекулярной наносборкой. В перспективе любая сборка на заводе из компонентов может быть заменена простой сборкой из атомов.

Однако на первое место сейчас вышел вопрос применения нанороботов в медицине. Тело человека как бы наталкивает на мысль о нанороботах, поскольку само содержит множество естественных наномеханизмов: множество нейтрофилов, лимфоцитов и белых клеток крови постоянно функционируют в организме, восстанавливая поврежденные ткани, уничтожая вторгшиеся микроорганизмы и удаляя посторонние частицы из различных органов. Путем обычной инъекции нанороботы могут быть впрыснуты в кровь или лимфу. Для наружного применения раствор с этими роботами может быть нанесен на участок ткани. Одним из разработанных направлений является транспортировка лекарства к пораженным клетками. Такие нанороботы могут быть эффективными, например, при медикаментозном лечении раковых опухолей.

Нанороботы могут делать буквально все: диагностировать состояния любых органов и процессов, вмешиваться в эти процессы, доставлять лекарства, соединять и разрушать ткани, синтезировать новые. Фактически, нанороботы могут постоянно омолаживать человека, реплицируя все его ткани. На данном этапе учеными разработана сложная программа, моделирующая проектирование и поведение нанороботов в организме. Чрезвычайно детально разработаны аспекты маневрирования в артериальной среде, поиска белков с помощью датчиков. Ученые провели виртуальные исследования нанороботов для лечения диабета, исследования брюшной полости, аневризмы мозга, рака, биозащиты от отравляющих веществ.

Здесь ожидается наибольшее влияние нанотехнологии, поскольку она затрагивает саму основу существования общества - человека. Нанотехнология выходит на такой размерный уровень физического мира, на котором различие между живым и неживым становится зыбким - это молекулярные машины. Нанотехнология в своём развитом виде предполагает строительство нанороботов, молекулярных машин неорганического атомного состава, эти машины смогут строить свои копии, обладая информацией о таком построении. Поэтому грань между живым и неживым начинает стираться. На сегодняшний день создан лишь один примитивный шагающий ДНК-робот.

В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью нанороботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, нанороботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей - первая половина XXI века.

Для достижения этих целей человечеству необходимо решить три основных вопроса:

  • 1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
  • 2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
  • 3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Основная сложность с нанотехнологией - это проблема создания первого наноборобота. Существует несколько многообещающих направлений.

Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомносилового микроскопа и достижении позиционной точности и силы захвата.

Другой путь к созданию первого наноробота ведет через химический синтез. Возможно спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе.

И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными нанороботами, и мы можем использовать их для создания более универсальных роботов. Эти нанороботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами.

Работы по изучению были начаты сравнительно недавно, но темпы открытий в этой области чрезвычайно высоки. Многие полагают, что это будущее медицины.

В Японии ученые разработали «наномозг» - молекулярную структуру, позволяющую управлять нанороботами. В рамках эксперимента с помощью «наномозга» различные наномашины смогли выполнять простейшие команды. «Наномозг» может быть использован при создании суперкомпьютеров.

Сотрудники Международного центра молодых учёных создали сложную молекулярную структуру, которая позволила управлять сразу несколькими наномашинами. Исследователи поставили эксперимент, в рамках которого доказали, что структура из 17 молекул DRQ (состоит из бензоквинона и тетраметила) функционирует аналогично процессору, выполняющему 16 команд за один такт.

17 молекул DRQ могут быть сформированы в молекулярную машину, которая способна закодировать более 4 млрд различных комбинаций. Размер полученной молекулярной структуры - всего 2 нанометра. Это первый в мире работающий образец «наномозга».

Предполагается, что «наномозг» можно будет использовать при создании нанороботов, проекты которых пока находятся в стадии разработки.

Появились сведения о том, что нанороботы внедряются в организм человека и приводят к сбою работы всех систем организма.

Нанороботы - это роботы, размер которых сопоставим с размером молекулы. Они обладают функциями движения, обработки и передачи информации, исполнения программ, а также в некоторых случаях возможностью самовоспроизведения.

Впервые открыто о создании нанороботов заговорил американский ученый Ким Эрик Дрекслер, которого называют "отцом нанотехнологий". Идею создания нанороботов ученый рассмотрел в своей книге "Машины создания". Здесь же он представил гипотетический сценарий оживления крионированных людей.

Это первый теоретик создания молекулярных нанороботов и концепции "серой слизи". Дрекслер участвовал в исследованиях NASA на тему космических поселений в 1975 и 1976 годах. Он разрабатывал на основе нанотехнологий высокоэффективные солнечные батареи, а также активно участвовал в космической политике.

В 2010 году были впервые продемонстрированы нанороботы на основе ДНК, способные перемещаться в пространстве. А до этого время постоянно велись секретные исследования в этой отрасли.

Для чего же создаются нанороботы? По официальным данным, они могут оказать неоценимую помощь в медицине. Планируется, что эти микроскопические роботы будут впрыскиваться в пациента и выполнять роль беспроводной связи и ряд других задач на наноуровне.

Утверждается, что до сего момента нанороботы не были испытаны на людях, однако на протяжении последних 10-20 лет появляются факты о том, что нанороботы уже находятся в организме многих людей по всему миру, они выходят прямо из кожи человека, разрушают внутренние клетки человека, нарушают работу всех систем организма.

Несколько добровольных исследователей в этой области, сравнили фотографии некоторых нанороботов, представленных в научных изданиях, и многократно увеличенные фотографии с нанороботами, извлеченными из тел людей. Фотографии представлены ниже.


Общий фон - фото наноробота, извлеченного из тела американца, который уже 13 лет наблюдает за тем, как его тело постепенно разрушается непонятными явно нерукотворными созданиями. Справа - фото наноробота из научного журнала "Advanced Materials".

Вопрос: откуда взялись в теле человека нанороботы идентичные тем, что были представлены в научном журнале?

А самое страшное это то, что таких пациентов по всему миру становится все больше. Объяснения этому никто не дает. Исследования не ведутся. Ученые и медики, которые пытаются заняться исследованиями, погибают при таинственных обстоятельствах. Единственно, что удалось узнать некоторым медикам, при анализе этих нанороботов, найденных в телах людей, это то, что они состоят преимущественно из силикона и кремния и притягивают к себе множество других патогенных микроорганизмов.

Человечеству все еще нужны нанороботы? Для чего они созданы на самом деле - знают только посвященные.

Нанороботы в медицине

Наименование параметра Значение
Тема статьи: Нанороботы в медицине
Рубрика (тематическая категория) Технологии

Робертом Фрайтасом были спроектированы наномедицинские роботы: респироцит (искусственная красная кровяная клетка, способная переносить большее количество кислорода, чем эритроцит) и микрофагоцит (наноробот, который будет отвечать за уничтожение микробиологических патогенов). Важным для медицинских нанороботов является изучение иммунной реакции организма и биосовместимости материалов. Внешние поверхности нанороботов могут изготавливаться из алмаза и алмазоподобных материалов, в связи с этим актуальным является изучение его биосовместимости. Результаты проведенных исследований ортопедических протезов с алмазным покрытием показали, что ʼʼобъемныеʼʼ цельные формации материала биосовместимы, в то время, как наночастицы того же мате материала могут вызывать образование раковых клеток. Исследования гистологической биосовместимости проведенные на культурах клеток: нейтрофилов, моноцитов и макрофагов, фибробластов (Хиггсон и Джонс, 1982) и исследования воспаления и гемолизиса от присутствия алмазных кристаллов с концентрацией 10 мг/куб. см показали совместимость частиц алмаза с тканями и клетками.

При лечении человека нанороботами может возникнуть ряд осложнений, и уже сегодня ищутся пути решения возможных проблем, конструкторы пытаются максимально обезопасить человека от будущих технических решений в области медицины. Проблему возможных сбоев, перепрограммирования и адаптации предлагается решать с помощью нескольких взаимозаменяемых бортовых компьютеров. При решении задач с высокой степенью риска предлагается вводить в действие усложненные протоколы работы, исключающие неверное функционирование совокупности наноботов. Возможной проблемой при совместной работе огромного числа наноботов в ограниченном пространстве в короткий промежуток времени могут стать их столкновения. Так же возможен конфликт двух групп наноботов лечащих один орган, в случае если окажется, что изменения, вносимые первой группой наноботов будут идентифицироваться второй группой как требующие устранения. В таком случае, после их устранения, наноботы первой группы заново будут вносить те же изменения, что ведет к непрерывному взаимоисправлению изменений двумя группами наноботов. В подобных ситуациях чрезвычайно важным является контроль лечащего врача, который может отключить одну группу наноботов, или перепрограммировать обе, что еще раз говорит о крайне важно сти высокой квалификации специалистов, в работе которых задействованы продукты нанотехнологий. По причинœе очень высокого быстродействия наноботов крайне важно подключение пациента к системе диагностики, которая могла бы в случае наступления внезапных ухудшений дать наноботам команду отключения, т.к врач может не успеть среагировать своевременно в случае непредвиденных обстоятельств. Молекулярные роботы предполагается использовать для осуществления ʼʼмолекулярной хирургииʼʼ, ᴛ.ᴇ. внесения изменений в структуру клетки на молекулярном уровне. Эти операции могут представлять собой узнавание фрагментов молекул или клеток, соединœение или разрыв частей молекул, замещение или изъятие частей молекул, сборку клеточных структур или молекул по заданной программе. Хотя всœе это осуществляется в организме молекулами белка, их функционал ограничен, и не позволяет обеспечить бессмертие организма человека. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, задача молекулярных роботов состоит в интеллектуальном управлении функционированием клетки с целью повышения срока ее стабильной работы.

Молекулярные роботы могут создаваться на базе белковых макромолекул посредствам молекулярного моделирования, алгоритмы которого известны, но проведение подобных расчетов осложнено крайне важно стью больших вычислительных мощностей, что обусловлено большими размера молекул. Сегодня такие вычисления используются для анализа незначительных модификаций существующих молекул, но по прогнозам, уже в данном десятилетии компьютеры достигнут мощности, крайне важно й для приемлемой цены и скорости моделирования, и молекулярная робототехника станет доступной во второй четверти нынешнего века.

Другой путь создания молекулярных роботов состоит в изготовлении их на базе кристаллических материалов на базе углерода, кремния и металлов. Принцип их работы будет основан на механическом воздействии на клетки, или на создании локальных электромагнитных полей с целью детектирования и/или инициирования локальных химических реакций. Существующие твердотельные технологии, необходимые для создания наноразмерных структур для робототехники пока находятся в стадии разработки, однако определœенные успехи есть в области создания микромеханических систем с размерами элементов до 1 мкм (1000 нм).

Медицинские нанороботы потенциально могут изготавливаться по гибридной технологии. Детекторы и манипуляторы можно изготавливать из органических молекул, а управляющую систему на базе твердотельных структур.
Размещено на реф.рф
Существенной проблемой, помимо манипулирования молекулами и их детектирования, является энергоснабжение и их связь с управляющим компьютером. Перспективным считается использование магнитного поля, для которого биологические ткани прозрачны. С помощью магнитного поля можно изменять структуру нанороботов, заряжать их энергией, сообщать им информацию. Сам же молекулярный робот может, изменяя свою структуру, передавать информацию управляющему компьютеру, который будет детектировать эти изменения с помощью магнитных датчиков.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, комплекс молекулярных роботов может, находясь в организме, постоянно его восстанавливать, устраняя повреждения структуры клеток, разрезая молекулярные сшивки в белках и липидных мембранах (причина нарушения их функционирования), удаляя вредные продукты обмена (к примеру, гранулы липофусцина в нервных клетках), корректируя повреждения генетического материала (т.к. даже единичное замещение в критическом участке может привести к раку), дезактивируя свободные радикалы, ускользающие от встроенных защитных систем клетки и т.д.

Молекулярные роботы могут использоваться для перестройки генетического кода, исправляя врожденные повреждения, или внося новые изменения с целью усовершенствования функций клетки. Можно представить себе совершенно фантастический сценарий, когда после такого усовершенствования молекулярные роботы будут уже не нужны для поддержания вечной молодости, или будут конструироваться самой клеткой.

В случае медицинских нанороботов вероятно не будет использоваться репликация, ввиду ее очевидной опасности. Роберт Фрайтас сказал по этому поводу следующее: "ВОЗ или ее будущий эквивалент, никогда не разрешит использовать наноустройства, способные к репликации in vivo (то есть в живом организме). Даже вообразив себе самые неожиданные обстоятельства, никто не хотел бы иметь внутри собственного тела что-либо, способное к репликации. Репликация бактерий уже доставляет нам много проблем".

Нанороботы в медицине - понятие и виды. Классификация и особенности категории "Нанороботы в медицине" 2017, 2018.

Нанороботы - это роботы, размер которых сопоставим с размером молекулы. Они обладают функциями движения, обработки и передачи информации, исполнения программ, а также в некоторых случаях возможностью самовоспроизведения.

Впервые открыто о создании нанороботов заговорил американский ученый Ким Эрик Дрекслер, которого называют "отцом нанотехнологий". Идею создания нанороботов ученый рассмотрел в своей книге "Машины создания". Здесь же он представил гипотетический сценарий оживления крионированных людей. Это первый теоретик создания молекулярных нанороботов и концепции "серой слизи". Дрекслер участвовал в исследованиях NASA на тему космических поселений в 1975 и 1976 годах. Он разрабатывал на основе нанотехнологий высокоэффективные солнечные батареи, а также активно участвовал в космической политике.

В 2010 году были впервые продемонстрированы нанороботы на основе ДНК, способные перемещаться в пространстве. А до этого время постоянно велись секретные исследования в этой отрасли.

Для чего же создаются нанороботы? По официальным данным, они могут оказать неоценимую помощь в медицине. Планируется, что эти микроскопические роботы будут впрыскиваться в пациента и выполнять роль беспроводной связи и ряд других задач на наноуровне.

Утверждается, что до сего момента нанороботы не были испытаны на людях, однако на протяжении последних 10-20 лет появляются факты о том, что нанороботы уже находятся в организме многих людей по всему миру, они выходят прямо из кожи человека, разрушают внутренние клетки человека, нарушают работу всех систем организма.

Несколько добровольных исследователей в этой области, сравнили фотографии некоторых нанороботов, представленных в научных изданиях, и многократно увеличенные фотографии с нанороботами, извлеченными из тел людей. Фотографии представлены ниже.

Общий фон - фото наноробота, извлеченного из тела американца, который уже 13 лет наблюдает за тем, как его тело постепенно разрушается непонятными явно нерукотворными созданиями. Справа - фото наноробота из научного журнала "Advanced Materials".


Вопрос: откуда взялись в теле человека нанороботы идентичные тем, что были представлены в научном журнале?

А самое страшное это то, что таких пациентов по всему миру становится все больше. Объяснения этому никто не дает. Исследования не ведутся. Ученые и медики, которые пытаются заняться исследованиями, погибают при таинственных обстоятельствах. Единственно, что удалось узнать некоторым медикам, при анализе этих нанороботов, найденных в телах людей, это то, что они состоят преимущественно из силикона и притягивают к себе множество других патогенных микроорганизмов.

Человечеству все еще нужны нанороботы? Для чего они созданы на самом деле - знают только посвященные.

Хотите наслаждаться всеми возможностями вашего смартфона на вашем телевизоре? Для этого вам достаточно купить андроид тв приставку . Большой выбор приставок представлен на сайте https://androidmag.org/ . Цены вас порадуют.

Как вы можете себе представить, задачи, стоящие перед инженерами, колоссальны. Жизнеспособный наноробот должен быть небольшим и достаточно гибким, чтобы перемещаться по человеческой системе кровообращения, невероятно сложной сети артерий и вен.

Робот также должен обладать возможностью переносить медикаменты или миниатюрные инструменты. Если предположить, что наноробот не должен оставаться в теле пациента навсегда, он также должен уметь выходить из него.

В этой статье мы узнаем о потенциальном применении нанороботов, различных способов навигации нанороботов по нашему телу, об инструментах, которые они будут использовать для лечения пациентов, и о прогрессе, который двигают команды по всему миру.

«Вот два бота, принимать на ночь вместе с едой!»

При должном исполнении нанороботы смогут лечить множество заболеваний и состояний человека. В то время как их размер означает, что они могут перенести лишь самую малую порцию медикаментов или оборудования, многие доктора и инженеры полагают, что точное применение этих инструментов будет более эффективным, нежели традиционных. К примеру, вводят мощный антибиотик пациенту через шприц, чтобы помочь его иммунной системе: антибиотик разбавляется кровотоком пациента, и в итоге только часть его достигает пункта назначения.

Тем не менее наноботы или целая команда наноботов может добраться прямо до очага инфекции и доставить небольшую дозу лекарств. Пациент будет меньше страдать от побочных эффектов лекарств.

Как нанороботы будут перемещаться по кровеносной системе?

Навигация нанороботов

Есть три основных момента, на которых должны сосредоточиться ученые, изучающие движение нанороботов по телу — навигация, питание и как нанороботы будут двигаться по кровеносным сосудам. Нанотехнологи рассматривают различные варианты для каждого из этих аспектов, и у всякого есть положительные и отрицательные стороны. Большинство вариантов можно разделить на две категории:

  • внешние системы и
  • бортовые системы.

Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов — использование ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в нужное место назначения. Врачам пришлось бы отправлять ультразвуковые сигналы в тело пациента. Сигналы проходили бы через тело и отражались обратно к источнику сигналов. Нанороботы могут излучать импульсы ультразвуковых сигналов, которые врачи могли бы регистрировать, используя специальное оборудование с ультразвуковыми датчиками.

Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его, обнаруживая его магнитное поле. Врачи и инженеры из Политехнической школы Монреаля несколько лет назад показали, что могли бы обнаружить, отследить, управлять и даже передвигать наноробота с использованием МРТ. Они проверили свои выводы, маневрируя небольшим количеством малых магнитных частиц в артериях свиньи, используя специальное программное обеспечение на устройстве МРТ. Поскольку за рубежом во многих больницах есть МРТ, это может стать промышленным стандартом — больницам не придется инвестировать в дорогостоящие непроверенные технологии.

Врачи также могут отслеживать нанороботов путем введения радиоактивного красителя в кровоток пациента. Затем использовали бы флюороскоп или аналогичное устройство для обнаружения радиоактивного красителя по мере его движения в кровотоке. Сложные трехмерные изображения показали бы, где находятся нанороботы. В качестве альтернативы нанороботы сами могут распылять радиоактивную краску, оставляя след.

Другие методы обнаружения нанороботов включают использование рентгеновских лучей, радиоволн, микроволн или тепла. На данный момент наши технологии, использующие эти методы на наноразмерных объектах, ограничены, так что гораздо более вероятно, что будущие системы будут полагаться на другие методы.

Бортовые системы, или внутренние датчики, также могут сыграть большую роль в навигации. Нанороботы с химическими сенсорами могли бы обнаруживать и следовать по следам конкретных химических веществ для достижения правильного местоположения. Спектроскопический датчик позволил бы нанороботу забирать пробы и образцы окружающей ткани, анализировать их и идти дальше.

Как бы это странно не звучало, нанороботы могут быть оснащены миниатюрной телекамерой. Оператор мог бы управлять устройством во время просмотра живого видео, буквально вручную проводя корабль сквозь тело. Системы видеонаблюдения довольно сложны, поэтому понадобится по меньшей мере несколько лет, прежде чем нанотехнологи смогут создать надежную систему, которую можно будет поместить внутри крошечного робота.


Питание нанороботов

Так же, как о навигационных системах, нанотехнологи раздумывают о внешних и внутренних источниках питания. Некоторые проекты полагаются на нанороботов, использующих собственное тело пациента как способ выработки энергии. Другие проекты включают в себя небольшой источник энергии на борту самого робота. Наконец, некоторые проекты используют силы за пределами тела пациента для питания наноробота.

Нанороботы могут получать энергию непосредственно из кровотока. Наноробот с установленными электродами может сформировать батарею на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию. Наноробот мог бы нести небольшой запас химических веществ, которые станут источником топлива в сочетании с кровью.

Наноробот может использовать тепло тела для выработки энергии, но должен быть градиент температур для управления этим процессом. Выработка энергии может быть результатом эффектом Зеебека. Эффект Зеебека возникает, когда два проводника из разных металлов соединены в двух точках, которые обладают разной температурой. Металлические проводники становятся термопарой, то есть создают напряжение, когда стыки находятся в разных температурах. Поскольку трудно рассчитать температурный градиент в теле, едва ли мы увидим нанороботов, использующих тепло тела для генерации энергии.

Поскольку есть возможность создания батарей, достаточно малых для размещения в нанороботах, они обычно не рассматриваются в качестве жизнеспособного источника питания. Проблема заключается в том, что батареи могут хранить относительно небольшое количество энергии, напрямую связанное с их размером и весом, и, таким образом, очень маленькая батарея обеспечит лишь малую часть необходимой нанороботу энергии. Более вероятным кандидатом является конденсатор, который имеет немного лучшее соотношение мощности к весу.

Инженеры работают над созданием небольших конденсаторов, которые смогут стать источником питания для нанороботов.

Еще один возможный источник питания нанороботов — ядерный источник энергии. Мысль о том, чтобы оснастить крошечного робота ядерной энергии может вызвать ужас у некоторых людей, но имейте в виду, что необходимое количество материала достаточно мало и, по мнению некоторых экспертов, его легко экранировать. Тем не менее общественное мнение по поводу ядерной энергии едва ли позволить сделать нанороботов на ее основе.

Внешние источники питания включают системы, когда нанороботы либо привязаны к внешнему миру, либо контролируются без физического поводка. Привязанная система потребует провода между наноботом и источником питания. Провод должен быть достаточно прочным, но также без проблем проходить сквозь тело человека, не нанося повреждений. Физический трос мог бы поставлять электроэнергию с помощь электричества или оптики. Оптические системы передают свет через оптоволокно, а он затем преобразуется в электричество на борту робота.

Внешние системы, которые не используют провода, могли бы полагаться на микроволны, ультразвуковые сигналы или магнитные поля. Микроволны наименее вероятны к использованию, поскольку могут повредить ткань пациента путем нагревания. Наноробот с пьезоэлектрической мембраной сможет подхватывать ультразвуковые сигналы и преобразовывать их в электричество. Системы, использующие магнитные поля, вроде тех врачей из Монреаля, о которых мы упоминали выше, могут также напрямую управлять нанороботом или индуцировать электрический ток в закрытой проводящей петле внутри робота.

Передвижение нанороботов

Если предположить, что нанороботы не будут привязаны или предназначены для пассивного течения через кровоток, им понадобится средство передвижения через тело. Поскольку им, возможно, придется плыть против течения крови, двигательная установка должна быть относительно мощная для своих размеров. Еще одним важным фактором является безопасность пациента — система должна быть в состоянии продвигать наноробота без ущерба хозяину.

Некоторые ученые наблюдают за микроорганизмами в поисках вдохновения. Парамеция может двигаться через среду, используя крошечные хвостики — реснички. Вибрируя ресничками, парамеция может плавать в любом направлении. Подобно ресничкам работают жгутики, более длинные хвостовые структуры. Организмы бьют жгутиками вокруг, чтобы двигаться в разных направлениях.

Израильские ученые создали микроробота, который всего несколько миллиметров в длину и использует маленькие придатки для захвата и ползания по кровеносным сосудам. Ученые манипулируют его конечностями, создавая магнитное поле за пределами тела пациента. Магнитное поле заставляет конечности робота вибрировать и толкать его по кровеносным сосудам. Ученые отмечают, что, поскольку вся энергия для наноробота берется из внешних источников, нет никакой необходимости оснащать механизм внутренним источником питания. Они надеются, что относительно простой дизайн позволит им сделать в скором времени еще более мелких роботов.

Другие устройства звучат еще более экзотически. Одно использует конденсаторы для генерации магнитных полей, которые бы протягивали проводящие жидкости из одного конца электромагнитного насоса и выстреливали бы их обратно. Наноробот двигался бы как реактивный самолет. Миниатюрные струйные насосы могут даже использовать плазму крови, чтобы подталкивать робота вперед, но, в отличие от электромагнитного насоса, в этих должны быть движущиеся части.

Другой потенциальный способ, которым могли бы передвигаться роботы — использование вибрирующей мембраны. Поочередно затягивая и ослабляя напряженность мембраны, нанороботы могли бы генерировать небольшую тягу. На наноуровне этой тяги может быть достаточно, чтобы стать основным источником движения.

Крошечные инструменты

Современные проверенные микророботы имеют всего несколько миллиметров в длину и около миллиметра в диаметре, но эти цифры уменьшаются ежегодно. По сравнению с наноуровнем, эти цифры просто огромны — нанометр представляет собой одну миллиардную долю метра, в то время как миллиметр — всего одну тысячную. Будущие нанороботы будут настолько малы, что вы сможете увидеть их только в микроскоп. Инструменты нанороботов должны быть еще меньше. Вот несколько вещей, которые вы можете обнаружить в инструментарии нанороботов:

  • Полость для медикаментов. Это пустая секция внутри наноробота, которая будет содержать небольшие дозы лекарств или химических веществ. Робот может высвобождать лекарства непосредственно в месте травмы или инфекции. Нанороботы также могут нести химические вещества, используемые в химиотерапии для лечения рака непосредственно на месте. Хотя количество лекарств будет относительно незначительным, применение их непосредственно к раковой ткани может быть более эффективным, чем традиционная терапия, которая опирается на систему кровообращения как способ перевозки химических веществ в теле пациента.
  • Зонды, ножи и стамески. Чтобы удалять блокады и бляшки, нанороботам нужно будет что-то, что сможет хватать и рушить. Также, возможно, понадобится устройство для разрушения тромбов на мелкие кусочки. Если часть тромба вырвется и попадет в кровоток, она может вызвать массу проблем.
  • Микроволновые излучатели и ультразвуковые генераторы. Чтобы уничтожать раковые клетки, врачам нужны методы, которые смогут убить клетку, не разрушив ее. Разорванная раковая клетка может выбросить химические вещества, которые спровоцируют дальнейшее распространение рака. Используя точные микроволны или ультразвуковые сигналы, наноробот может разрушить химические связи в раковой клетке, убив ее, не разрушая клеточные стенки. В качестве альтернативы робот может излучать микроволны или ультразвук для нагревания клетки, которого будет достаточно для ее уничтожения.
  • Электроды. Два электрода, выступающих из наноробота, смогут убить раковые клетки, генерируя электрический ток и нагревая клетку, пока она не умрет.
  • Лазеры. Крошечные мощные лазеры могут выжечь дотла вредные материалы вроде артериальных бляшек, раковых клеток или тромбов в крови. Лазеры буквально испарят это все.

Две самые большие проблемы, которые беспокоят ученых, — это как повысить эффективность этих миниатюрных инструментов и сделать их безопасными. Например, создать небольшой лазер, который будет достаточно мощным для испарения клеток, достаточно сложная задача, но сделать его безопасным для окружающей среды — еще сложнее. В то время как многие научные группы разработали нанороботов достаточно мелких, чтобы они могли попасть в кровеносную систему, это только первые шаги к созданию реально применяемых нанороботов.

Нанороботы: сегодня и завтра

Команды по всему миру работают над созданием первого практичного медицинского наноробота. Роботы от миллиметра в диаметре до относительно громоздких, в два сантиметра длиной, уже существуют, хотя и не испытываются на людях. Возможно, мы всего в нескольких годах от выхода нанороботов на медицинский рынок. Сегодняшние микророботы остаются прототипами, которым не хватает способностей выполнять медицинские задачи.

В будущем нанороботы могут совершить революцию в медицине. Врачи смогут лечить все, от сердечно-сосудистых заболеваний до рака, при помощи крошечных роботов, по размерам сопоставимых с бактериями, намного меньших, чем нынешние нанороботы. Некоторые считают, что полуавтономные нанороботы уже вот-вот будут доступны — доктора смогут имплантировать роботов, способных патрулировать человеческое тело и реагировать на любые проблемы. В отличие от экстренного лечения, эти роботы будут оставаться в теле пациента навсегда.

Другое потенциальное применение нанороботов в будущем — укрепление нашего тела, повышение иммунитета, увеличение силы или даже улучшение интеллекта. Сможем ли мы в один прекрасный день обнаружить тысячи микроскопических роботов, плывущих по нашим венам и вносящим коррекции и изменения в наши разрушенные тела? С нанотехнологиями, похоже, все будет возможно.

Последние материалы раздела:

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...