Частные случаи приведения произвольной пространственной системы сил к центру. Случаи приведения к простейшему виду Формы уравнений равновесия плоской системы сил

Пусть к твердому телу приложены одновременно несколько пар сил с моментами , действующих в различных плоскостях. Можно ли эту систему пар привести к более простому виду? Оказывается, что можно, и ответ подсказывается следующей теоремой о сложении двух пар.

Теорема. Две пары сил, действующие в разных плоскостях, эквивалентны одной паре сил с моментом, равным геометрической сумме моментов заданных пар.

Пусть пары заданы своими моментами и (рис. 36,а). Построим две плоскости, перпендикулярные этим векторам (плоскости действия пар) и, выбрав некоторый отрезок АВ на линии пересечения плоскостей за плечо, общее для обеих пар, построим соответствующие пары: (рис. 36, б).

В соответствии с определением момента пары можем написать

В точках А и В имеем сходящиеся силы. Применяя правило параллелограмма сил (аксиома 3), будем иметь:

Заданные пары оказываются эквивалентными двум силам , также образующим пару. Тем самым первая часть теоремы доказана. Вторая часть теоремы доказывается прямым вычислением момента результирующей пары:

Если число пар то, попарно складывая их в соответствии с этой теоремой, можно любое число пар привести к одной паре. В результате приходим к следующему выводу: совокупность (систему) пар сил, приложенных к абсолютно твердому телу, можно привести к одной паре с моментом, равным геометрической сумме моментов всех заданных пар.

Математически это можно записать следующим образом:

На рис. 37 дается геометрическая иллюстрация полученного вывода.

Для равновесия пар сил требуется, чтобы момент результирующей пары был равен нулю, что приводит к равенству

Это условие можно выразить в геометрической и аналитической форме. Геометрическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы векторный многоугольник, построенный из моментов всех пар, был замкнутым.

Аналитическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы алгебраические суммы проекций векторов-моментов всех пар на произвольно выбранные координатные оси Oxyz были равны нулю:

Если все пары лежат в одной плоскости, то есть образуют плоскую систему пар, получается лишь одно аналитическое условие равновесия-сумма алгебраических моментов пар равна нулю.

Вопросы для самопроверки

1. В чем состоит правило силового многоугольника? Для чего служит силовой многоугольник?

2. Как найти равнодействующую сходящихся сил аналитическим способом?

3. В чем состоит геометрическое условие равновесия сходящихся сил? Как формулируется это же условие аналитически?

4. Сформулируйте теорему о трех силах.

5. Какие задачи статики называются статически определенными и какие - статически неопределенными? Приведите пример статически неопределенной задачи.

6. Что называется парой сил?

7. Что называется моментом (вектором-моментом) пары сил? Каковы направление, модуль и точка приложения момента?

8. Что называется алгебраическим моментом пары?

9. Сформулируйте правило сложения пар, произвольным образом расположенных в пространстве.

10. В чем заключаются векторное, геометрическое и аналитическое условия равновесия системы пар сил?


Основная теорема статики о приведении произвольной системы сил к заданному центру: Любая плоская система сил эквивалентна одной силе, равной главному вектору системы , приложенному в некоторой точке (центре приведения) и паре сил, момент которой равен главному моменту сил системы относительно центра приведения .

Доказательство теоремы выполняется в такой последовательности: выбирают некоторую точку (например, точку О )в качестве центра приведения и переносят каждую силу в эту точку, добавляя, согласно теореме о параллельном переносе силы, соответствующие пары сил . В результате этого получают систему сходящихся сил , приложенных в точке О , где , и систему добавленных пар сил , моменты которых . Затем заменяют систему сходящихся сил равнодействующей, равной главному вектору системы , а систему пар сил – одной парой сил с моментом, равным главному моменту системы относительно центра приведения. В результате получают, что ~ . Следовательно, теорема доказана.

Случаи приведения пространственной системы сил к простейшему виду:

1 , а – система сводится к одной паре сил с моментом, равным главному моменту системы, и значение главного момента системы от выбора центра приведения не зависит.

2 , а – система сил приводится к равнодействующей, равной главному вектору системы, линия действия которой проходит через центр О приведения.

3 , и –такая система сил сводится к одной равнодействующей , равной главному вектору системы, линия действия которой смещена от предыдущего центра приведения на расстояние .

4 Если главный вектор и главный момент , то система сил будет уравновешенной, т.е. ~0.

2.1.5 Условия равновесия плоской системы сил

Необходимые и достаточные условия равновесия любой плоской системы сил определяются уравнениями:

Величина главного вектора плоской системы сил определяется зависимостями: , а главного момента – зависимостью .

Главный вектор будет равняться нулю только тогда, когда одновременно . Следовательно, условия равновесия выполняются при выполнении таких аналитических уравнений:

Эти уравнения являются основной (первой ) формой аналитических условий равновесия произвольной плоской системы сил, которые формулируются так: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из двух координатных осей и алгебраическая сумма моментов этих сил относительно любой точки на плоскости действия сил равнялись нулю .

Отметим, что число уравнений равновесия произвольной плоской системы сил в общем случае равняется трём. Они могут быть представлены в разной форме.


Существуют еще две формы уравнений равновесия произвольной плоской системы сил, выполнение которых выражает условия равновесия ().

Вторая форма аналитических условий равновесия предусматривает: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов всех сил относительно двух точек и сумма проекций этих сил на ось, неперпендикулярную к прямой, проведенной через эти точки равнялись нулю:

(линия АВ неперпендикулярна оси Ох )

Сформулируем третью форму аналитических условий равновесия рассматриваемой системы сил: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов сил системы относительно любых трех точек, не лежащих на одной прямой, равнялись нулю :

В случае плоской системы параллельных сил, можно направить ось Оу параллельно силам системы. Тогда проекции каждой из сил системы на ось Ох будут равняться нулю. В итоге для плоской системы параллельных сил останутся две формы условий равновесия.

Для равновесия плоской системы параллельных сил необходимо и достаточно, чтобы сумма проекций всех сил на параллельную им ось и сумма моментов всех сил относительно любой точки равнялись нулю:

Эта первая форма аналитических условий равновесия для плоской системы параллельных сил вытекает из уравнений ().

Вторую форму условий равновесия плоской системы параллельных сил получим из уравнений ().

Для равновесия плоской системы параллельных сил необходимо и достаточно, чтобы сумма моментов всех сил системы относительно двух точек, которые не лежат на прямой, параллельной силам, равнялись нулю:

Как показано в § 12, любая приводится в общем случае к силе, равной главному вектору R и приложенной в произвольном центре О, и к паре с моментом, равным главному моменту (см. рис. 40, б). Найдем, к какому простейшему виду может приводиться пространственная система сил, не находящаяся в равновесии. Результат зависит от значений, которые у этой системы имеют величины R и

1. Если для данной системы сил , а то она приводится к паре сил, момент которой равен и может быть вычислен по формулам (50). В этом случае, как было показано в § 12, значение от выбора центра О не зависит.

2. Если для данной системы сил то она приводится к равнодействующей, равной R, линия действия которой проходит через центр О. Значение R можно найти по формулам (49).

3. Если для данной системы сил но то эта система также приводится к равнодействующей, равной R, но не проходящей через центр О.

Действительно, при пара, изображаемая вектором и сила R лежат в одной плоскости (рис. 91).

Тогда, выбрав силы пары равными по модулю R и располагая их так, как показано на рис. 91, получим, что силы взаимно уравновесятся, и система заменится одной равнодействующей линия действия которой проходит через точку О (см, § 15, п. 2, б). Расстояние ) определяется при этом по формуле (28), где

Легко убедиться, что рассмотренный случай будет, в частности, всегда иметь место для любой системы параллельных сил или сил, лежащих в одной плоскости, если главный вектор этой системы Если для данной системы сил и при этом вектор параллелен R (рис. 92, а), то это означает, что система сил приводится к совокупности силы R и пары Р, Р, лежащей в плоскости, перпендикулярной силе (рис. 92, б). Такая совокупность силы и пары называется динамическим винтом, а прямая, вдоль которой направлен вектор R, осью винта. Дальнейшее упрощение этой системы сил невозможно. В самом деле, если за центр приведения принять любую другую точку С (рис. 92, а), то вектор можно перенести в точку С как свободный, а при переносе силы R в точку С (см. § 11) добавится еще одна пара с моментом перпендикулярным вектору R, а следовательно, и . В итоге момент результирующей пары численно будет больше таким образом, момент результирующей пары имеет в данном случае при приведении к центру О наименьшее значение. К одной силе (равнодействующей) или к одной паре данную систему сил привести нельзя.

Если одну из сил пары, например Р, сложить с силой R, то рассматриваемую систему сил можно еще заменить двумя скрещивающимися, т. е. не лежащими в одной плоскости силами Q и (рис. 93). Так как полученная система сил эквивалентна динамическому винту, то она также не имеет равнодействующей.

5. Если для данной системы сил и при этом векторы и R не перпендикулярны друг другу и не параллельны, то такая система сил тоже приводится к динамическому винту, но ось винта не будет проходить через центр О.

Чтобы доказать это, разложим вектор на составляющие: направленную вдоль R, и перпендикулярную R (рис. 94). При этом , где - векторами и R. Пару, изображаемую вектором и силу R можно, как в случае, показанном на рис. 91, заменить одной силой R, приложенной в точке О, Тогда данная система сил заменится силой и парой смоментом параллельным причем вектор как свободный, можно тоже приложить в точке О. В результате действительно получится динамический винт, но с осью, проходящей через точку

Если после приведения пространственной системы сил к выбранному центру О главный вектор и главный момент равны нулю, т.е.

Система сил уравновешена. Под действием такой системы сил твердое тело будет находиться в равновесии. Очевидно, что в общем случае двум векторным уравнениям (4.1) соответствуют шесть скалярных уравнений, отражающих равенство нулю проекций этих векторов на оси выбранной координатной системы (например, декартовой).

Если после приведения пространственной системы сил к выбранному центру О главный вектор равен нулю, а главный момент не равен нулю, т.е.

На тело действует результирующая пара сил, стремящаяся его повернуть. Заметим, что в этом случае выбор центра приведения не влияет на результат.

Если после приведения пространственной системы сил к выбранному центру О главный вектор не равен нулю, а главный момент равен нулю, т.е.

На тело действует равнодействующая системы сил, проходящая через центр приведения и стремящаяся сдвинуть тело вдоль линии своего действия. Очевидно, что соотношения (4.3.) справедливы для всех точек линии действия равнодействующей.

Заметим, что к этому случаю сводится действие системы сходящихся сил, если за центр приведения принять точку пересечения линий действия сил системы (т.к. моменты сил относительно этой точки равны нулю).

Если после приведения пространственной системы сил к выбранному центру О главный вектор и главный момент не равны нулю, а их направления составляют прямой угол, т. е.

то такую систему сил тоже можно привести к равнодействующей, но проходящей через другой центр приведения - точку . Для выполнения этой операции сначала рассмотрим эквивалентные системы сил, изображенные на рис. 4.2.б и рис. 4.1. Очевидно, что если заменить обозначения (точку В назвать центром О, точку А – центром ), стоящая перед нами задача требует выполнения операции, обратной выполненной в лемме о параллельном переносе силы. С учетом сказанного, точка должна, во-первых, располагаться в плоскости, перпендикулярной вектору главного момента, проходящей через центр О, и, во-вторых, лежать на линии, параллельной линии действия главного вектора сил и отстоящей от нее на расстоянии h, равном

Из двух найденных линий следует выбрать ту, для точек которой равен нулю вектор главного момента (момент главного вектора сил относительно нового центра должен быть равен по модулю и противоположен по направлению главному моменту системы сил относительно точки О).

В общем случае после приведения пространственной системы сил к выбранному центру О неравные нулю главный вектор и главный момент составляют между собой не прямой угол (рис.4.5.а).



Если главный момент разложить на две составляющие – вдоль главного вектора сил и перпендикулярно ему, то, в соответствии с (4.5), может быть найден такой центр приведения , для которого перпендикулярная составляющая главного момента становится равной нулю, а величины и направления главного вектора и первой составляющей главного момента остаются прежними (рис.4.5.б). Совокупность векторов и называется силовым винтом или динамой .

Дальнейшее упрощение не представляется возможным.

Поскольку при такой смене центра приведения изменяется только проекция главного момента на направление, перпендикулярное главному вектору системы сил, остается неизменной величина скалярного произведения этих векторов, т.е.

Это выражение называется вторым инвариантом

статики .

Пример 4.1. На вершины прямоугольного параллелепипеда со сторонами и действуют силы и (см. рис.4.6). Приняв за центр приведения системы сил начало координат указанной на рисунке декартовой координатной системы, записать выражения для проекций главного вектора и главного момента.

Запишем тригонометрические соотношения для определения углов:

Теперь можно записать выражения для проекций главного вектора и главного момента сил системы:

Примечание: знание проекций вектора на координатные оси позволит, в случае необходимости, вычислить его величину и направляющие косинусы.

Как выше было доказано, произвольная система сил, как угодно расположенных в пространстве, может быть приведена к одной силе, равной главному вектору системы и приложенной в произвольном центре приведения О , и одной паре с моментом , равным глав­ному моменту системы относительно того же центра. Поэтому в дальнейшем произвольную систему сил можно заменять эквива­лентной ей совокупностью двух векторов - силы и момента , приложенных в точке О . При изменении положения центра приведения О главный вектор будет сохранять величину и напра­вление, а главный момент будет изменяться. Докажем, что если главный вектор отличен от нуля и перпендикулярен к главному моменту, то система сил приводится к одной силе, которую в этом случае будем называть равнодействующей (рис.8). Главный момент можно представить парой сил ( , ) с плечом , тогда силы и главный век тор образуют систему двух

сил эквивалентную нулю, которую можно отбросить. Останется одна сила , действующая вдоль прямой, параллельной главно

Рис 8 му вектору и проходящей на расстоянии

h = от плоскости, образуемой векторами и . Рассмотренный случай показывает, что если с самого начала выбрать центр приведения на прямой L, то систему сил сразу бы привели к равнодействующей, главный момент был бы равен нулю. Теперь докажем, что если главный вектор отличен от нуля и не перпендикулярен к главному моменту, то за центр приведения может быть выбрана такая точка О *, что главный момент относительно этой точки и главный вектор расположатся на одной прямой. Для доказательства разложим момент на две составляю­щие- одну , направленную вдоль главного вектора, и другую - перпендикулярную к главному вектору. Тем самым пара сил раскладывается на две пары с моментами: и , причем плоскость первой пары перпендикулярна к , тогда плоскость второй пары, перпендикулярная к вектору (рис 9) содержит вектор . Совокупность пары с моментом и силы образует систему сил, которая может быть сведена к одной силе (рис.8) , проходящей через точку О* . Таким образом (рис 9), совокупность главного вектора и главного момента в точке О сведена к силе , проходящей через точку О* , и паре с моментом параллельным этой прямой , что и требовалось доказать. Совокупность силы и пары, плоскость которой перпендикулярна к линии действия силы, называется динамой (рис.10). Пару сил можно представить двумя равными по величине силами ( , ), расположенными как показано на рис 10. Но, сложив две силы и , получим их сумму и оставшуюся силу , откуда следует (рис.10), что совокупность главного вектора и главного момента в точке О , может быть сведена к двум непересекающимся силам и .

Рассмотрим некоторые случаи приведения системы сил.

1. Плоская система сил. Пусть для определённости все силы находятся в плоскости OXY . Тогда в самом общем случае

Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: плоская система сил приводится к равнодействующей.

2. Система параллельных сил. Пусть для определённости все силы параллельны оси OZ . Тогда в самом общем случае

Здесь также главный вектор не равен нулю, главный момент не равен нулю, а их скалярное произведение равно нулю, действительно

следовательно, и этом случае главный вектор перпендикулярен главному моменту: система параллельных сил приводится к равнодействующей. В частном случае, если равен нулю, то и главный вектор сил равен нулю, и система сил приводится к паре сил, вектор момента которой находится в плоскости OXY . Систематизируем теперь рассмотренные случаи. Напомним: произвольная пространственная система сил, приложенная к твердому телу, статически эквивалентна силе, равной главному вектору, приложенной в произвольной точке тела (центре приведения), и паре сил с моментом, равным главному моменту системы сил относительно указанного центра приведения.

Последние материалы раздела:

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...