Алкены и их свойства. Физические и химические свойства алкенов

НЕПРЕДЕЛЬНЫЕ, ИЛИ НЕНАСЫЩЕННЫЕ, УГЛЕВОДОРОДЫ РЯДА ЭТИЛЕНА

(АЛКЕНЫ, ИЛИ ОЛЕФИНЫ)

Алкены , или олефины (от лат. olefiant - масло - старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, - жидкое маслянист вещество.) - алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой C n H 2n

1. Гомологический ряд алкенов

С n H 2 n

алкен

Названия, суффикс ЕН, ИЛЕН

C 2 Н 4

этен , этилен

C 3 H 6

пропен

C 4 H 8

бутен

C 5 H 10

пентен

C 6 H 12

гексен

Гомологи:

С H 2 = CH 2 этен

С H 2 = CH - CH 3 пропен

С H 2 =CH-CH 2 -CH 3 бутен -1

С H 2 =CH-CH 2 -CH 2 - СН 3 пентен -1

2. Физические свойства

Этилен (этен) – бесцветный газ с очень слабым сладковатым запахом, немного легче воздуха, малорастворим в воде.

С 2 – С 4 (газы)

С 5 – С 17 (жидкости)

С 18 – (твёрдые)

· Алкены не растворяются в воде, растворимы в органических растворителях (бензин, бензол и др.)

· Легче воды

· С увеличением Mr температуры плавления и кипения увеличиваются

3. Простейшим алкеном является этилен - C 2 H 4

Структурная и электронная формулы этилена имеют вид:

В молекуле этилена подвергаются гибридизации одна s - и две p -орбитали атомов C (sp 2 -гибридизация).

Таким образом, каждый атом C имеет по три гибридных орбитали и по одной негибридной p -орбитали. Две из гибридных орбиталей атомов C взаимно перекрываются и образуют между атомами C

σ - связь. Остальные четыре гибридных орбитали атомов C перекрываются в той же плоскости с четырьмя s -орбиталями атомов H и также образуют четыре σ - связь. Две негибридные p -орбитали атомов C взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ - связь, т.е. образуется одна П - связь.



По своей природе П - связь резко отличается от σ - связь; П - связь менее прочная вследствие перекрывания электронных облаков вне плоскости молекулы. Под действием реагентов П - связь легко разрывается.

Молекула этилена симметрична; ядра всех атомов расположены в одной плоскости и валентные углы близки к 120°; расстояние между центрами атомов C равно 0,134 нм.

Если атомы соединены двойной связью, то их вращение невозможно без того, чтобы электронные облака П - связь не разомкнулись.

4. Изомерия алкенов

Наряду со структурной изомерией углеродного скелета для алкенов характерны, во-первых, другие разновидности структурной изомерии - изомерия положения кратной связи и межклассовая изомерия .

Во-вторых, в ряду алкенов проявляется пространственная изомерия , связанная с различным положением заместителей относительно двойной связи, вокруг которой невозможно внутримолекулярное вращение.

Структурная изомерия алкенов

1. Изомерия углеродного скелета (начиная с С 4 Н 8):

2. Изомерия положения двойной связи (начиная с С 4 Н 8):

3. Межклассовая изомерия с циклоалканами, начиная с С 3 Н 6:

Пространственная изомерия алкенов

Вращение атомов вокруг двойной связи невозможно без ее разрыва. Это обусловлено особенностями строения p-связи (p-электронное облако сосредоточено над и под плоскостью молекулы). Вследствие жесткой закрепленности атомов поворотная изомерия относительно двойной связи не проявляется. Но становится возможной цис -транс -изомерия.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух пространственных изомеров, отличающихся расположением заместителей относительно плоскости p-связи. Так, в молекуле бутена-2 СН 3 –СН=СН–СН 3 группы СН 3 могут находиться либо по одну сторону от двойной связи в цис -изомере, либо по разные стороны в транс -изомере.

ВНИМАНИЕ! цис-транс - Изомерия не проявляется, если хотя бы один из атомов С при двойной связи имеет 2 одинаковых заместителя.

Например,

бутен-1 СН 2 =СН–СН 2 –СН 3 не имеет цис - и транс -изомеров, т.к. 1-й атом С связан с двумя одинаковыми атомами Н.

Изомеры цис - и транс - отличаются не только физическими

,

но и химическими свойствами, т.к. сближение или удаление частей молекулы друг от друга в пространстве способствует или препятствует химическому взаимодействию.

Иногда цис-транс -изомерию не совсем точно называют геометрической изомерией . Неточность состоит в том, что все пространственные изомеры различаются своей геометрией, а не только цис - и транс -.

5. Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:


Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

(Н 2 С=СН-)винил или этенил

(Н 2 С=CН-СН 2) аллил

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г

Первым представителем ряда алкенов является этен (этилен), чтобы построить формулу следующего представителя ряда нужно к исходной формуле прибавить группу CH 2 ; многократно повторяя такую процедуру можно построить гомологический ряд алкенов.

CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2

C 2 H 4 ® C 3 H 6 ® C 4 H 8 ® C 5 H 10 ® C 6 H 12 ® C 7 H 14 ® C 8 H 16 ® C 9 H 18 ® C 10 H 20

Чтобы построить название алкена необходимо в названии соответствующего алкана (с таким же числом атомов углерода как ив алкене) поменять суффикс – ан на - ен (или – илен).Например, алкан с четырьмя атомами углерода в цепи называется бутан, а соответствующий ему алкен – бутен (бутилен). Исключение составляет декан, соответствующий ему алкен будет называться не декен, а децен (децилен). Алкен с пятью атомами углерода в цепи помимо названия пентен имеет название амилен. В таблице ниже приведены формулы и названия первых десяти представителей ряда алкенов.

Однако, начиная с третьего, представитель ряда алкенов – бутена помимо словесного названия «бутен» после его написания должна стоять цифра 1 или 2, которая показывает местоположение двойной связи в углеродной цепи.

CH 2 = CH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен 1 бутен 2

Помимо систематической номенклатуры часто употребляются и рациональные названия алкенов при этом алкены рассматриваются, как производные этилена, в молекуле которого атомы водорода замещены на радикалы, а за основу берется название «этилен».

Например, CH 3 – CH = CH – C 2 H 5 – симметричный метилэтилэтилен.

(СH 3) – CH = CH – C 2 H 5 – симметричный этилизопропилэтилен.

(СH 3)C – CH = CH – CH(CH 3) 2 – симметричный изопропилизобутилэтилен.

Непредельные углеводородные радикалы по систематической номенклатуре называют, добавляя к корню суффикс - енил : этенил

CH 2 =CH -, пропенил-2 CH 2 = CH – CH 2 - . Но гораздо чаще для этих радикалов употребляют эмпирические названия – соответственно винил и аллил .

Изомерия алкенов.

Для алкенов характерно большое количество разных видов изомерии.

А) Изомерия углеродного скелета.

CH 2 = C – CH 2 – CH 2 – CH 3 СH 2 = CH – CH – CH 2 – CH 3

2-метил пентен-1 3-метил пентен-1

СH 2 = CH – CH 2 – CH – CH 3

4- метил пентен-1

Б) Изомерия положения двойной связи.

СH 2 = СH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен-1 бутен-2

В) Пространственная (стереоизомерия).

Изомеры, у которых одинаковые заместители расположены по одну сторону от двойной связи, называют цис -изомеры, а по разную – транс­­ -изомерами:

H 3 C CH 3 H 3 C H

цис -бутен транс -бутен

Цис - и транс - изомеры отличаются не только пространственным строением, но и многими физическими и химическими (и даже физиологическими) свойствами. Транс - Изомеры более устойчивы по сравнению с цис-изомерами . Это объясняется большей удаленностью в пространстве групп при атомах, связанных двойной связью, в случае транс – изомеров.

Г) Изомерия веществ разных классов органических соединений.

Изомерами алкенам являются циклопарафины, имеющие сходную с ними общую формулу – С n H 2 n .

CH 3 – CH = CH – CH 3

бутен -2

циклобутан

4. Нахождение алкенов в природе и способы их получения.

Также как и алканы, алкены в природе встречаются в составе нефти, попутного нефтяного и природного газов, бурого и каменного угля горючих сланцев.

А) Получение алкенов каталитической дегидрогенизацией алканов.

СH 3 – CH – CH 3 ® CH 2 = C – CH 3 + H 2 ­

CH 3 кат. (K 2 O-Cr 2 O 3 -Al 2 O 3) CH 3

Б) Дегидратация спиртов под действием серной кислоты или с участием Al 2 O ­3 (парафазная дегидратация).

этанол H 2 SO 4 (конц.) этен

C 2 H 5 OH ® CH 2 = CH 2 + H 2 O

этанол Al 2 O 3 этен

Дегидратация спиртов протекает по правилу А.М. Зайцева, согласно которому водород отщепляется от наименее гидрогенезированного атома углерода, то есть вторичного или третичного.

H 3 C – CH – C ® H 3 C – CH = C – CH 3


3-метилбутанол-2 2-метилбутен

В) Взаимодействие галогеналкилов со щелочами (дегидрогалогенирование).

H 3 C – C – CH 2 Cl + KOH ® H 3 C – C = CH 2 + H 2 O + KCl

1-хлор 2-метлпропан (спирт. р-р) 2-метилпропен-1

Г) Действие магнием или цинком на дигалогенпроизводные алкилов с атомами галогена при соседних углеродных атомах (дегалогенирование).

спирт. t

CH 3 -CHCl-CH 2 Cl + Zn ® CH 3 -CH = CH 2 + ZnCl 2

1.2- дихлорпропан пропен-1

Д) Селективное гидрирование алкинов на катализаторе.

СH º CH + H 2 ® CH 2 =CH 2

этин этен

5. Физические свойства алкенов.

Первые три представителя гомологического ряда этилена газы.

Начиная с C 5 H 10 до С 17 Н 34 – жидкости, начиная с С 18 Н 36 и далее твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены с углеродной цепью нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температура кипения цис - изомеров выше, чем транс – изомеров, а температура плавления – наоборот. Алкены малополярны, но легко поляризуются. Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы). Они хорошо растворяются в органических растворителях. Этилен и пропилен горят кипящим пламенем.

В таблице ниже приведены основные физические свойства некоторых представителей ряда алкенов.

Алкен Формула t пл. ­ o C t кип. ­ o C d 4 20
Этен (этилен) C 2 H 4 -169,1 -103,7 0,5700
Пропен (пропилен) C 3 H 6 -187,6 -47,7 0,6100 (при t(кип) )
Бутен (бутилен-1) C 4 H 8 -185,3 -6,3 0,5951
цис – Бутен-2 C 4 H 8 -138,9 3,7 0,6213
транс – Бутен-2 C 4 H 8 -105,5 0,9 0,6042
Изобутилен (2-метилпропен) C 4 H 8 -140,4 -7,0 0,6260
Пентен-1 (амилен) C 5 H 10 -165,2 +30,1 0,6400
Гексен-1 (гексилен) C 6 H 12 -139,8 63,5 0,6730
Гептен-1 (гептилен) C 7 H 14 -119 93,6 0,6970
Октен-1 (октилен) C 8 H 16 -101,7 121,3 0,7140
Нонен-1 (нонилен) C 9 H 18 -81,4 146,8 0,7290
Децен-1 (децилен) C 10 H 20 -66,3 170,6 0,7410

6. Химические свойства алкенов.

А) Присоединение водорода (гидрирование).

CH 2 = CH 2 + H 2 ® CH 3 – CH 3

этен этан

Б)Взаимодействие с галогенами (галогенирование).

Легче идет присоединение хлора и брома к алкенам, труднее - йода

CH 3 – CH = CH 2 + Cl 2 ® CH 3 – CHCl – CH 2 Cl

пропилен 1,2-дихлорпропан

В) Присоединение галогенводородов (гидрогалогенирование)

Присоединение галогенводородов к алкенам при обычных условиях протекает согласно правилу Марковникова: при ионном присоединении галогенводородов к несимметричным алкенам (при обычных условиях) водород присоединяется по месту двойной связи к наиболее гидрогенизированному (связанному с наибольшим числом водородных атомов)атому углерода, а галоген – менее гидрогенизированному.

CH 2 =CH 2 + HBr ® CH 3 – CH 2 Br

этен бромэтан

Г) Присоединение воды к алкенам (гидратация).

Присоединение воды к алкенам протекает также согласно правилу Марковникова.

CH 3 – CH = CH 2 + H – OH ® CH 3 – CHOH – CH 3

пропен-1 пропанол-2

Е) Алкилирование алканов алкенами.

Алкилирование – реакция, с помощью которой можно вводить различные углеводородные радикалы (алкилы) в молекулы органических соединений. В качестве алкилирующих средств используют галогеналкилы, непредельные углеводороды, спирты и другие органические вещества. Например, в присутствии концентрированной серной кислоты активно протекает реакция алкилирования изобутана изобутиленом:

3CH 2 = CH 2 + 2KMnO 4 + 4H 2 O ® 3CH 2 OH – CH 2 OH + 2MnO 2 + 2KOH

этен этиленгликоль

(этандиол-1,2)

Расщепление молекулы алкена по месту двойной связи может вести к образованию соответствующей карбоновой кислоты, если используется энергичный окислитель (азотная концентрированная кислота или хромовая смесь).

HNO 3(конц.)

CH 3 – CH = CH – CH 3 ® 2CH 3 COOH

бутен-2 этановая кислота (уксусная кислота)

Окисление этилена кислородом воздуха в присутствии металлического серебра ведёт к образованию этиленоксида.

2CH 2 = CH 2 + O 2 ® 2CH 2 – CH 2

И) Реакция полимеризации алкенов.

n CH 2 = CH 2 ® [–CH 2 – CH 2 –]n

этилен кат.полиэтилен

7.Применение алкенов.

А) Резка и сварка металлов.

Б) Производство красителей, растворителей, лаков, новых органических веществ.

В) Производство пластмасс и других синтетических материалов.

Г) Синтез спиртов, полимеров, каучуков

Д) Синтез лекарственных препаратов.

IV. Диеновые углеводороды (алкадиены или диолефины) – это непредельные сложные органические соединения с общей формулой C n H 2 n -2 , содержащие две двойные связи между атомами углерода в цепи и способные присоединять молекулы водорода, галогенов и других соединений в силу валентной не насыщенности атома углерода.

Первым представителем ряда диеновых углеводородов является пропадиен (аллен). Строение диеновых углеводородов сходно со строением алкенов, разница лишь только в том, что в молекулах диеновых углеводородов две двойные связи, а не одна.

Алкены - класс органических соединений, имеющий двойную связь между атомами углерода, структурная формула - C n H 2n . Двойная связь в молекулах олефинов - это одна σ- и одна π-связь. Таким образом, если мы представим два атома углерода и разместим их на плоскости, σ-связь будет расположена на плоскости, а π-связь будет распологаться выше и ниже плоскости (если Вы плохо представляете себе, о чём идёт речь, обратитесь к разделу химические связи).

Гибридизация

В алкенах имеет место sp 2 -гибридизация, для которой угол H-C-H составляет 120 градусов, а длина связи C=C равна 0,134 нм.

Строение

Из наличия π-связи следует, и подтверждается экспериментально, что:

  • По своему строению, двойная связь в молекулах алкенов более восприимчива к внешнему воздействию, нежели обычная σ-связь
  • Двойная связь делает невозможным вращение вокруг σ-связи, откуда следует наличие изомеров, данные изомеры называются цис- и транс-
  • π-связь менее прочна, чем σ-связь, поскольку электроны находятся дальше от центров атомов

Физические свойства

Физические свойства алкенов схожи с физическими свойствами алканов. Алкены, имеющие до пяти атомов углерода, находятся в газообразном состоянии при нормальных условиях. Молекулы с содержанием от шести до 16 атомов углерода находятся в жидком состоянии и от 17 атомов углерода - алкены находятся в твёрдом состоянии при нормальных условиях.

Температура кипения алкенов в среднем увеличивается на 30 градусов на каждую CH 2 -группу, как и у алканов, ответвления снижают температуру кипения вещества.

Наличие π-связи делает олефины слаборастворимыми в воде, что обуславливает их небольшую полярность. Алкены - неполярные вещества и растворяются в неполярных растворителях и слабо полярных растворителях.

Плотность алкенов выше, чем у алканов, но ниже чем у воды

Изомерия

  • Изомерия углеродного скелета: 1-бутен и 2-метилпропен
  • Изомерия положения двойной связи: 1-бутен и 2-бутен
  • Межклассовая изомерия: 1-бутен и циклобутан

Реакции

Характерные реакции алкенов - реакции присоединения, π-связь разрывается и образовавшиеся электроны охотно принимают новый элемент. Наличие π-связи означает большее количество энергии, поэтому, как правило, реакции присоединения носят экзотермический характер, т.е. протекают с выделением тепла.

Реакции присоединения

Присоединение галогенводородов

Галогенводороды легко присоединяются к двойной связи алкенов, формируя галогеналкил ы. Галогенводороды смешивают с уксусной кислотой, либо напрямую, в газообразном состоянии, смешивают с алкеном. Для рассмотрения механизма реакции, необходимо знать правило Марковникова.

Правило Марковникова

При взаимодествии гомологов этилена с кислотами, водород присоединяется к более гидрогенизированному атому углерода.
Исключение из правила, гидроборирование алкинов , будет рассмотрено в статье об алкинах.

Механизм реакции присоединения галогенводородов к алкенам следующий: происходит гомолитический разрыв связи в молекуле галогенводорода, образовывается протон и анион галогена. Протон присоединяется к алкену образуя карбкатион, такая реакция является эндотермической и имеет высокий уровень энергии активации, поэтому реакция происходит медленно. Образованный карбкатион очень реактивен, поэтому легко связывается с галогеном, энергия активации низкая, поэтому этот этап не тормозит реакцию.

При комнатной температуре алкены реагируют с хлором и бромом в присутствии тетрахлорметана. Механизм реакции присоединения галогенов выглядит следующим образом: электроны с π-связи воздействуют на молекулу галогена X 2 . По мере приближения галогена к олефину, электроны в молекуле галогена смещаются к более отдалённому атому, таким образом молекула галогена поляризуется, ближайший атом имеет положительный заряд, более удалённый - отрицательный. Происходит гетеролитический разрыв связи в молекуле галогена, образуется катион и анион. Катион галогена присоединяется к двум атомам углерода посредством электронной пары π-связи и свободной электронной пары катиона. Оставшийся анион галогена воздействует на один из атомов углерода в молекуле галогеналкена разрывая цикл C-C-X и образовывая дигалогеналкен.

Реакции присоединения алкенов находят два основных применения, первое - количественный анализ, определение количества двойных связей количеством поглощенных молекул X 2 . Второе - в промышленности. Производство пластика основано на винилхлориде. Трихлорэтилен и тетрахлорэтилен - отличные растворители ацетиленовых жиров и резин.

Гидрирование

Присоединение газообразного водорода к алкену происходит с катализаторами Pt, Pd или Ni. В результате реакции образуются алканы. Основное применение реакции каталитического присоединения водорода - это, во-первых, количественный анализ. По остатку молекул H 2 можно определить количество двойных связей в веществе. Во-вторых, растительные жиры и жиры рыб являются непредельными углеродами и такое гидрирование приводит к увеличению температуры плавления, преобразуя в твёрдые жиры. На данном процессе основано производство маргарина.

Гидратация

При смешивании алкенов с серной кислотой образуются алкил-гидросульфаты. При разбавлении алкил-гидросульфатов водой и сопутствующем нагревании, образуется спирт. Пример реакции - смешивание этена (этилен) с серной кислотой, последующее смешивание с водой и нагревание, результат - этанол.

Окисление

Алкены легко окисляются различными веществами, такими как, например, KMnO 4 , O 3 , OsO 4 и т.д. Существует два вида окисления алкенов: разрыв π-связи без разрыва σ-связи и разрыв σ- и π-связи. Окисление без разрыва сигма-связи называется мягким окислением, с разрывом сигма-связи - жёстким окислением.

Окисление этена без разрыва σ-связи образует эпоксиды (эпоксиды - это циклические соединения C-C-O) или двухатомные спирты. Окисление с разрывом σ-связи образует ацетоны, альдегиды и карбоновые кислоты.

Окисление перманганатом калия

Реакции окисления алкенов под воздействием перманганата калия называются были открыты Егором Вагнером и носит его имя. В реакции Вагнера, окисление происходит в органическом растворителе (ацетон или этанол) при температуре 0-10°C, в слабом растворе перманганата калия. В результате реакции образуются двуатомные спирты и обесцвечивается перманганат калия.

Полимеризация

Большинство простых алкенов могут испытывать реакции самоприсоединения, формируя таким образом большие молекулы из структурных единиц. Такие большие молекулы называются полимерами, реакция, которая позволяет получить полимер называется полимеризацией. Простые структурные единицы, образующие полимеры, называются мономерами. Полимер обозначается заключением повторяющейся группы в скобках с указанием индекса "n", что означает большое количество повторений, например: "-(CH 2 -CH 2) n -" - полиэтилен. Процессы полимеризации - основа производства пластика и волокон.

Радикальная полимеризация

Радикальная полимеризация инициируется при помощи катализатора - кислорода или пероксида. Реакция состоит из трёх этапов:

Инициация
ROOR → 2RO .
CH 2 = CH-C 6 H 5 → RO- CH 2 C . H-C 6 H 5
Рост цепи
RO- CH 2 C . H-C 6 H 5 + CH 2 =CH-C 6 H 5 → RO-CH 2 -CH(C 6 H 5)-CH 2 -C . -C 5 H 6
Обрыв цепи рекомбинацией
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH 2 -CH-C 6 H 5 -CH 2 -CH-C 6 H 5
Обрыв цепи диспропорционированием
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH=CH-C 6 H 5 + CH 2 -CH 2 -C 6 H 5

Ионная полимеризация

Другой способ полимеризации алкенов - это ионная полимеризация. Реакция протекает с образованием промежуточных продуктов - карбкатионов и карбанионов. Образование первого карбкатиона, как правило, осуществляется при помощи кислоты Льюиса, образование карбаниона происходит, соответственно, при реакции с основанием Льюиса.

A + CH 2 =CH-X → A-CH 2 -C + H-X → ... → A-CH 2 -CHX-CH 2 -CHX-CH 2 C + HX ...
B + CH 2 =CH-X → B-CH 2 -C - H-X → ... → B-CH 2 -CHX-CH 2 -CHX-CH 2 C - HX ...

Распространённые полимеры

Наиболее распространёнными полимерами являются:

Номенклатура

Название алкенов, аналогично алканам, состоит из первой части - префикса, обозначающего количество атомов углерода в главной цепи, и суффикса -ен. Алкен - соединение с двойной связью, поэтому молекулы алкена начинаются с двух атомов углерода. Первый в списке - этен, эт- - два атома углерода, -ен - наличие двойной связи.

Если в молекуле более трёх атомов углерода, то необходимо указывать позицию двойной связи, например, бутен может быть двух видов:

CH 2 =CH—CH 2 —CH 3
CH 3 —CH=CH—CH 3

Для обозначения позиции двойной связи, необходимо добавить цифру, для примера выше это будут 1-бутен и 2-бутен соответственно (также применяются названия 1-бутен и 2-бутен, но они не являются систематическими).

Наличие двойной связи влечёт за собой изомерию, когда молекулы могут находится по разные стороны от двойной связи, например:

Данная изомерия именуется цис- (Z-zusammen, с немецкого вместе) и транс- (E-entgegen, с немецкого напротив), в первом случае цис-1,2-дихлорэтен (или (Z)-1,2-дихлорэтен), во втором - транс-1,2-дихлорэтен (или (E)-1,2-дихлорэтен).

Алкены — это непредельные углеводороды , которые имеют одну двойную связь между атомами . Другое их название это олефины, оно связано с историей открытия этого класса соединений. В основном в природе эти вещества не встречаются, а синтезируются человеком для практических целей. В номенклатуре ИЮПАК название этих соединений формируется по тому же принципу, что и для алканов, только суффикс “ан” заменяется на “ен”.

Вконтакте

Строение алкенов

Два атома углерода, участвующих в образовании двойной связи, всегда находятся в sp2 гибридизации, и угол между ними равен 120 градусам. Двойная связь образована с помощью перекрывания π -π орбиталей, а оно не очень прочное, поэтому данную связь достаточно просто разорвать, что находит применение в химических свойствах веществ.

Изомерия

По сравнению с предельными, в этих углеводородах возможно больше видов , при том как пространственной, так и структурной. Структурная изомерия может также подразделяться на несколько видов.

Первый также существует и для алканов, и заключается в различном порядке соединения атомов углерода. Так изомерами могут быть пентен-2 и 2-метилбутен-2. А второй — это изменение положения двойной связи.

Пространственная изомерия в этих соединениях возможна благодаря появлению двойной связи. Она бывает двух видов — геометрической и оптической.

Геометрическая изомерия — один из самых распространенных в природе видов, при том практически всегда геометрические изомеры будут иметь кардинально разные физические и химические свойства. Различают цис и транс изомеры. У первых — заместители располагаются с одной стороны от кратной связи, а у транс изомеров они находятся в разных плоскостях.

Получение алкенов

Впервые получены они были, как и много других веществ, совершенно случайно.

Немецкий химик и исследователь Бехер в конце 17 века изучал действие серной кислоты на этиловый спирт и понял, что получил неизвестный газ , который при этом является более реакционноспособным, чем метан.

Позже подобные исследования провели еще несколько ученых, они же и узнали, что данный газ при взаимодействии с хлором образует маслянистое вещество.

Поэтому первоначально этому классу соединений было присвоено название олефины, что переводится как маслородный. Но все же определить состав и строение данного соединения у ученых не получалось. Это произошло только почти спустя два века, в конце девятнадцатого столетия.

В настоящее время существует много способов получения алкенов.

Промышленные способы

Получение промышленными методами :

  1. Дегидрирование предельных углеводородов. Данная реакция возможна только при действии высоких температур (около 400 градусов) и катализаторов — либо оксида хрома 3, либо алюмоплатиновых катализаторов.
  2. Дегалогенирование дигалогеноалканов. Происходит только в присутствии цинка или магния, и при высоких температурах.
  3. Дегидрогалогенирование галогеноалканов. Проводится при помощи натриевых или калиевых солей органических кислот при повышенной температуре.

Важно ! Данные способы получения алкенов не дают чистого продукта, результатом реакции будет смесь непредельных углеводородов. Преобладающее среди них соединение определяется с помощью правила Зайцева. Оно гласит, что водород отщепляется с наибольшей вероятностью от атома углерода у которого меньше всего связей с водородами.

Дегидратация спиртов. Может проводиться только при нагревании и в присутствии растворов сильных минеральных кислот, обладающих водоотнимающим свойством.

Гидрирование алкинов. Возможно только в присутствии паладиевых катализаторов.

Химические свойства алкенов

Алкены являются очень химически активными веществами. Во многом это объясняется благодаря наличию двойной связи. Самыми характерными реакциями для этого класса соединений являются электрофильное и радикальное присоединение.

  1. Галогенирование алкенов — относится к классическим реакциям электрофильного присоединения. Она происходит только в присутствии инертных органических растворителей, чаще всего это тетрахлорметан.
  2. Гидрогалогенирование. Присоединение этого типа осуществляется по правилу Марковникова. Ион присоединяется к более гидрированному атому углерода возле двойной связи, и соответственно, ион галогенида присоединяется ко второму атому углерода. Это правило нарушается в присутствии перекисных соединений — эффект Харроша. Присоединение галогеноводорода происходит полностью обратно правилу Марковникова.
  3. Гидроборирование. Эта реакция имеет значительную практическую важность. Поэтому ученый, который ее открыл и изучил даже получил Нобелевскую премию. Данная реакция проводится в несколько ступеней, при этом присоединение иона бора происходит не по правилу Марковникова.
  4. Гидратация алкенов или присоединение . Данная реакция также протекает согласно правилу Марковникова. Гидроксид-ион присоединяется к наименее гидрированному атому углерода при двойной связи.
  5. Алкилирование — еще одна реакция часто применяемая в промышленности. Она заключается в присоединении предельных углеводородов к непредельным под воздействием низких температур и катализаторов, с целью увеличения атомной массы соединений. Катализатором чаще всего выступают сильные минеральные кислоты. Также эта реакция может протекать и по свободнорадикальному механизму.
  6. Полимеризация алкенов — еще одна нехарактерная для предельных углеводородов реакция. Она подразумевает соединение между собой многочисленных молекул с целью образования прочного соединения, отличающегося по своим физическим свойствам.

n в данной реакции это количество молекул, вступивших в связь. Обязательным условием осуществления является кислая среда, повышенная температура и увеличенное давление.

Также для алкенов характерны и другие реакции электрофильного присоединения, которые не получили такого обширного практического распространения.

Например, реакция присоединения спиртов, с образованием простых эфиров.

Или присоединение хлорангидридов, с получением непредельных кетонов — реакция Кондакова.

Обратите внимание! Данная реакция возможна только в присутствии катализатора хлорида цинка.

Следующий крупный класс реакций характерный для алкенов это реакции радикального присоединения. Данные реакции возможны только при образовании свободных радикалов под воздействием высоких температур, облучения и других действий. Самая характерная реакция радикального присоединения это гидрирование с образованием предельных углеводородов. Она происходит исключительно под воздействием температур и в присутствии платинового катализатора.

Благодаря наличию двойной связи, для алкенов очень характерными являются различные реакции окисления .

  • Горение — классическая реакция окисления. Она хорошо идет без катализаторов. В зависимости от количества кислорода возможны разные конечные продукты: от углекислого газа и до углерода.
  • Окисление перманганатом калия в нейтральной среде. Продуктами являются многоатомные спирты и бурый осадок диоксида марганца. Данная реакция считается качественной для алкенов.
  • Также мягкое окисление может осуществляться пероксидом водорода, оксидом осмия 8, и другими окислителями в нейтральной среде. Для мягкого окисления алкенов характерен разрыв только одной связи, продуктом реакции, как правило, являются многоатомные спирты.
  • Также возможно и жесткое окисление, при котором происходит разрыв обеих связей и образуются кислоты или кетоны. Обязательным условием является кислая среда, чаще всего используют серную кислоту, так как другие кислоты могут также подвергаться окислению с образованием побочных продуктов.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....