69 элемент таблицы менделеева 5 букв. Что такое химические элементы? Система и характеристика химических элементов

Химический элемент - это собирательный термин, описывающий совокупность атомов простого вещества, т. е. такого, которое не может быть разделено на какие-либо более простые (по структуре их молекул) составляющие. Представьте себе, что вы получаете кусок чистого железа с просьбой разделить его на гипотетические составляющие с помощью любого устройства или метода, когда-либо изобретенного химиками. Однако вы ничего не сможете сделать, никогда железо не разделится на что-нибудь попроще. Простому веществу - железу - соответствует химический элемент Fe.

Теоретическое определение

Отмеченный выше экспериментальный факт может быть объяснен с помощью такого определения: химический элемент - это абстрактная совокупность атомов (не молекул!) соответствующего простого вещества, т. е. атомов одного и того же вида. Если бы существовал способ смотреть на каждый из отдельных атомов в куске чистого железа, упомянутого выше, то все они были бы однаковыми - атомами железа. В противоположность этому, химическое соединение, например, оксид железа, всегда содержит по меньшей мере два различных вида атомов: атомы железа и атомы кислорода.

Термины, которые следует знать

Атомная масса : масса протонов, нейтронов и электронов, которые составляют атом химического элемента.

Атомный номер : число протонов в ядре атома элемента.

Химический символ : буква или пара латинских букв, представляющих обозначение данного элемента.

Соединение химическое : вещество, которое состоит из двух или более химических элементов, соединенных друг с другом в определенной пропорции.

Металл : элемент, который теряет электроны в химических реакциях с другими элементами.

Металлоид : элемент, который реагирует иногда как металл, а иногда и как неметалл.

Неметалл : элемент, который стремится получить электроны в химических реакциях с другими элементами.

Периодическая система химических элементов : система классификации химических элементов в соответствии с их атомными номерами.

Синтетический элемент : тот, который получен искусственно в лаборатории, и, как правило, не встречается в природе.

Природные и синтетические элементы

Девяносто два химических элемента встречаются в природе на Земле. Остальные были получены искусственно в лабораториях. Синтетический химический элемент - это, как правило, продукт ядерных реакций в ускорителях частиц (устройствах, используемых для увеличения скорости субатомных частиц, таких как электроны и протоны) или ядерных реакторах (устройствах, используемых для управления энергией, выделяющейся при ядерных реакциях). Первым полученным синтетическим элементом с атомным номером 43 стал технеций, обнаруженный в 1937 году итальянскими физиками К. Перрье и Э. Сегре. Кроме технеция и прометия, все синтетические элементы имеют ядра большие, чем у урана. Последний получивший свое название синтетический химический элемент - это ливерморий (116), а перед ним был флеровий (114).

Два десятка распространенных и важных элементов

Название Символ Процент всех атомов *

Свойства химических элементов

(при обычных комнатных условиях)

Во вселенной В земной коре В морской воде

В человеческом организме

Алюминий Al - 6,3 - - Легкий, серебристый металл
Кальций Ca - 2,1 - 0,02

Входит в состав природных минералов, ракушек, костей

Углерод С - - - 10,7 Базис всех живых организмов
Хлор Cl - - 0,3 - Ядовитый газ
Медь Cu - - - - Только красный металл
Золото Au - - - - Только желтый металл
Гелий He 7,1 - - - Очень легкий газ
Водород Н 92,8 2,9 66,2 60,6 Самый легкий из всех элементов; газ
Йод I - - - -

Неметалл; используется в качестве антисептического средства

Железо Fe - 2,1 - -

Магнитный металл; используется для производства чугуна и стали

Свинец Pb - - - - Мягкий, тяжелый металл
Магний Mg - 2,0 - - Очень легкий металл
Ртуть Hg - - - -

Жидкий металл; один из двух жидких элементов

Никель Ni - - - -

Устойчивый против коррозии металл; используют в монетах

Азот N - - - 2,4 Газ, основной компонент воздуха
Кислород О - 60,1 33,1 25,7

Газ, второй важный

компонент воздуха

Фосфор Р - - - 0,1 Неметалл; важен для растений
Калий К - 1.1 - -

Металл; важен для растений; обычно называют "поташ"

* Если величина не указана, то элемент составляет менее 0,1 процента.

Большой взрыв как первопричина образования материи

Какой химический элемент был самым первым во Вселенной? Ученые считают, что ответ на этот вопрос лежит в звездах и в процессах, с помощью которых формируются звезды. Вселенная, как полагают, возникла в какой-то момент времени от 12 до 15 миллиардов лет назад. До этого момента ничего сущего, кроме энергии, не мыслится. Но что-то произошло, что превратило эту энергию в огромный взрыв (так называемый Большой взрыв). В следующие секунды после Большого взрыва начала формироваться материя.

Первыми появившимися простейшими формами материи были протоны и электроны. Некоторые из них объединяются в атомы водорода. Последний состоит из одного протона и одного электрона; это самый простой атом, который может существовать.

Медленно, в течение длительных периодов времени атомы водорода стали собираться вместе в определенных областях пространства, образуя плотные облака. Водород в этих облаках стягивался в компактные образования гравитационными силами. В конце концов эти облака водорода стали достаточно плотными, чтобы сформировать звезды..

Звезды как химические реакторы новых элементов

Звезда - просто масса вещества, которая генерирует энергию ядерных реакций. Наиболее распространенная из этих реакций представляет комбинацию четырех атомов водорода, образующих один атом гелия. Как только звезды начали формироваться, то гелий стал вторым элементом, появившимся во Вселенной.

Когда звезды становятся старше, они переходят от водородно-гелиевых ядерных реакций на другие их типы. В них атомы гелия образуют атомы углерода. Позже атомы углерода образуют кислород, неон, натрий и магний. Еще позже неон и кислород соединяются друг с другом с образованием магния. Поскольку эти реакции продолжаются, то все более и более химических элементов образуются.

Первые системы химических элементов

Более 200 лет назад химики начали искать способы их классификации. В середине девятнадцатого века были известны около 50 химических элементов. Один из вопросов, который стремились разрешить химики. сводился к следующему: химический элемент - это полностью отличное от любого другого элемента вещество? Или некоторые элементы, связанные с другими в некотором роде? Есть ли общий закон, их объединяющий?

Химики предлагали различные системы химических элементов. Так, например, английский химик Уильям Праут в 1815 г. предположил, что атомные массы всех элементов кратны массе атома водорода, если принять ее равной единице, т. е. они должны быть целыми числами. В то время атомные массы многих элементов уже были вычислены Дж. Дальтоном по отношению к массе водорода. Однако если для углерода, азота, кислорода это примерно так, то хлор с массой 35,5 в эту схему никак не вписывался.

Немецкий химик Иоганн Вольфганг Доберайнер (1780 — 1849) показал в 1829 году, что три элемента из так называемой группы галогенов (хлор, бром и йод) могут классифицироваться по их относительным атомным массам. Атомный вес брома (79,9) оказался почти точно средним из атомных весов хлора (35,5) и йода (127), а именно 35,5 + 127 ÷ 2 = 81,25 (близко к 79,9). Это был первый подход к построению одной из групп химических элементов. Доберайнер обнаружил еще две таких триады элементов, но сформулировать общий периодический закон ему не удалось.

Как появилась периодическая система химических элементов

Большинство ранних классификационных схем было не очень успешными. Затем, около 1869 года, двумя химиками было сделано почти одно открытие и почти в одно время. Русский химик Дмитрий Менделеев (1834-1907) и немецкий химик Юлиус Лотар Мейер (1830-1895) предложили организовать элементы, которые имеют аналогичные физические и химические свойства, в упорядоченную систему групп, рядов и периодов. При этом Менделеев и Мейер указывали, что свойства химических элементов периодически повторяются в зависимости от их атомных весов.

Сегодня Менделеев, как правило, считается первооткрывателем периодического закона, потому что он сделал один шаг, который Мейер не сделал. Когда все элементы были расположены в периодической таблице, в ней появились некоторые пробелы. Менделеев предсказал, что это места для элементов, которые еще не были обнаружены.

Однако он пошел еще дальше. Менделеев предсказал свойства этих еще не открытых элементов. Он знал, где они расположены в периодической таблице, так что мог прогнозировать их свойства. Примечательно, что каждый предсказанный химический элемент Менделеева,будущие галлий, скандий и германий, были обнаружены менее чем через десять лет после опубликования им периодического закона.

Короткая форма периодической таблицы

Были попытки подсчитать, сколько вариантов графического изображения периодической системы предлагалось разными учеными. Оказалось, больше 500. Причем 80% общего числа вариантов - это таблицы, а остальное - геометрические фигуры, математические кривые и т. д. В итоге практическое применение нашли четыре вида таблиц: короткая, полудлинная, длинная и лестничная (пирамидальная). Последняя была предложена великим физиком Н. Бором.

На рисунке ниже показана короткая форма.

В ней химические элементы расположены по возрастанию их атомных номеров слева направо и сверху вниз. Так, первый химический элемент периодической таблицы водород имеет атомный номер 1 потому, что ядра атомов водорода содержит один и только один протон. Аналогично и кислород имеет атомный номер 8, так как ядра всех атомов кислорода содержат 8 протонов (см. рисунок ниже).

Главные структурные фрагменты периодической системы - периоды и группы элементов. В шести периодах все клетки заполнены, седьмой еще не завершен (элементы 113, 115, 117 и 118 хотя и синтезированы в лабораториях, однако еще официально не зарегистрированы и не имеют названий).

Группы подразделяются на главные (A) и побочные (B) подгруппы. Элементы первых трех периодов, содержащих по одному ряду-строке, входят исключительно в A-подгруппы. Остальные четыре периода включают по два ряда-строки.

Химические элементы в одной группе, как правило, имеют схожие химические свойства. Так, первую группу составляют щелочные металлы, вторую - щелочноземельные. Находящиеся в одном периоде элементы имеют свойства, медленно изменяющиеся от щелочного металла до благородного газа. Рисунок ниже показывает, как одно из свойств - атомный радиус - изменяется для отдельных элементов в таблице.

Длиннопериодная форма периодической таблицы

Она показана на рисунке ниже и делится в двух направлениях, по строкам и по столбцам. Есть семь строк-периодов, как и в короткой форме, и 18 столбцов, называемых группами или семьями. По сути, увеличение числа групп с 8 в короткой форме до 18 в длинной получено путем размещения всех элементов в периодах, начиная с 4-го, не в две, а в одну строку.

Две разных системы нумерации используются для групп, как показано в верхней части таблицы. Система на основе римских цифр (IA, IIA, IIB, IVB и т. д.) традиционно была популярна в США. Другая система (1, 2, 3, 4 и т. д.) традиционно используется в Европе, а несколько лет назад была рекомендована для использования в США.

Вид периодических таблиц на рисунках выше немного вводит в заблуждение, как и в любой такой опубликованной таблице. Причиной этого является то, что две группы элементов, показанных в нижней части таблиц, на самом деле должны быть расположены внутри них. Лантаноиды, например, принадлежат к периоду 6 между барием (56) и гафнием (72). Кроме того, актиноиды принадлежат периоду 7 между радием (88) и резерфордием (104). Если бы они были вставлены в таблицу, то она стала бы слишком широкой, чтобы поместиться на листе бумаги или настенной диаграмме. Поэтому принято эти элементы размещать в нижней части таблицы.


ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

Построение периодической таблицы химических элементов Менделеева отвечает характерным периодам теории чисел и ортогональных базисов. Дополнение матриц Адамара матрицами четных и нечетных порядков создает структурный базис вложенных матричных элементов: матриц первого (Odin), второго (Euler), третьего (Mersenne), четвертого (Hadamard) и пятого (Fermat) порядков.

Несложно заметить, что порядкам 4k матриц Адамара соответствуют инертные элементы с атомной массой, кратной четырем: гелий 4, неон 20, аргон 40 (39.948) и т.п., но также и основы жизни и цифровой техники: углерод 12, кислород 16, кремний 28, германий 72.

Такое впечатление, что с матрицами Мерсенна порядков 4k –1, напротив, связано все активное, ядовитое, разрушительное и разъедающее. Но это также радиоактивные элементы – источники энергии, и свинец 207 (конечный продукт, ядовитые соли). Фтор, это, конечно, 19. Порядкам матриц Мерсенна отвечает последовательность радиоактивных элементов, называемая рядом актиния: уран 235, плутоний 239 (изотоп, который является более мощным источником атомной энергии, чем уран) и т.п. Это также щелочные металлы литий 7, натрий 23 и калий 39.

Галлий – атомный вес 68

Порядкам 4k –2 матриц Эйлера (сдвоенный Мерсенн) соответствует азот 14 (основа атмосферы). Поваренная соль образована двумя "мерсенноподобными" атомами натрия 23 и хлора 35, вместе это сочетание характерно, как раз, для матриц Эйлера. Более массивный хлор с весом 35.4 немногим не добирает до адамаровой размерности 36. Кристаллы поваренной соли: куб (! т.е. характер смирный, адамаров) и октаэдр (более вызывающий, это несомненный Эйлер).

В атомной физике переход железо 56 – никель 59, это рубеж между элементами, дающими энергию при синтезе более крупного ядра (водородная бомба) и распаде (урановая). Порядок 58 знаменит тем, что для него нет не только аналогов матриц Адамара в виде матриц Белевича с нулями на диагонали, для него нет и многих взвешенных матриц – ближайшая ортогональная W(58,53) имеет 5 нулей в каждом столбце и строке (глубокий разрыв).

В ряду, соответствующем матрицам Ферма и их замещениям порядков 4k +1, стоит волею судьбы фермий 257. Ничего не скажешь, точное попадание. Здесь же золото 197. Медь 64 (63.547) и серебро 108 (107.868), символы электроники, недотягивают, как видно, до золота и соответствуют более скромным матрицам Адамара. Медь, с ее недалеко ушедшим от 63 атомным весом, химически активна – ее зеленые окислы хорошо известны.

Кристаллы бора под сильным увеличением

С золотым сечением связан бор – атомная масса среди всех прочих элементов наиболее близка к 10 (точнее 10.8, близость атомного веса к нечетным числам тоже сказывается). Бор – достаточно сложный элемент. Бор играет запутанную роль в истории самой жизни. Строение каркаса в его структурах гораздо сложнее, чем в алмазе. Уникальный тип химической связи, которая позволяет бору поглощать любую примесь, очень плохо изучен, хотя за исследования, связанные с ним, большое количество ученых уже получили Нобелевские премии. Форма кристалла бора – икосаэдр, пять треугольников образуют вершину.

Загадка Платины. Пятый элемент, это, без сомнения, благородные металлы, такие, как золото. Надстройка над адамаровой размерностью 4k , на 1 большие.

Стабильный изотоп уран 238

Вспомним, все же, что числа Ферма встречаются редко (ближайшее – 257). Кристаллы самородного золота имеют форму, близкую к кубу, но и пентаграмма просверкивает. Его ближайший сосед, платина, благородный металл, отстоит от золота 197 по атомному весу меньше, чем на 4. Платина имеет атомный вес не 193, а несколько повышенный, 194 (порядок матриц Эйлера). Мелочь, но это переносит ее в стан несколько более агрессивных элементов. Стоит вспомнить, в связи, что при ее инертности (растворяется, разве, в царской водке), платину используют как активный катализатор химических процессов.

Губчатая платина при комнатной температуре воспламеняет водород. Характер у платины вовсе не мирный, смирнее себя ведет иридий 192 (смесь изотопов 191 и 193). Это, скорее, медь, но с весом и характером золота.

Между неоном 20 и натрием 23 нет элемента с атомным весом 22. Конечно, атомные веса – интегральная характеристика. Но среди изотопов, в свою очередь, тоже наблюдается любопытная корреляция свойств со свойствами чисел и соответствующих им матриц ортогональных базисов. В качестве ядерного топлива наибольшее применение имеет изотоп уран 235 (порядок матриц Мерсенна), в котором возможна самоподдерживающаяся цепная ядерная реакция. В природе этот элемент распространен стабильной форме уран 238 (порядок матриц Эйлера). Элемент с атомным весом 13 отсутствует. Что касается хаоса, то ограниченное количество устойчивых элементов таблицы Менделеева и сложность нахождения уровневых матриц высоких порядков ввиду замеченного у матриц тринадцатого порядка барьера коррелируют.

Изотопы химических элементов, островок стабильности

Все химические элементы можно охарактеризовать в зависимости от строения их атомов, а также по их положению в Периодической системе Д.И. Менделеева. Обычно характеристику химического элемента дают по следующему плану:

  • указывают символ химического элемента, а также его название;
  • исходя из положения элемента в Периодической системе Д.И. Менделеева указывают его порядковый, номер периода и группы (тип подгруппы), в которых находится элемент;
  • исходя из строения атома указывают заряд ядра, массовое число, число электронов, протонов и нейтронов в атоме;
  • записывают электронную конфигурацию и указывают валентные электроны;
  • зарисовывают электронно-графические формулы для валентных электронов в основном и возбужденном (если оно возможно) состояниях;
  • указывают семейство элемента, а также его тип (металл или неметалл);
  • указывают формулы высших оксидов и гидроксидов с кратким описанием их свойств;
  • указывают значения минимальной и максимальной степеней окисления химического элемента.

Характеристика химического элемента на примере ванадия (V)

Рассмотрим характеристику химического элемента на примере ванадия (V) согласно плану, описанному выше:

1. V – ванадий.

2. Порядковый номер – 23. Элемент находится в 4 периоде, в V группе, А (главной) подгруппе.

3. Z=23 (заряд ядра), M=51 (массовое число), e=23 (число электронов), p=23 (число протонов), n=51-23=28 (число нейтронов).

4. 23 V 1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 4s 2 – электронная конфигурация, валентные электроны 3d 3 4s 2 .

5. Основное состояние

Возбужденное состояние

6. d-элемент, металл.

7. Высший оксид – V 2 O 5 — проявляет амфотерные свойства, с преобладанием кислотных:

V 2 O 5 + 2NaOH = 2NaVO 3 + H 2 O

V 2 O 5 + H 2 SO 4 = (VO 2) 2 SO 4 + H 2 O (рН<3)

Ванадий образует гидроксиды следующего состава V(OH) 2 , V(OH) 3 , VO(OH) 2 . Для V(OH) 2 и V(OH) 3 характерны основные свойства (1, 2), а VO(OH) 2 обладает амфотерными свойствами (3, 4):

V(OH) 2 + H 2 SO 4 = VSO 4 + 2H 2 O (1)

2 V(OH) 3 + 3 H 2 SO 4 = V 2 (SO 4) 3 + 6 H 2 O (2)

VO(OH) 2 + H 2 SO 4 = VOSO 4 + 2 H 2 O (3)

4 VO(OH) 2 + 2KOH = K 2 + 5 H 2 O (4)

8. Минимальная степень окисления «+2», максимальная – «+5»

Примеры решения задач

ПРИМЕР 1

Задание Охарактеризуйте химический элемент фосфор
Решение 1. P – фосфор.

2. Порядковый номер – 15. Элемент находится в 3 периоде, в V группе, А (главной) подгруппе.

3. Z=15 (заряд ядра), M=31 (массовое число), e=15 (число электронов), p=15 (число протонов), n=31-15=16 (число нейтронов).

4. 15 P 1s 2 2s 2 2p 6 3s 2 3p 3 – электронная конфигурация, валентные электроны 3s 2 3p 3 .

5. Основное состояние

Возбужденное состояние

6. p-элемент, неметалл.

7. Высший оксид – P 2 O 5 — проявляет кислотные свойства:

P 2 O 5 + 3Na 2 O = 2Na 3 PO 4

Гидроксид, соответствующий высшему оксиду – H 3 PO 4 , проявляет кислотные свойства:

H 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 O

8. Минимальная степень окисления «-3», максимальная – «+5»

ПРИМЕР 2

Задание Охарактеризуйте химический элемент калий
Решение 1. K – калий.

2. Порядковый номер – 19. Элемент находится в 4 периоде, в I группе, А (главной) подгруппе.

Он опирался на труды Роберта Бойле и Антуана Лавузье. Первый ученый ратовал за поиск неразложимых химических элементов. 15 из таковых Бойле перечислил еще в 1668-ом году.

Лавузье прибавил к ним еще 13, но спустя век. Поиски растянулись, поскольку не было стройной теории связи между элементами. Наконец, в «игру» вступил Дмитрий Менделеев. Он решил, что есть связь между атомной массой веществ и их местом в системе.

Эта теория позволила ученому открыть десятки элементов, не обнаруживая их на практике, а природе. Это было возложено на плечи потомков. Но, сейчас не о них. Посвятим статью великому русскому ученому и его таблице.

История создания таблицы Менделеева

Таблица Менделеева началась с книги «Соотношение свойств с атомным весом элементов». Труд выпущен в 1870-ых. Тогда же русский ученый выступил перед химическим обществом страны и разослал первый вариант таблицы коллегам из-за рубежа.

До Менделеева разными учеными были открыты 63 элемента. Наш соотечественник начал со сравнения их свойств. В первую очередь, работал с калием и хлором. Потом, взялся за группу металлов щелочной группы.

Химик обзавелся специальным столом и карточками элементов, чтобы раскладывать их, как пасьянс, ища нужные совпадения и комбинации. В итоге, пришло прозрение: — свойства компонентов зависят от массы их атомов. Так, элементы таблицы Менделеева выстроились в ряды.

Находкой маэстро химии стало решение оставить в этих рядах пустоты. Периодичность перепада между атомными массами заставила ученого предположить, что человечеству известны еще не все элементы. Промежутки в весе между некоторыми «соседями» были слишком велики.

Поэтому, периодическая таблица Менделеева стала похожа на шахматное поле, с обилием «белых» клеток. Время показало, что они, действительно, ждали своих «постояльцев». Ими, к примеру, стали инертные газы. Гелий, неон, аргон, криптон, радиоакт и ксенон открыты лишь в 30-ых годах 20-го века.

Теперь о мифах. Распространено мнение, что химическая таблица Менделеева явилась ему во сне. Это происки университетских педагогов, точнее, одного из них – Александра Иностранцева. Это русский геолог, читавший лекции в Петербургском университете горного дела.

Иностранцев был знаком с Менделеевым, бывал у него в гостях. Однажды, изможденный поисками Дмитрий заснул прямо при Александе. Тот дождался, пока химик проснется и увидел, как Менделеев хватается за листок и записывает окончательный вариант таблицы.

По сути, ученый просто не успел сделать это до того, как его захватил Морфей. Однако, Иностранцеву хотелось позабавить своих студентов. На основе виденного геолог придумал байку, которую благодарные слушатели быстро распространили в массы.

Особенности таблицы Менделеева

С момента первой версии 1969-го года порядковая таблица Менделеева не раз дорабатывалась. Так, с открытием в 1930-ых благородных газов удалось вывести новую зависимость элементов, — от их порядковых номеров, а не массы, как заявлял автор системы.

Понятие «атомный вес» заменили на «атомный номер». Удалось изучить число протонов в ядрах атомов. Эта цифра и есть порядковый номер элемента.

Ученые 20-го века изучили и электронное строение атомов. Оно тоже влияет на периодичность элементов и отражено в поздних редакциях таблицы Менделеева. Фото списка демонстрирует, что вещества в нем расставлены по мере роста атомного веса.

Первооснову менять не стали. Масса увеличивается слева направо. При этом, таблица не едина, а поделена на 7 периоды. Отсюда и название списка. Период – горизонтальный ряд. Его начало – типичные металлы, конец – элементы с неметаллическими свойствами. Убывание постепенное.

Есть большие и малые периоды. Первые находятся в начале таблицы, их 3. Открывает список период из 2-х элементов. Следом идут две колонки, в которых по 8 наименований. Оставшиеся 4 периода большие. Наиболее протяжен 6-ой, в нем 32 элемента. В 4-ом и 5-ом их по 18, а в 7-ом – 24.

Можно сосчитать, сколько элементов в таблице Менделеева. Всего 112 наименований. Именно наименований. Клеток же 118, а есть вариации списка и со 126-ю полями. Все еще остаются пустые клетки для неоткрытых элементов, не имеющих имен.

Не все периоды умещаются в одну строку. Большие периоды состоят из 2-х рядов. Количество металлов в них перевешивает. Поэтому, им полностью посвящены нижние строки. Постепенное убывание от металлов к инертным веществам соблюдается в верхних рядах.

Картинки таблицы Менделеева поделены и вертикально. Это группы в таблице Менделеева , их 8. Вертикально скомпонованы элементы, схожие по химическим свойствам. Они поделены на главную и побочную подгруппы. Последние начинаются только с 4-го периода. В главные подгруппы входят и элементы малых периодов.

Суть таблицы Менделеева

Названия элементов в таблице Менделеева – это 112 позиций. Суть их компоновки в единый список – систематизация первоэлементов. Над этим начали биться еще в античные времена.

Одним из первых понять, из чего составлено все сущее попытался Аристотель. Он взял за основу свойства веществ – холод и тепло. Эмпидокл выделил 4-ре первоосновы по стихиям: воду, землю, огонь и воздух.

Металлы в таблице Менделеева , как и другие элементы, — те самые первоосновы, но с современной точки зрения. Российскому химику удалось открыть большинство составляющих нашего мира и предположить существование еще неизвестных первоэлементов.

Получается, что произношение таблицы Менделеева – озвучивание некой модели нашей реальности, раскладывание ее на составляющие. Однако, выучить их не так-то просто. Попробуем облегчить задачу, описав пару эффективных методов.

Как выучить таблицу Менделеева

Начнем с современного метода. Компьютерщиками разработан ряд флеш-игр, помогающих запомнить список Менделеева. Участникам проекта предлагают находить элементы по разным опциям, например, названию, атомной массе, буквенному обозначению.

Игрок имеет право выбрать поле деятельности – лишь часть таблицы, или ее всю. В нашей воле, так же, исключить имена элементов, другие параметры. Это усложняет поиск. Для продвинутых предусмотрен и таймер, то есть тренировка ведется на скорость.

Игровые условия делают изучение номеров элементов в таблице Менднлеева не нудным, а занятным. Просыпается азарт, и систематизировать знания в голове становится проще. Те же, кто не приемлет компьютерных флеш-проектов, предлагают более традиционный способ заучивания списка.

Его делят на 8 групп, или 18 (в соответствии с редакцией 1989-го года). Для удобства запоминания, лучше создать несколько отдельных таблиц, а не работать по цельному варианту. Помогают и зрительные образы, подобранные к каждому из элементов. Опираться следует на собственные ассоциации.

Так, железо в мозгу может соотноситься, к примеру, с гвоздем, а ртуть – с градусником. Название элемента незнакомо? Пользуемся методом наводящих ассоциаций. , например, составим из начал слов «ириска» и «динамик».

Характеристика таблицы Менделеева не учиться в один присест. Рекомендованы занятия по 10-20 минут в день. Начинать рекомендована с запоминания лишь основных характеристик: названия элемента, его обозначения, атомной массы и порядкового номера.

Школьники предпочитают вешать таблицу Менделеева над рабочим столом, или на стене, на которую часто смотрят. Метод хорош для людей с преобладанием зрительной памяти. Данные из списка невольно запоминаются даже без зубрежки.

Это учитывают и педагоги. Как правило, они не заставляют заучивать список, разрешают смотреть в него даже на контрольных. Постоянное заглядывание в таблицу равнозначно эффекту распечатки на стене, или написанию шпаргалок до экзаменов.

Приступая к изучению, вспомним, что и Менделеев не сразу запомнил свой список. Однажды, когда ученого спросили, как он открыл таблицу, последовал ответ: — «Я над ней, может, 20 лет думал, а вы считаете: сидел и, вдруг, готово». Периодическая система – кропотливый труд, который не осилить в сжатые сроки.

Наука не терпит спешки, ведь она приводит к заблуждениям и досадным ошибкам. Так, одновременно с Менделеевым таблицу составил и Лотар Мейер. Однако, немец немного недоработал список и не был убедителен при доказательстве своей точки зрения. Поэтому, общественность признала труд русского ученого, а не его коллеги-химика из Германии.

В природе существует очень много повторяющихся последовательностей:

  • времена года;
  • время суток;
  • дни недели…

В середине 19 века Д.И.Менделеев заметил, что химические свойства элементов также имеют определенную последовательность (говорят, что эта идея пришла ему во сне). Итогом чудесных сновидений ученого стала Периодическая таблица химических элементов, в которой Д.И. Менделеев выстроил химические элементы по возрастанию атомной массы. В современной таблице химические элементы выстроены по возрастанию атомного номера элемента (количество протонов в ядре атома).

Атомный номер изображен над символом химического элемента, под символом - его атомная масса (сумма протонов и нейтронов). Обратите внимание, что атомная масса у некоторых элементов является нецелым числом! Помните об изотопах! Атомная масса - это средневзвешенное от всех изотопов элемента, встречающихся в природе в естественных условиях.

Под таблицей расположены лантаноиды и актиноиды.

Металлы, неметаллы, металлоиды


Расположены в Периодической таблице слева от ступенчатой диагональной линии, которая начинается с Бора (В) и заканчивается полонием (Po) (исключение составляют германий (Ge) и сурьма (Sb). Нетрудно заметить, что металлы занимают бОльшую часть Периодической таблицы. Основные свойства металлов: твердые (кроме ртути); блестят; хорошие электро- и теплопроводники; пластичные; ковкие; легко отдают электроны.

Элементы, расположенные справа от ступенчатой диагонали B-Po, называются неметаллами . Свойства неметаллов прямо противоположны свойствам металлов: плохие проводники тепла и электричества; хрупкие; нековкие; непластичные; обычно принимают электроны.

Металлоиды

Между металлами и неметаллами находятся полуметаллы (металлоиды). Для них характерны свойства как металлов, так и неметаллов. Основное применение в промышленности полуметаллы нашли в производстве полупроводников, без которых немыслима ни одна современная микросхема или микропроцессор.

Периоды и группы

Как уже говорилось выше, периодическая таблица состоит из семи периодов. В каждом периоде атомные номера элементов увеличиваются слева направо.

Свойства элементов в периодах изменяются последовательно: так натрий (Na) и магний (Mg), находящиеся в начале третьего периода, отдают электроны (Na отдает один электрон: 1s 2 2s 2 2p 6 3s 1 ; Mg отдает два электрона: 1s 2 2s 2 2p 6 3s 2). А вот хлор (Cl), расположенный в конце периода, принимает один элемент: 1s 2 2s 2 2p 6 3s 2 3p 5 .

В группах же, наоборот, все элементы обладают одинаковыми свойствами. Например, в группе IA(1) все элементы, начиная с лития (Li) и заканчивая францием (Fr), отдают один электрон. А все элементы группы VIIA(17), принимают один элемент.

Некоторые группы настолько важны, что получили особые названия. Эти группы рассмотрены ниже.

Группа IA(1) . Атомы элементов этой группы имеют во внешнем электронном слое всего по одному электрону, поэтому легко отдают один электрон.

Наиболее важные щелочные металлы - натрий (Na) и калий (K), поскольку играют важную роль в процессе жизнедеятельности человека и входят в состав солей.

Электронные конфигурации:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Группа IIA(2) . Атомы элементов этой группы имеют во внешнем электронном слое по два электрона, которые также отдают во время химических реакций. Наиболее важный элемент - кальций (Ca) - основа костей и зубов.

Электронные конфигурации:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Группа VIIA(17) . Атомы элементов этой группы обычно получают по одному электрону, т.к. на внешнем электронном слое находится по пять элементов и до "полного комплекта" как раз не хватает одного электрона.

Наиболее известные элементы этой группы: хлор (Cl) - входит в состав соли и хлорной извести; йод (I) - элемент, играющий важную роль в деятельности щитовидной железы человека.

Электронная конфигурация:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Группа VIII(18). Атомы элементов этой группы имеют полностью "укомплектованный" внешний электронный слой. Поэтому им "не надо" принимать электроны. И отдавать их они "не хотят". Отсюда - элементы этой группы очень "неохотно" вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название "инертный", т.е. "бездействующий"). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.

Электронные конфигурации:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Валентные элементы в группах

Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).

У щелочных металлов - по 1 валентному электрону:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

У щелочноземельных металлов - по 2 валентных электрона:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

У галогенов - по 7 валентных электронов:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

У инертных газов - по 8 валентных электронов:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам .

Обратим теперь свое внимание на элементы, расположенные в группах с символов В . Они расположены в центре периодической таблицы и называются переходными металлами .

Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали :

  1. Sc - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ;
  2. Ti - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Отдельно от основной таблицы расположены лантаноиды и актиноиды - это, так называемые, внутренние переходные металлы . В атомах этих элементов электроны заполняют f-орбитали :

  1. Ce - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 1 5d 1 6s 2 ;
  2. Th - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 14 5d 10 6s 2 6p 6 6d 2 7s 2

Последние материалы раздела:

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

Третичное образование Третичное образование
Третичное образование Третичное образование

Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...