2 квадратных уравнения. Квадратные уравнения

В данной статье мы рассмотрим решение неполных квадратных уравнений.

Но сначала повторим какие уравнения называются квадратными. Уравнение вида ах 2 + bх + с = 0, где х – переменная, а коэффициенты а, b и с некоторые числа, причем а ≠ 0, называется квадратным . Как мы видим коэффициент при х 2 не равен нулю, а следовательно коэффициенты при х или свободный член могут равняться нулю, в этом случае мы и получаем неполное квадратное уравнение.

Неполные квадратные уравнения бывают трех видов :

1) Если b = 0, с ≠ 0, то ах 2 + с = 0;

2) Если b ≠ 0, с = 0, то ах 2 + bх = 0;

3) Если b= 0, с = 0, то ах 2 = 0.

  • Давайте разберемся как решаются уравнения вида ах 2 + с = 0.

Чтобы решить уравнение перенесем свободный член с в правую часть уравнения, получим

ах 2 = ‒с. Так как а ≠ 0, то разделим обе части уравнения на а, тогда х 2 = ‒с/а.

Если ‒с/а > 0 , то уравнение имеет два корня

x = ±√(–c/a) .

Если же ‒c/a < 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Давайте попробуем разобраться на примерах, как решать такие уравнения.

Пример 1 . Решите уравнение 2х 2 ‒ 32 = 0.

Ответ: х 1 = ‒ 4, х 2 = 4.

Пример 2 . Решите уравнение 2х 2 + 8 = 0.

Ответ: уравнение решений не имеет.

  • Разберемся как же решаются уравнения вида ах 2 + bх = 0.

Чтобы решить уравнение ах 2 + bх = 0, разложим его на множители, то есть вынесем за скобки х, получим х(ах + b) = 0. Произведение равно нулю, если хотя бы один из множителей равен нулю. Тогда или х = 0, или ах + b = 0. Решая уравнение ах + b = 0, получим ах = ‒ b, откуда х = ‒ b/a. Уравнение вида ах 2 + bх = 0, всегда имеет два корня х 1 = 0 и х 2 = ‒ b/a. Посмотрите как выглядит на схеме решение уравнений этого вида.

Закрепим наши знания на конкретном примере.

Пример 3 . Решить уравнение 3х 2 ‒ 12х = 0.

х(3х ‒ 12) = 0

х= 0 или 3х – 12 = 0

Ответ: х 1 = 0, х 2 = 4.

  • Уравнения третьего вида ах 2 = 0 решаются очень просто.

Если ах 2 = 0, то х 2 = 0. Уравнение имеет два равных корня х 1 = 0, х 2 = 0.

Для наглядности рассмотрим схему.

Убедимся при решении примера 4, что уравнения этого вида решаются очень просто.

Пример 4. Решить уравнение 7х 2 = 0.

Ответ: х 1, 2 = 0.

Не всегда сразу понятно какой вид неполного квадратного уравнения нам предстоит решить. Рассмотрим следующий пример.

Пример 5. Решить уравнение

Умножим обе части уравнения на общий знаменатель, то есть на 30

Сократим

5(5х 2 + 9) – 6(4х 2 – 9) = 90.

Раскроем скобки

25х 2 + 45 – 24х 2 + 54 = 90.

Приведем подобные

Перенесем 99 из левой части уравнения в правую, изменив знак на противоположный

Ответ: корней нет.

Мы разобрали как решаются неполные квадратные уравнения. Надеюсь, теперь у вас не будет сложностей с подобными заданиями. Будьте внимательны при определении вида неполного квадратного уравнения, тогда у вас все получится.

Если у вас появились вопросы по данной теме, записывайтесь на мои уроки , мы вместе решим возникшие проблемы.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Цели:

  • Ввести понятие приведенного квадратного уравнения;
  • “открыть” зависимость между корнями и коэффициентами приведенного квадратного уравнения;
  • развивать интерес к математике, показав на примере жизни Виета, что математика может быть увлечением.

Ход урока

1. Проверка домашнего задания

№ 309(г) х 1 =7, х 2 =

№ 311(г) х 1 =2, х 2 =-1

№ 312 (г) корней нет

2. Повторение изученного материала

У каждого на столенаходится таблица. Найдите соответствие между левым и правым столбиками таблицы.

Словесная формулировка Буквенное выражение
1. Квадратный трехчлен А. ах 2 =0
2. Дискриминант Б. ах 2 +с=0, с< 0
3. Неполное квадратное уравнение, имеющее один корень равный 0. В.
Д > 0
4. Неполное квадратное уравнение, один корень которого 0, а другой не равен 0. Г.
Д < 0
5. Не полное квадратное уравнение, корни которого равны по модулю, но противоположны по знаку. Д.
ах 2 +вх+с=0
6. Не полное квадратное уравнение, не имеющее действительных корней. Е.
Д=в 2 +4ас
7. Общий вид квадратного уравнения. Ж.
х 2 +рх+q=0
8. Условие, при котором квадратное уравнение имеет два корня З.
ах 2 +вх+с
9. Условие, при котором квадратное уравнение не имеет корней И.
ах 2 +с=0, с > 0
10. Условие, при котором квадратное уравнение имеет два равных корня К.
ах 2 +вх=0
11. Приведенное квадратное уравнение. Л.
Д = 0

Правильные ответы занесите в таблицу.

1-З; 2-Е; 3-А; 4-К; 5-Б; 6-И; 7-Д; 8-В; 9-Г; 10-Л; 11-Ж.

3. Закрепление изученного материала

Решите уравнения:

а) -5х 2 + 8х -3=0;

Решение :

Д=64 – 4(-5)(-3) = 4,

х 1 = х 2 = = а + в + с =-5+8-3=0

б) 2 х 2 +6х – 8 = 0;

Решение :

Д=36 – 4 2 (-8)= 100,

х 1 = = х 2 = а + в + с = 2+6-8=0

в) 2009 х 2 +х – 2010 =0

Решение :

а + в + с = 2009+1 + (-2010) =0 , то х 1 =1 х 2 =

4. Расширение школьного курса

ах 2 +вх+с=0, если а+в+с=0, то х 1 =1 х 2 =

Рассмотрим решение уравнений

а) 2х 2 + 5х +3 = 0

Решение :

Д= 25 -24 =1 х 1 = х 2 = а – в + с = 2-5+3=0

б) -4х 2 -5х -1 =0

Решение :

Д =25 – 16 = 9 х 1 = – 1 х 2 = а –в + с = -4-(-5) – 1=0

в)1150х 2 +1135х -15 = 0

Решение :

а – в+с = 1150-1135 +(-15) = 0 х 1 = – 1 х 2 =

ах 2 +вх+с=0, если а-в+с=0, то х 1 = – 1 х 2 =

5. Новая тема

Проверим выполнение вами первого задания. С какими новыми понятиями вывстретились. 11 – ж, т. е.

Приведенное квадратное уравнение – х 2 +рх+q=0.

Тема нашего урока.
Заполним следующую таблицу.
Левый столбик сами в тетрадях и один ученик у доски.
Решение уравнения ах 2 +вх+с=0
Правый столбик, более подготовленный ученик у доски
Решение уравнения х 2 + рх + q = 0, при а = 1, в = р, с = q

Учитель (при необходимости) помогает, остальные в тетрадях.

6. Практическая часть

Х 2 – 6х + 8 = 0,

Д = 9 – 8 = 1,

х 1 = 3 – 1 = 2

х 2 = 3 + 1 = 4

Х 2 + 6х + 8 = 0,

Д = 9 – 8 = 0,

х 1 = -3 – 1 = -4

х 2 = -3 + 1 = -2

Х 2 + 20х + 51 = 0,

Д = 100 – 51 = 49

х 1 = 10 – 7 = 3

х 2 = 10 + 7 = 17

Х 2 – 20х – 69 = 0,

Д = 100 – 69 = 31

По результатам наших вычислений заполним таблицу.

№ уравнения р х 1+ х 2 q х 1 х 2
1 -6 6 8 8

Сравним полученные результаты с коэффициентами квадратных уравнений.
Какой вывод можно сделать?

7. Историческая справка

Впервые зависимость между корнями и коэффициентами квадратного уравнения установил знаменитый французский ученый Франсуа Виет (1540–1603).

Франсуа Виет был по профессии адвокатом и много лет работал советником короля. И хотя математика была его увлечением, или как говорят хобби, благодаря упорному труду он добился в ней больших результатов. Виет в 1591 г. ввел буквенное обозначения для неизвестных и коэффициентов уравнений. Что дало возможность записывать общими формулами корни и другие свойства уравнения.

Недостатком алгебры Виета было то, что он признавал только положительные числа. Чтобы избежать отрицательных решений, он заменял уравнения или искал искусственные приемы решения, что отнимало много времени, усложняло решение и часто приводило к ошибкам.

Много разных открытий сделал Виет, но сам он больше всего дорожил установлением зависимости между корнями и коэффициентами квадратного уравнения, то есть той зависимостью, которая называется “теоремой Виета”.

Эту теорему мы будем рассматривать на следующем уроке.

8. Обобщение знаний

Вопросы :

  1. Какое уравнение называют приведенным квадратным уравнением?
  2. По какой формуле можно найти корни приведенного квадратного уравнения?
  3. От чего зависит число корней приведенного квадратного уравнения?
  4. Что называют дискриминантом приведенного квадратного уравнения?
  5. Как связаны корни приведенного квадратного уравнения и его коэффициенты?
  6. Кто установил эту связь?

9. Домашняя работа

п. 4.5, №321(б,е) №322(а,г,ж,з)

Заполните таблицу.

Уравнение Корни Сумма корней Произведение корней
Х 2 – 8х + 7 = 0 1 и 7 8 7

Литература

С.М. Никольский и др., “Алгебра 8” учебник серии “МГУ-школе” – М.: Просвещение, 2007.

Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

Квадратное уравнение – это уравнение вида:

где коэффициенты a, b и с произвольные числа, при чём a≠0.

В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

1. Имеют два корня.

2. *Имеют только один корень.

3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

Как вычисляются корни? Просто!

Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

Формулы корней имеют следующий вид:

*Эти формулы нужно знать наизусть.

Можно сразу записывать и решать:

Пример:


1. Если D > 0, то уравнение имеет два корня.

2. Если D = 0, то уравнение имеет один корень.

3. Если D < 0, то уравнение не имеет действительных корней.

Давайте рассмотрим уравнение:


По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

х 1 = 3 х 2 = 3

Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

Теперь следующий пример:


Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

Вот и весь процесс решения.

Квадратичная функция.

Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

Это функция вида:

где х и у — переменные

a, b, с – заданные числа, при чём a ≠ 0

Графиком является парабола:

То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

Рассмотрим примеры:

Пример 1: Решить 2x 2 +8 x –192=0

а=2 b=8 c= –192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Ответ: х 1 = 8 х 2 = –12

*Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

Пример 2: Решить x 2 –22 x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получили, что х 1 = 11 и х 2 = 11

В ответе допустимо записать х = 11.

Ответ: х = 11

Пример 3: Решить x 2 –8x+72 = 0

а=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминант отрицательный, решения в действительных числах нет.

Ответ: решения нет

Дискриминант отрицательный. Решение есть!

Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

Понятие комплексного числа.

Немного теории.

Комплексным числом z называется число вида

z = a + bi

где a и b – действительные числа, i – так называемая мнимая единица.

a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

Мнимая единица равна корню из минус единицы:

Теперь рассмотрим уравнение:


Получили два сопряжённых корня.

Неполное квадратное уравнение.

Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

Случай 1. Коэффициент b = 0.

Уравнение приобретает вид:

Преобразуем:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коэффициент с = 0.

Уравнение приобретает вид:

Преобразуем, раскладываем на множители:

*Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коэффициенты b = 0 и c = 0.

Здесь понятно, что решением уравнения всегда будет х = 0.

Полезные свойства и закономерности коэффициентов.

Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

а x 2 + bx + c =0 выполняется равенство

a + b + с = 0, то

— если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

a + с = b , то

Данные свойства помогают решить определённого вида уравнения.

Пример 1: 5001 x 2 –4995 x – 6=0

Сумма коэффициентов равна 5001+( 4995)+( 6) = 0, значит

Пример 2: 2501 x 2 +2507 x +6=0

Выполняется равенство a + с = b , значит

Закономерности коэффициентов.

1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

х 1 = –6 х 2 = –1/6.

2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х 1 = – 17 х 2 = 1/17.

4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

х 1 = 10 х 2 = – 1/10

Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

СПОСОБ ПЕРЕБРОСКИ

При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ± b+c ≠ 0, то используется прием переброски, например:

2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

х 1 = 5 х 2 = 0,5.

Каково обоснование? Посмотрите что происходит.

Дискриминанты уравнений (1) и (2) равны:

Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


У второго (изменённого) корни получаются в 2 раза больше.

Потому результат и делим на 2.

*Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

Ответ: х 1 = 5 х 2 = 0,5

Кв. ур-ие и ЕГЭ.

О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

Что стоит отметить!

1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

15+ 9x 2 - 45x = 0 или 15х+42+9x 2 - 45x=0 или 15 -5x+10x 2 = 0.

Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

Уравнение вида

Выражение D = b 2 - 4 ac называют дискриминантом квадратного уравнения. Если D = 0, то уравнение имеет один действительный корень; если D > 0, то уравнение имеет два действительных корня.
В случае, когда D = 0 , иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение D = b 2 - 4 ac , можно переписать формулу (2) в виде

Если b = 2 k , то формула (2) принимает вид:

где k = b / 2 .
Последняя формула особенно удобна в тех случаях, когда b / 2 - целое число, т.е. коэффициент b - четное число.
Пример 1: Решить уравнение 2 x 2 - 5 x + 2 = 0 . Здесь a = 2, b = -5, c = 2 . Имеем D = b 2 - 4 ac = (-5) 2- 4*2*2 = 9 . Так как D > 0 , то уравнение имеет два корня. Найдем их по формуле (2)

Итак x 1 =(5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
то есть x 1 = 2 и x 2 = 1 / 2 - корни заданного уравнения.
Пример 2: Решить уравнение 2 x 2 - 3 x + 5 = 0 . Здесь a = 2, b = -3, c = 5 . Находим дискриминант D = b 2 - 4 ac = (-3) 2- 4*2*5 = -31 . Так как D 0 , то уравнение не имеет действительных корней.

Неполные квадратные уравнения. Если в квадратном уравнении ax 2 + bx + c =0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным . Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения - проще решить уравнение методом разложения его левой части на множители.
Пример 1: решить уравнение 2 x 2 - 5 x = 0 .
Имеем x (2 x - 5) = 0 . Значит либо x = 0 , либо 2 x - 5 = 0 , то есть x = 2.5 . Итак, уравнение имеет два корня: 0 и 2.5
Пример 2: решить уравнение 3 x 2 - 27 = 0 .
Имеем 3 x 2 = 27 . Следовательно корни данного уравнения - 3 и -3 .

Теорема Виета. Если приведенное квадратное уравнение x 2 + px + q =0 имеет действительные корни, то их сумма равна - p , а произведение равно q , то есть

x 1 + x 2 = -p ,
x 1 x 2 = q

(сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....