Зависимость сопротивления от времени. Т

В своей практической деятельности каждый электрик встречается с разными условиями прохождения носителей зарядов в металлах, полупроводниках, газах и жидкостях. На величину тока влияет электрическое сопротивление, которое различным образом изменяется под влиянием окружающей среды.

Одним из таких факторов является температурное воздействие. Поскольку оно значительно изменяет условия протекания тока, то учитывается конструкторами в производстве электрооборудования. Электротехнический персонал, участвующий в обслуживании и эксплуатации электроустановок, обязан грамотно использовать эти особенности в практической работе.

Влияние температуры на электрическое сопротивление металлов

В школьном курсе физики предлагается провести такой опыт: взять амперметр, батарейку, отрезок проволоки, соединительные провода и горелку. Вместо амперметра с батарейкой можно подключить омметр или использовать его режим в мультиметре.

Теперь поднесем пламя горелки к проволоке и станем ее нагревать. Если смотреть на амперметр, то будет видно, что стрелка станет перемещаться влево и достигнет положения, отмеченного красным цветом.

Результат опыта демонстрирует, что при нагревании металлов их проводимость уменьшается, а сопротивление возрастает.

Математическое обоснование этого явления приведено формулами прямо на картинке. В нижнем выражении хорошо видно, что электрическое сопротивление «R» металлического проводника прямо пропорционально его температуре «Т» и зависит еще от нескольких параметров.

Как нагрев металлов ограничивает электрический ток на практике

Лампы накаливания

Ежедневно при включении освещения мы встречаемся с проявлением этого свойства у ламп накаливания. Проведем несложные измерения на лампочке с мощностью 60 ватт.


Самым простым омметром, питающемся от низковольтной батарейки 4,5 V, замерим сопротивление между контактами цоколя и увидим значение 59 Ом. Этой величиной обладает нить накала в холодном состоянии.

Вкрутим лампочку в патрон и через амперметр подключим к ней напряжение домашней сети 220 вольт. Стрелка амперметра покажет 0,273 ампера. По определим сопротивление нити в нагретом состоянии. Оно составит 896 Ом и превысит предыдущее показание омметра в 15,2 раза.

Такое превышение предохраняет металл тела накала от перегорания и разрушения, обеспечивая его длительную работоспособность под напряжением.

Переходные процессы при включении

При работе нити накала на ней создается тепловой баланс между нагревом от проходящего электрического тока и отводом части тепла в окружающую среду. Но, на первоначальном этапе включения при подаче напряжения возникают переходные процессы, создающие бросок тока, который может привести к перегоранию нити.


Переходные процессы протекают за короткое время и вызваны тем, что скорость возрастания электрического сопротивления от нагрева металла не успевает за увеличением тока. После их окончания устанавливается рабочий режим.

Во время длительного свечения лампы постепенно толщина ее нити доходит до критического состояния, которое приводит к перегоранию. Чаще всего этот момент возникает при очередном новом включении.

Для продления ресурса лампы различными способами уменьшают этот бросок тока, используя:

1. устройства, обеспечивающие плавную подачу и снятие напряжения;

2. схемы последовательного подключения к нити накала резисторов, полупроводников или терморезисторов (термисторов).

Пример одного из способов ограничения пускового тока для автомобильных светильников показан на картинке ниже.


Здесь ток на лампочку подается после включения тумблера SA через предохранитель FU и ограничивается резистором R, у которого номинал подбирается так, чтобы бросок тока во время переходных процессов не превышал номинальное значение.

При нагреве нити накала ее сопротивление возрастает, что ведет к увеличению разности потенциалов на ее контактах и параллельно подключенной обмотке реле KL1. Когда напряжение достигнет величины уставки реле, то нормально открытый контакт KL1 замкнется и зашунтирует резистор. Через лампочку начнет протекать рабочий ток уже установившегося режима.

Влияние температуры металла на его электрическое сопротивление используется в работе измерительных приборов. Их называют .


Их чувствительный элемент выполняют тонкой проволочкой из металла, сопротивление которой тщательно замерено при определенных температурах. Эту нить монтируют в корпусе со стабильными термическими свойствами и закрывают защитным чехлом. Созданная конструкция помещается в среду, температуру которой необходимо постоянно контролировать.

На выводы чувствительного элемента монтируются провода электрической схемы, которыми подключается цепь замера сопротивления. Его величина пересчитывается в значения температуры на основе ранее произведенной калибровки прибора.

Бареттер - стабилизатор тока

Так называют прибор, состоящий из стеклянного герметичного баллона с газообразным водородом и металлической проволочной спиралью из железа, вольфрама или платины. Эта конструкция по внешнему виду напоминает лампочку накаливания, но она обладает специфической вольт-амперной нелинейной характеристикой.


На ВАХ в определенном ее диапазоне образуется рабочая зона, которая не зависит от колебаний приложенного на тело накала напряжения. На этом участке бареттер хорошо компенсирует пульсации питания и работает в качестве стабилизатора тока на подключенной последовательно к нему нагрузке.

Работа бареттера основана на свойстве тепловой инерции тела накала, которая обеспечивается маленьким сечением нити и высокой теплопроводностью окружающего ее водорода. За счет этого при снижении напряжения на приборе ускоряется отвод тепла с его нити.

Это основное отличие бареттера от осветительных ламп накаливания, в которых для поддержания яркости свечения стремятся уменьшить конвективные потери тепла с нити.

Сверхпроводимость

В обычных условиях среды при охлаждении металлического проводника происходит уменьшение его электрического сопротивления.


При достижении критической температуры, близкой к нулю градусов по системе измерения Кельвина, происходит резкое падение сопротивления до нулевого значения. На правой картинке показана такая зависимость для ртути.

Это явление, названное сверхпроводимостью, считается перспективной областью для исследований с целью создания материалов, способных значительно снизить потери электроэнергии при ее передаче на огромные расстояния.

Однако, продолжающиеся изучения сверхпроводимости выявили ряд закономерностей, когда на электрическое сопротивление металла, находящегося в области критических температур, влияют другие факторы. В частности, при прохождении переменного тока с повышением частоты его колебаний возникает сопротивление, величина которого доходит до диапазона обычных значений у гармоник с периодом световых волн.

Влияние температуры на электрическое сопротивление/проводимость газов

Газы и обычный воздух являются диэлектриками и не проводят электрический ток. Для его образования нужны носители зарядов, которыми выступают ионы, образующиеся в результате воздействия внешних факторов.

Нагрев способен вызвать ионизацию и движение ионов от одного полюса среды к другому. Убедиться в этом можно на примере простого опыта. Возьмем то же оборудование, которым пользовались для определения влияния нагрева на сопротивление металлического проводника, только вместо проволоки к проводам подключим две металлические пластины, разделенные воздушным пространством.


Подсоединенный к схеме амперметр покажет отсутствие тока. Если между пластинами поместить пламя горелки, то стрелка прибора отклонится от нулевого значения и покажет величину проходящего через газовую среду тока.

Таким образом установили, что в газах при нагревании происходит ионизация, приводящая к движению электрически заряженных частиц и снижению сопротивления среды.

На значении тока сказывается мощность внешнего приложенного источника напряжения и разность потенциалов между его контактами. Она способна при больших значениях пробить изоляционный слой газов. Характерным проявлением подобного случая в природе является естественный разряд молнии во время грозы.

Примерный вид вольт-амперной характеристики протекания тока в газах показан на графике.


На начальном этапе под действие температуры и разности потенциалов наблюдается рост ионизации и прохождение тока примерно по линейному закону. Затем кривая приобретает горизонтальное направление, когда увеличение напряжения не вызывает рост тока.

Третий этап пробоя наступает тогда, когда высокая энергия приложенного поля так разгоняет ионы, что они начинают соударяться с нейтральными молекулами, массово образуя из них новые носители зарядов. В результате ток резко возрастает, образуя пробой диэлектрического слоя.

Практическое использование проводимости газов

Явление протекания тока через газы используется в радиоэлектронных лампах и люминесцентных светильниках.

Для этого внутри герметичного стеклянного баллона с инертным газом располагают два электрода:

1. анод;

2. катод.


У люминесцентной лампы они выполнены в виде нитей накала, которые разогреваются при включении для создания термоэлектронной эмиссии. Внутренняя поверхность колбы покрыта слоем люминофора. Он излучает видимый нами спектр света, образующийся при инфракрасном облучении, исходящем от паров ртути, бомбардируемых потоком электронов.

Ток газового разряда возникает при приложении напряжения определенной величины между электродами, расположенными по разным концам колбы.

Когда одна из нитей накала перегорит, то на этом электроде нарушится электронная эмиссия и лампа гореть не будет. Однако, если увеличить разность потенциалов между катодом и анодом, то снова возникнет газовый разряд внутри колбы и свечение люминофора возобновится.

Это позволяет использовать светодиодные колбы с нарушенными нитями накала и продлять их ресурс работы. Только следует учитывать, что при этом в несколько раз надо поднять на ней напряжение, А это значительно повышает потребляемую мощность и риски безопасного использования.

Влияние температуры на электрическое сопротивление жидкостей

Прохождение тока в жидкостях создается в основном за счет движения катионов и анионов под действием приложенного извне электрического поля. Лишь незначительную часть проводимости обеспечивают электроны.


Влияние температуры на величину электрического сопротивления жидкого электролита описывается формулой, приведенной на картинке. Поскольку в ней значение температурного коэффициента α всегда отрицательно, то с увеличением нагрева проводимость возрастает, а сопротивление падает так, как показано на графике.

Это явление необходимо учитывать при зарядке жидкостных автомобильных (и не только) аккумуляторных батарей.

Влияние температуры на электрическое сопротивление полупроводников

Изменение свойств полупроводниковых материалов под воздействием температуры позволило использовать их в качестве:

    термических сопротивлений;

    термоэлементов;

    холодильников;

    нагревателей.

Терморезисторы

Таким названием обозначают полупроводниковые приборы, изменяющие свое электрическое сопротивление под влиянием тепла. Их значительно выше, чем у металлов.

Величина ТКС у полупроводников может иметь положительное или отрицательное значение. По этому параметру их разделяют на позитивные «РТС» и негативные «NTC» термисторы. Они обладают различными характеристиками.


Для работы терморезистора выбирают одну из точек на его вольт-амперной характеристике:

    линейный участок применяют для контроля температуры либо компенсации изменяющихся токов или напряжений;

    нисходящая ветвь ВАХ у элементов с ТКС

Применение релейного терморезистора удобно при контроле или измерениях процессов электромагнитных излучений, происходящих на сверхвысоких частотах. Это обеспечило их использование в системах:

1. контроля тепла;

2. пожарной сигнализации;

3. регулирования расхода сыпучих сред и жидкостей.

Кремниевые терморезисторы с маленьким ТКС>0 используют в системах охлаждения и стабилизации температуры транзисторов.

Термоэлементы

Эти полупроводники работают на основе явления Зеебека: при нагреве спаянного места двух разрозненных металлов на стыке замкнутой цепи возникает ЭДС. Таким способом они превращают тепловую энергию в электричество.


Конструкцию из двух таких элементов называют термопарой. Ее КПД лежит в пределах 7÷10%.

Термоэлементы используют в измерителях температур цифровых вычислительных устройств, требующих миниатюрные габариты и высокую точность показаний, а также в качестве маломощных источников тока.

Полупроводниковые нагреватели и холодильники

Они работают за счет обратного использования термоэлементов, через которые пропускают электрический ток. При этом на одном месте спая происходит его нагрев, а на противоположном - охлаждение.

Полупроводниковые спаи на основе селена, висмута, сурьмы, теллура позволяют обеспечить разность температур в термоэлементе до 60 градусов. Это позволило создать конструкцию холодильного шкафа из полупроводников с температурой в камере охлаждения до -16 градусов.

Зависимость сопротивления металлов от температуры. Сверхпроводимость. Закон Видемана-Франца

Удельное сопротивление зависит не только от рода вещества, но и от его состояния, в частности, от температуры. Зависимость удельного сопротивления от температуры можно охарактеризовать, задавая температурный коэффициент сопротивления данного вещества:

Он даёт относительное приращение сопротивления при увеличении температуры на один градус.

Рисунок 14.3
Температурный коэффициент сопротивления для данного вещества различен при разных температурах. Это показывает, что удельное сопротивление изменяется с температурой не по линейному закону, а зависит от неё более сложным образом.

ρ=ρ 0 (1+αt) (14.12)

где ρ 0 – удельное сопротивление при 0ºС, ρ – его значение при температуре tºС.

Температурный коэффициент сопротивления может быть как положительным, так и отрицательным. У всех металлов сопротивление увеличивается с увеличением температуры, а следовательно для металлов

α >0. У всех электролитов в отличии от металлов сопротивление при нагревании всегда уменьшается. Сопротивление графита с повышением температуры также уменьшается. Для таких веществ α <0.

На основании электронной теории электропроводности металлов можно объяснить зависимость сопротивления проводника от температуры. С повышением температуры его удельное сопротивление увеличивается, а электропроводимость уменьшается. Анализируя выражение (14.7), видим, что электропроводимость пропорциональна концентрации электронов проводимости и средней длине свободного пробега <ℓ> , т.е. чем больше <ℓ> , тем меньшую помеху для упорядоченного движения электронов представляют соударения. Электропроводимость обратно пропорциональна средней тепловой скорости <υ τ > . Тепловая скорость при повышении температуры возрастает пропорционально , что приводит к уменьшению электропроводимости и увеличению удельного сопротивления проводников. Анализируя формулу (14.7), можно, кроме того, объяснить зависимость γ и ρ от рода проводника.

При очень низких температурах порядка 1-8ºК сопротивление некоторых веществ резко падает в миллиарды раз и практически становится равным нулю.

Это явление, впервые открыто голландским физиком Г.Камерлинг-Оннесом в 1911 г.. называется сверхпроводимостью . В настоящее время сверхпроводимость установлена у целого ряда чистых элементов (свинца, олова, цинка, ртути, алюминия и др), а также у большого числа сплавов этих элементов друг с другом и с другими элементами. На рис. 14.3 схематически показана зависимость сопротивления сверхпроводников от температуры.

Теория сверхпроводимости была создана в 1958 г. Н.Н. Боголюбовым. Согласно этой теории, сверхпроводимость – это движение электронов в кристаллической решётке без соударений друг с другом и с атомами решётки. Все электроны проводимости движутся как один поток невязкой идеальной жидкости, не взаимодействуя между собой и с решёткой, т.е. не испытывая трения. Поэтому сопротивление сверхпроводников равно нулю. Сильное магнитное поле, проникая в сверхпроводник, отклоняет электроны, и, нарушая «ламинарное течение» электронного потока, вызывает соударение электронов с решёткой, т.е. возникает сопротивление.

В сверхпроводящем состоянии между электронами происходит обмен квантами энергии, что приводит к созданию между электронами сил притяжения, которые больше кулоновских сил отталкивания. При этом образуются пары электронов (куперовские пары) с взаимно скомпенсированными магнитными и механическими моментами. Такие пары электронов движутся в кристаллической решётке без сопротивления.

Одним из важнейших практических применений сверхпроводимости является применение её в электромагнитах со сверхпроводящей обмоткой. Если бы не существовало критического магнитного поля, разрушающего сверхпроводимость, то с помощью таких электромагнитов можно было бы получать магнитные поля в десятки и сотни миллионов ампер на сантиметр. Получать такие большие постоянные поля с помощью обычных электромагнитов невозможно, так как для этого потребовались бы колоссальные мощности, и был бы практически невозможен отвод тепла, выделяемого при поглощении обмоткой столь больших мощностей. В сверхпроводящем электромагните расход мощности источника тока ничтожен, а расход мощности на охлаждение обмотки до гелиевой температуре (4,2ºК) на четыре порядка ниже, чем в обычном электромагните, создающем такие же поля. Сверхпроводимость применяется и для создания систем памяти электронных математических машин (криотронные элементы памяти).

В 1853 г. Видеман и Франц опытным путём установили, что отношение теплопроводности λ к электропроводности γ для всех метал лов при одной и той же температуре одинаково и пропорционально их термодинамической температуре.

Это заставляет предполагать, что теплопроводность в металлах, так же как и электропроводность, обусловлена движением свободных электронов. Будем считать, что электроны подобны одноатомному газу, коэффициент теплопроводности которого, согласно кинетической теории газов, равен

Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.

Металлы

Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.

  1. Металлическая проволока
  2. Батарея
  3. Амперметр

Зависимость указывается и обосновывается формулами:

Из этих формул следует, что R проводника определяется по формуле:

Пример зависимости сопротивления металлов от температуры предоставлен на видео:

Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.

Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.

Газы

Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.

Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.

Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.

Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ. Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим. Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.

Если приложить напряжение между катодом и анодом, то возникает проводимость газов.

Жидкости

Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.

  1. Электролит
  2. Батарея
  3. Амперметр

Зависимость воздействия электролитов от нагревания прописывает формула:

Где а – отрицательный температурный коэффициент.

Как зависит R от нагрева (t) показано на графике ниже:

Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.

Полупроводники

А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.

Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.

Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:

  • если температура элемента меньше нуля, то такие проводники используются в качестве реле;
  • чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.

Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.

Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том,

У металлов, не обладающих сверхпроводимостью, при низких температурах из-за наличия примесей наблюдается область 1 – область остаточного сопротивления, почти не зависящая от температуры (рис. 10.5). Остаточное сопротивление - r ост тем меньше, чем чище металл.

Рис. 10.5. Зависимость удельного сопротивления металла от температуры

Быстрый рост удельного сопротивления при низких температурах до температуры Дебая Q д может быть объяснен возбуждением новых частот тепловых колебаний решетки, при которых происходит рассеяние носителей заряда - область 2 .

При Т > Q д , когда спектр колебаний возбужден полностью, увеличение амплитуды колебаний с ростом температуры приводит к линейному росту сопротивления примерно до Т пл - область 3 . При нарушении периодичности структуры электрон испытывает рассеяние, приводящее к изменению направления движения, конечным длинам свободного пробега и проводимости металла. Энергия электронов проводимости в металлах составляет 3–15 эВ, что соответствует длинам волн 3–7 Å. Поэтому любые нарушения периодичности, обусловленные примесями, дефектами, поверхностью кристалла или тепловыми колебаниями атомов (фононами) вызывают рост удельного сопротивления металла.

Проведем качественный анализ температурной зависимости удельного сопротивления металлов. Электронный газ в металлах является вырожденным и основным механизмом рассеяния электронов в области высоких температур является рассеяние на фононах.

При понижения температуры до абсолютного нуля сопротивление нормальных металлов стремится к постоянному значению - остаточному сопротивлению . Исключением из этого правила являются сверхпроводящие металлы и сплавы, в которых сопротивление исчезает ниже некоторой критической температуры Т св (температура перехода в сверхпроводящее состояние).

При увеличении температуры, отклонение удельного сопротивления от линейной зависимости у большинства металлов наступает вблизи температуры плавления Т пл . Некоторое отступление от линейной зависимости может наблюдаться у ферромагнитных металлов, в которых происходит дополнительное рассеяние электронов на нарушениях спинового порядка.

При достижении температуры плавления и переходе в жидкое состояние у большинства металлов наблюдается резкое увеличение удельного сопротивления и у некоторых его уменьшение. Если плавление металла или сплава сопровождается увеличением объема, то удельноесопротивление повышается в два–четыре раза (например, у ртути в 4 раза).

У металлов, объем которых при плавлении уменьшается, наоборот, происходит понижение удельного сопротивления (у галлия на 53%, у сурьмы –29% и у висмута –54%) . Подобная аномалия может быть объяснена возрастанием плотности и модуля сжимаемости при переходе этих металлов из твердого в жидкое состояние. У некоторых расплавленных (жидких) металлов удельное сопротивление с ростом температуры при постоянном объеме перестает расти, у других оно растет более медленно, чем в твердом состоянии. Такие аномалии, по-видимому, можно связать с явлениями разупорядочения решетки, которые неодинаково происходят в различных металлах при переходе их из одного агрегатного состояния в другое.

Важной характеристикой металлов является температурный коэффициент удельного электрического сопротивления , показывающий относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус)

(10.11)

a r - положительно, когда удельное сопротивление возрастает при повышении температуры. Очевидно, что величина a r также является функцией температуры. В области 3 линейной зависимости r (T ) (см. рисунок 10.3) выполняется соотношение:

r=r 0 [ 1 +a r (T -T 0)]

(10.12)

где r 0 и a r - удельное сопротивление и температурный коэффициент удельного сопротивления при температуре T 0 , а r - удельное сопротивление при температуре T . Экспериментальные данные показывают, что у большинства металлов a r при комнатной температуре примерно 0,004 К -1 .У ферромагнитных металлов значение a r несколько выше.

Остаточное удельное сопротивление металлов. Как говорилось выше, сопротивление нормальных металлов стремится к постоянному значению - остаточному сопротивлению, по мере снижения температуры до абсолютного нуля. У нормальных металлов (не сверхпроводников) остаточное сопротивление возникает из-за рассеяния электронов проводимости статическими дефектами

Общую чистоту и совершенство металлического проводника можно определять отношением сопротивлений r =R 273 /R 4,2 K . Для стандартной меди чистоты 99,999 это отношение составляет 1000. Б óльших значений r можно достигнуть путем дополнительных зонных переплавок и приготовлением образцов в виде монокристаллов.

Обширный экспериментальный материал содержит многочисленные данные по измерению сопротивления вметаллах, вызванному наличием в них примесей. Можно отметить следующие наиболее характерные изменения в металлах, вызываемые легированием. Во-первых, не считая фононных возмущений, примесь является локальным нарушением идеальности решетки совершенное во всех других отношениях. Во-вторых, легирование влияет на зонную структуру, сдвигая энергию Ферми и изменяя плотность состоянии и эффективную массу, т.е. параметры, частично определяющие идеальное сопротивление металла. В-третьих, легирование может менять упругие константы и, соответственно, колебательный спектр решетки, оказывая влияние на идеальное сопротивление.

Общее удельное сопротивление проводника при температурах выше 0К складывается из остаточного сопротивления r ост и удельного сопротивления, обусловленного рассеянием на тепловых колебаниях решетки - r Т

r=r ост + r Т

(10.13)

Это соотношение известно как правило Матиссена об аддитивности удельного сопротивления. Часто, однако, наблюдаются значительные отклонения от правила Матиссена , причем некоторые их этих отклонений могут говорить не в пользу применимости основных факторов, влияющих на сопротивление металлов при введении в них примесей. Однако второй и третий факторы, отмеченные в начале этого раздела, также дают заметный вклад. Но, все же более сильное воздействие на сопротивление разбавленных твердых растворов оказывает первый фактор.

Изменение остаточного сопротивления на 1 ат . % примеси для одновалентных металлов можно найти по правилу Линде, согласно которому

Δρ ост = а + b Ζ )

(10.14)

где a и b - константы, зависящие от природы металла и периода, который занимает в Периодической системе элементов примесный атом; ΔΖ - разность валентностей металла-растворителя и примесного атома. Значительный практический интерес представляют расчеты сопротивления, обусловленные вакансиями и внедренными атомами. Такие дефекты легко возникает при облучении образца частицами высоких энергий, например нейтронами из реактора или ионами из ускорителя.

Многие металлы, например, такие как медь, алюминий, серебро обладают свойством проводимости электрического тока за счет наличия в их структуре свободных электронов. Также, металлы имеют некоторое сопротивление току, и у каждого оно свое. Сопротивление металла сильно зависит от его температуры.

Понять, как зависит сопротивление металла от температуры можно, если увеличивать температуру проводника, к примеру, на участке от 0 до t2 °С. С увеличением температуры проводника, его сопротивление также увеличивается. Причем эта зависимость имеет практически линейный характер.

С физической точки зрения увеличение сопротивления с ростом температуры можно объяснить увеличением амплитуды колебаний узлов кристаллической решетки, что в свою очередь затрудняет прохождение электронов, то есть увеличивается сопротивление электрическому току.

Глядя на график можно увидеть, что при t1 металл имеет сопротивление намного меньше, чем, например при t2. При дальнейшем снижении температуры можно прийти в точку t0, где сопротивление проводника будет практически равно нулю. Конечно, его сопротивление равно нулю быть не может, а лишь стремится к нему. В этой точке проводник становится сверхпроводником. Сверхпроводники используются в сильных магнитах в качестве обмотки. На практике данная точка лежит намного дальше, в районе абсолютного нуля, и определить её по данному графику невозможно.

Для данного графика можно записать уравнение

Воспользовавшись данным уравнением можно найти сопротивление проводника при любой температуре. Здесь нам понадобиться точка t0 полученная ранее на графике. Зная значение температуры в этой точке для конкретного материала, и температуры t1 и t2 можем найти сопротивления.

Изменение сопротивления с температурой используется в любой электрической машине, где прямой доступ к обмотке невозможен. К примеру, в асинхронном двигателе достаточно знать сопротивление статора в начальный момент времени и в момент, когда двигатель работает. Путём несложных расчётов, можно определить температуру двигателя, что на производстве делается в автоматическом режиме.

Последние материалы раздела:

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...