Закон ампера взаимодействие параллельных токов. Сила Ампера

Рассмотрим провод, находящийся с магнитном поле и по которому течет ток (рис.12.6).

На каждый носитель тока (электрон), действует сила Лоренца . Определим силу, действующей на элемент провода длины dl

Последнее выражение носит название закона Ампера .

Модуль силы Ампера вычисляется по формуле:

.

Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.


Применим закон Ампера для вычисления силы взаимодействия двух находящихся в вакууме параллельных бесконечно длинных прямых токов (рис.12.7).

Расстояние между проводниками - b. Предположим, что проводник I 1 создает магнитное поле индукцией

По закону Ампера на проводник I 2 , со стороны магнитного поля, действует сила

, учитывая, что (sinα =1)

Следовательно, на единицу длины (dl =1) проводника I 2 , действует сила

.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы в нее входили линии магнитной индукции, а четыре вытянутых пальца расположить по направлению электрического тока в проводнике, то отставленный большой палец укажет направление силы, действующей на проводник со стороны поля.

12.4. Циркуляция вектора магнитной индукции (закон полного тока). Следствие.

Магнитное поле в отличие от электростатического - непотенциальное поле: циркуляция вектора В магнитной индукции поля вдоль замкнутого контура не равна нулю и зависит от выбора контура. Такое поле в векторном анализе называют вихревым полем.


Рассмотрим в качестве примера магнитное поле замкнутого контура L произвольной формы, охватывающего бесконечно длинный прямолинейный проводник с током l , находящегося в вакууме (рис.12.8).

Линии магнитной индукции этого поля представляют собой окружности, плоскости которых перпендикулярны проводнику, а центры лежат на его оси (на рис. 12.8 эти линии изображены пунктиром). В точке А контура L вектор В магнитной индукции поля этого тока перпендикулярен радиусу-вектору .

Из рисунка видно, что

где - длина проекции вектора dl на направление вектора В . В то же время малый отрезок dl 1 касательной к окружности радиуса r можно заменить дугой окружности: , где dφ - центральный угол, под которым виден элемент dl контура L из центра окружности.

Тогда получаем, что циркуляция вектора индукции

Во всех точках линии вектор магнитной индукции равен

интегрируя вдоль всего замкнутого контура, и учитывая, что угол изменяется от нуля до 2π, найдем циркуляцию

Из формулы можно сделать следующие выводы:

1. Магнитное поле прямолинейного тока – вихревое поле и не консервативно, так как в нем циркуляция вектора В вдоль линии магнитной индукции не равна нулю;

2. циркуляция вектора В магнитной индукции замкнутого контура, охватывающего поле прямолинейного тока в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока.

Если магнитное поле образовано несколькими проводниками с током, то циркуляция результирующего поля

Данное выражение называется теоремой о полном токе .

Взаимодействие неподвижных зарядов описывается законом Кулона. Однако закон Кулона недостаточен для анализа взаимодействия движущихся зарядов. В опытах Ампера впервые появилось сообщение о том, что движущиеся заряды (токи) создают в пространстве некоторое поле, приводя к взаимодействию этих токов. Было установлено, что токи противоположных направлений отталкиваются, а одного направления – притягиваются. Поскольку оказалось, что поле тока, действует на магнитную стрелку точно так же, как и поле постоянного магнита, то это поле тока называли магнитным. Поле тока называется магнитным полем. Впоследствии было установлено, что у этих полей одна и та же природа.

Взаимодействие элементов тока .

Закон взаимодействия токов был открыт экспереметально задолго до создания теории относительности. Он значительно сложнее закона Кулона, описывающего взаимодействие неподвижных точечных зарядов. Этим и объясняется, что в его исследовании приняли участие многие ученые, а существенный вклад внесли Био (1774 — 1862), Савар (1791 — 1841), Ампер (1775 — 1836) и Лаплас(1749 — 1827).

В 1820 г. Х. К. Эрстед (1777 — 1851) открыл действие электрического тока на магнитную стрелку. В этом же году Био и Савар сформулировали закон для силы dF , с которой элемент тока I DL действует на магнитный полюс, удаленный на расстояние R от элемента тока:

DF I dL (16.1)

Где – угол, характеризующий взаимную ориентацию элемента тока и магнитного полюса. Функция вскоре была найдена экспериментально. Функция F (R ) Теоретически была выведена Лапласом в виде

F (R ) 1/r. (16.2)

Таким образом, усилиями Био, Савара и Лапласа была найдена формула, описывающая силу действия тока на магнитный полюс. В окончательном виде закон Био-Савара-Лапласа был сформулирован в 1826г. В виде формулы для силы, действующей на магнитный полюс, поскольку понятия напряженности поля еще не существовало.

В 1820г. Ампер открыл взаимодействие токов – притяжение или отталкивание параллельных токов. Им была доказана эквивалентность соленоида и постоянного магнита. Это позволило четко поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Ампер по своему образованию и склонностям был теоретиком и математиком. Тем не менее при исследовании взаимодействия элементов тока он выполнил очень скрупулезные экспериментальные работы, сконструировав ряд хитроумных устройств. Станок Ампера для демонстраци сил взаимодействия элементов тока. К сожалению, ни в публикациях, ни в его бумагах не осталось описания пути, каким он пришел к открытию. Однако формула Ампера для силы отличается от (16.2) наличием в правой части полного дифференциала. Это отличие несущественно при вычислении силы взаимодействия замкнутых токов, поскольку интеграл от полного дифференциала по замкнутому контуру равен нулю. Учитывая, что в экспериментах измеряется не сила взаимодействия элементов тока, а сила взаимодействия замкнутых токов, можно с полным основанием считать Ампера автором закона магнитного взаимодействия токов. Используемая в настоящее время формула для взаимодействия токов. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844г. Грассманом (1809 — 1877).

Если ввести 2 элемента тока и , то сила, с которой элемент тока действует на элемент тока будет определяться следующей формулой:

, (16.2)

Точно также можно записать:

(16.3)

Легко видеть:

Так как векторы и имеют между собой угол не равный 180°, то очевидно , т. е. III-ий закон Ньютона для элементов тока не выполняется. Но если вычислить силу, с которой ток , текущий по замкнутому контуру , действует на ток , текущий по замкнутому контуру :

, (16.4)

А затем вычислить , то , т. е. для токов Ш-ий закон Ньютона выполняется.

Описание взаимодействия токов с помощью магнитного поля.

В полной аналогии с электростатикой взаимодействие элементов тока представляется двумя стадиями: элемент тока в месте нахождения элемента создает магнитное поле, которое действует на элемент с силой . Поэтому элемент тока создает в точке нахождения элемента тока магнитное поле с индукцией

. (16.5)

На элемент , находящийся в точке с магнитной индукцией , действует сила

(16.6)

Соотношение (16.5), которое описывает порождение магнитного поля током, называется законом Био-Савара. Проинтегрировав (16.5) получим:

(16.7)

Где — радиус-вектор, проведенный от элемента тока к точке, в которой вычисляется индукция .

Для объемных токов закон Био-Савара имеет вид:

, (16.8)

Где j – плотность тока.

Из опыта следует, что для индукции магнитного поля справедлив принцип суперпозиции, т. е.

Пример.

Дан прямой бесконечный ток J. Вычислим индукцию магнитного поля в точке М на расстоянии r от него.

= .

= = . (16.10)

Формула (16.10) определяет индукцию магнитного поля, созданного прямым током.

Направление вектора магнитной индукции Приведено на рисунках.

Сила Ампера и сила Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Фактически эта сила

Или , где

Перейдем к силе, действующей на проводник с током длиной L . Тогда = и .

Но ток можно представить как , где — средняя скорость, n – концентрация частиц, S – площадь поперечного сечения. Тогда

, где . (16.12)

Так как , . Тогда , где — сила Лоренца, т. е. сила, действующая на заряд, движущийся в магнитном поле. В векторном виде

При сила Лоренца равна нулю, т. е. она не действует на заряд, который движется вдоль направления . При , т. е. сила Лоренца перпендикулярна скорости: .

Как известно из механики, если сила перпендикулярна скорости, то частицы движутся по окружности радиуса R, т. е. ,

Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF , с которой магнитное поле действует на элемент проводника dl с током, находяще­гося в магнитном поле, прямо пропорцио­нальна силе тока I в проводнике и век­торному произведению элемента длиной dl проводника на магнитную индук­цию В:

dF = I . (111.1)

Направление вектора dF может быть найдено, согласно (111.1), по общим пра­вилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Модуль силы Ампера (см. (111.1)) вычисляется по формуле

dF = IB dl sin, (111.2)

где a - угол между векторами dl и В.

Закон Ампера применяется для опре­деления силы взаимодействия двух токов. Рассмотрим два бесконечных прямолиней­ных параллельных тока I 1 и I 2 (направле­ния токов указаны на рис. 167), расстоя­ние между которыми равно R . Каждый из проводников создает магнитное поле, ко­торое действует по закону Ампера на дру­гой проводник с током. Рассмотрим, с ка­кой силой действует магнитное поле тока I 1 на элемент dl второго проводника с то­ком I 2 . Ток I 1 создает вокруг себя магнит­ное поле, линии магнитной индукции кото­рого представляют собой концентрические окружности. Направление вектора b 1 за­дается правилом правого винта, его мо­дуль по формуле (110.5) равен

Направление силы dF 1 , с которой поле B 1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, со­гласно (111.2), с учетом того, что угол  между элементами тока I 2 и вектором B 1 прямой, равен

dF 1 =I 2 B 1 dl , или, подставляя значение для В 1 , получим

Рассуждая аналогично, можно пока­зать, что сила dF 2 , с которой магнитное поле тока I 2 действует на элемент dl пер­вого проводника с током I 1 , направлена в противоположную сторону и по модулю равна

Сравнение выражений (111.3) и (111.4) показывает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой

Если токи имеют противоположные на­правления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяе­мая формулой (111.5).

45. Закон Фарадея и его вывод из закона сохранения энергии

Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром потока магнитной индукции, в контуре возникает индукционный ток; возник­новение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой элек­тромагнитной индукции. Значение индук­ционного тока, а следовательно, и э. д. с, электромагнитной индукции ξ i определя­ются только скоростью изменения магнит­ного потока, т. е.

Теперь необходимо выяснить знак ξ i . В § 120 было показано, что знак магнитно­го потока зависит от выбора положитель­ной нормали к контуру. В свою очередь, положительное направление нормали свя­зано с током правилом правого винта (см. § 109). Следовательно, выбирая опре­деленное положительное направление нор­мали, мы определяем как знак потока маг­нитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими пред­ставлениями и выводами, можно соответ­ственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватыва­емого замкнутым проводящим контуром, возникающая в контуре э.д.с.

Знак минус показывает, что увеличе­ние потока (dФ/dt>0) вызывает э.д.с.

ξξ i <0, т. е. поле индукционного тока на­правлено навстречу потоку; уменьшение

потока (dФ/dt<0) вызывает ξ i >0,

т. е. направления потока и поля индукци­онного тока совпадают. Знак минус в фор­муле (123.2) является математическим выражением правила Ленца - общего правила для нахождения направления ин­дукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по­тока, вызвавшего этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона сохранения энергии, как это впервые сде­лал Г. Гельмгольц. Рассмотрим проводник с током I , который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно переме­щаться (см. рис. 177). Под действием си­лы Ампера F , направление которой пока­зано на рисунке, проводник перемещается на отрезок dx . Таким образом, сила Ампе­ра производит работу (см.(121.1)) dA =I dФ, где dФ - пересеченный проводни­ком магнитный поток.

Если полное сопротивление контура равно R , то, согласно закону сохранения энергии, работа источника тока за вре­мя dt (ξIdt ) будет складываться из рабо­ты на джоулеву теплоту (I 2 Rdt ) и работы по перемещению проводника в магнитном поле (I dФ):

где-dФ/dt=ξ i есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулиро­вать еще таким образом: э.д.с. ξ i элек­тромагнитной индукции в контуре числен­но равна и противоположна по знаку ско­рости изменения магнитного потока сквозь поверхность, ограниченную этим конту­ром. Этот закон является универсальным: э.д.с. ξ i не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнит­ной индукции? Если проводник (подвиж­ная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противо­положно току, т. е. она будет создавать в проводнике индукционный ток противо­положного направления (за направление электрического тока принимается движе­ние положительных зарядов). Таким обра­зом, возбуждение э.д.с. индукции при движении контура в постоянном магнит­ном поле объясняется действием силы Ло­ренца, возникающей при движении про­водника.

Согласно закону Фарадея, возникнове­ние э.д.с. электромагнитной индукции возможно и в случае неподвижного кон­тура, находящегося в переменном магнит­ном поле. Однако сила Лоренца на непод­вижные заряды не действует, поэтому в данном случае ею нельзя объяснить воз­никновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в непод­вижных проводниках предположил, что всякое переменное магнитное поле воз­буждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция векто­ра Е В этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:

47. . Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф= LI , (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн - индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1В с/А.

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I / l )S . Под­ставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N , его длины l , площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его разме­ров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура - аналог электри­ческой емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектриче­ской проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L =const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

dI/dt>0 и ξ s <0, т. е. ток самоиндукции

направлен навстречу току, обусловленно­му внешним источником, и тормозит его возрастание. Если ток со временем убывает, то dI/dt<0 и ξ s > 0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, об­ладая определенной индуктивностью, при­обретает электрическую инертность, за­ключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

59. Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю (см. (137.3)), а циркуляция вектора Е B оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D :

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

D = 0 E ,

В=  0 Н,

j =E ,

где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла - интегральная

и дифференциальная - эквивалентны. Однако когда имеются поверхности разры­ва - поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D 1 n = D 2 n , E 1 = E 2 , B 1 n = B 2 n , H 1  = H 2 

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн - перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3 10 8 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D , Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

44. . Диа- и парамагнетизм

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента р m , сохраняя по­стоянным угол а, вращается вокруг направления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные - вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому парамагнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Ферромагнетики и их свойства

Помимо рассмотренных двух классов ве­ществ - диа- и парамагнетиков, называе­мых слабомагнитными веществами, су­ществуют еще сильномагнитные вещест­ва - ферромагнетики - вещества, обла­дающие спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагне­тикам кроме основного их представите­ля - железа (от него и идет название «ферромагнетизм») - относятся, напри­мер, кобальт, никель, гадолиний, их спла­вы и соединения.

Сила взаимодействия между элементами токов, пропорциональная токам и длине элементов, обратно пропорциональная квадрату расстояния между ними и, зависящая от их взаимного расположения

Анимация

Описание

В 1820 г. Ампер открыл взаимодействие токов - притяжение или отталкивание параллельных токов. Это позволило поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон их взаимодействия как фундаментальный закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844 г. Грассманом (1809-1877 гг.) и имеет вид:

, (в "СИ") (1)

, (в гауссовой системе)

где d F 12 - сила, с которой элемент тока I 1 d I 1 действует на элемент тока I 2 d I 2 ;

r 12 - радиус-вектор, проведенный от элемента I 1 d I 1 к элементу тока I 2 d I 2 ;

c =3Ч 108 м/с - скорость света.

Взаимодействие элементов тока

Рис. 1

Сила d F 12 , с которой элемент тока I 2 d I 2 действует на элемент тока I 1 d I 1 , имеет вид:

. (в "СИ") (2)

Силы d F 12 и d F 21 , вообще говоря, не коллинеарны друг другу, следовательно, взаимодействие элементов тока не удовлетворяет третьему закону Ньютона:

d F 12 +d F 21 № 0.

Закон (1) имеет вспомогательный смысл, приводя к правильным, подтвержденным на опыте значениям силы только после интегрирования (1) по замкнутым контурам L 1 и L 2 .

Сила, с которой ток I 1 , текущий по замкнутому контуру L 1 , действует на замкнутый контур L 2 с током I 2 , равна:

. (в "СИ") (3)

Аналогичный вид имеет сила d F 21 .

Для сил взаимодействия замкнутых контуров с током третий закон Ньютона выполняется:

d F 12 +d F 21 =0

В полной аналогии с электростатикой взаимодействие элементов тока представляется так: элемент тока I 1 d I 1 в точке нахождения элемента тока I 2 d I 2 создает магнитное поле, взаимодействие с которым элемента тока I 2 d I 2 приводит к возникновению силы d F 12 .

, (4)

. (5)

Соотношение (5), описывающее порождение магнитного поля током, называется законом Био-Савара.

Сила взаимодействия параллельных токов.

Индукция магнитного поля, создаваемого прямолинейным током I 1 , текущим по бесконечно длинному проводнику, в точке нахождения элемента тока I 2 dx 2 (см. рис. 2) выражается формулой:

. (в "СИ") (6)

Взаимодействие двух параллельных токов

Рис. 2

Формула Ампера, определяющая силу, действующую на элемент тока I 2 dx 2 , находящийся в магнитном поле В 12 , имеет вид:

, (в "СИ") (7)

. (в гауссовой системе)

Эта сила направлена перпендикулярно проводнику с током I 2 и является силой притяжения. Аналогичная сила направлена перпендикулярно проводнику с током I 1 и является силой притяжения. Если токи в параллельных проводниках текут в противоположные стороны, то такие проводники отталкиваются.

Андре Мари Ампер (1775-1836) - французский физик.

Временные характеристики

Время инициации (log to от -15 до -12);

Время существования (log tc от 13 до 15);

Время деградации (log td от -15 до -12);

Время оптимального проявления (log tk от -12 до 3).

Диаграмма:

Технические реализации эффекта

Схема установки для "взвешивания" токов измерения

Реализация единицы 1А с помощью силы, действующей на катушку с током.

Внутри большой фиксированной катушки помещается «измерительная катушка», на которую действует подлежащая измерению сила. Измерительная катушка подвешена к коромыслу чувствительных аналитических весов (рис. 3).

Схема установки для «взвешивания» токов измерения

Рис. 3

Применение эффекта

Закон Ампера взаимодействия токов, или, что - то же самое, магнитных полей, порождаемых этими токами, используют для устройства весьма распространенного типа электроизмерительных приборов - магнитоэлектрических приборов. Они имеют легкую рамку с проволокой, укрепленную на упругом подвесе той или иной конструкции, способную поворачиваться в магнитном поле. Родоначальником всех магнитоэлектрических приборов является электродинамометр Вебера (рис. 4).

Электродинамометр Вебера

Рис. 4

Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У висит на бифилярном подвесе поддерживаемая вилкой ll ў подвижная катушка C , ось которой перпендикулярна оси неподвижной катушки. При последовательном прохождении тока по катушкам, подвижная катушка стремится стать параллельно неподвижной и поворачивается, закручивая бифилярный подвес. Углы поворота отсчитываются при помощи прикрепленного к раме ll ў зеркала f.

Литература

1. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2. Тамм И.Е. Основы теории электричества.- М.: Государственное издательство технико-теоретической литературы, 1954.

3. Калашников С.Г. Электричество.- М.: Наука, 1977.

4. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

5. Камке Д., Кремер К. Физические основы единиц измерения.- М.: Мир, 1980.

Ключевые слова

  • сила Ампера
  • магнитное поле
  • закон Био-Савара
  • индукция магнитного поля
  • взаимодействие элементов тока
  • взаимодействие параллельных токов

Разделы естественных наук:

Релятивистская форма закона Кулона: сила Лоренца и уравнения Максвелла. Электромагнитное поле.

Закон Кулона :

Сила Лоренца: СИЛА ЛОРЕНЦА - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Уравнения Максвелла: - это система дифференциальных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Электромагнитное поле: - это фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представляющее собой совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга.

Стационарное магнитное поле. Индукция магнитного поля, принцип суперпозиции. Закон Био-Савара.

Постоянное (или стационарное) магнитное поле: - это магнитное поле, неизменяющееся во времени. М\Г - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Магнитная индукция : - векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Принцип суперпозиции: - В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
Закон Био-Савара: - это закон, определяющий напряженность магнитного поля, создаваемого электрическим током, в произвольной точке пространства вокруг проводника с током.


Сила Ампера. Взаимодействие параллельных проводников с током. Работа сил магнитного поля по перемещению витка с током.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...