Задать график с шагом распределения пуассона. Распределение Пуассона

Во многих практически важных приложениях большую роль играет распределение Пуассона. Многие из числовых дискретных величин являются реализациями пуассоновского процесса, обладающего следующими свойствами:

  • Нас интересует, сколько раз происходит некое событие в заданной области возможных исходов случайного эксперимента. Область возможных исходов может представлять собой интервал времени, отрезок, поверхность и т.п.
  • Вероятность данного события одинакова для всех областей возможных исходов.
  • Количество событий, происходящих в одной области возможных исходов, не зависит от количества событий, происходящих в других областях.
  • Вероятность того, что в одной и той же области возможных исходов данное событие происходит больше одного раза, стремится к нулю по мере уменьшения области возможных исходов.

Чтобы глубже понять смысл пуассоновского процесса, предположим, что мы исследуем количество клиентов, посещающих отделение банка, расположенное в центральном деловом районе, во время ланча, т.е. с 12 до 13 часов. Предположим, требуется определить количество клиентов, приходящих за одну минуту. Обладает ли эта ситуация особенностями, перечисленными выше? Во-первых, событие, которое нас интересует, представляет собой приход клиента, а область возможных исходов - одноминутный интервал. Сколько клиентов придет в банк за минуту - ни одного, один, два или больше? Во-вторых, разумно предположить, что вероятность прихода клиента на протяжении минуты одинакова для всех одноминутных интервалов. В-третьих, приход одного клиента в течение любого одноминутного интервала не зависит от прихода любого другого клиента в течение любого другого одноминутного интервала. И, наконец, вероятность того, что в банк придет больше одного клиента стремится к нулю, если временной интервал стремится к нулю, например, становится меньше 0,1 с. Итак, количество клиентов, приходящих в банк во время ланча в течение одной минуты, описывается распределением Пуассона.

Распределение Пуассона имеет один параметр, обозначаемый символом λ (греческая буква «лямбда») – среднее количество успешных испытаний в заданной области возможных исходов. Дисперсия распределения Пуассона также равна λ, а его стандартное отклонение равно . Количество успешных испытаний Х пуассоновской случайной величины изменяется от 0 до бесконечности. Распределение Пуассона описывается формулой:

где Р(Х) - вероятность X успешных испытаний, λ - ожидаемое количество успехов, е - основание натурального логарифма, равное 2,71828, X - количество успехов в единицу времени.

Вернемся к нашему примеру. Допустим, что в течение обеденного перерыва в среднем в банк приходят три клиента в минуту. Какова вероятность того, что в данную минуту в банк придут два клиента? А чему равна вероятность того, что в банк придут более двух клиентов?

Применим формулу (1) с параметром λ = 3. Тогда вероятность того, что в течение данной минуты в банк придут два клиента, равна

Вероятность того, что в банк придут более двух клиентов, равна Р(Х > 2) = Р(Х = 3) + Р(Х = 4) + … + Р(Х = ∞) . Поскольку сумма всех вероятностей должна быть равной 1, члены ряда, стоящего в правой части формулы, представляют собой вероятность дополнения к событию Х≤ 2. Иначе говоря, сумма этого ряда равна 1 – Р(Х ≤ 2). Таким образом, Р(Х> 2) = 1 – Р(Х≤2) = 1 – [Р(Х = 0) + Р(Х = 1) + Р(Х = 2)]. Теперь, используя формулу (1), получаем:

Таким образом, вероятность того, что в банк в течение минуты придут не больше двух клиентов, равна 0,423 (или 42,3%), а вероятность того, что в банк в течение минуты придут больше двух клиентов, равна 0,577 (или 57,7%).

Такие вычисления могут показаться утомительными, особенно если параметр λ достаточно велик. Чтобы избежать сложных вычислений, многие пуассоновские вероятности можно найти в специальных таблицах (рис. 1). Например, вероятность того, что в заданную минуту в банк придут два клиента, если в среднем в банк приходят три клиента в минуту, находится на пересечении строки X = 2 и столбца λ = 3. Таким образом, она равна 0,2240 или 22,4%.

Рис. 1. Пуассоновская вероятность при λ = 3

Сейчас вряд ли кто-то будет пользоваться таблицами, если под рукой есть Excel с его функцией =ПУАССОН.РАСП() (рис. 2). Эта функция имеет три параметра: число успешных испытаний Х , среднее ожидаемое количество успешных испытаний λ, параметр Интегральная , принимающий два значения: ЛОЖЬ – в этом случае вычисляется вероятность числа успешных испытаний Х (только Х), ИСТИНА – в этом случае вычисляется вероятность числа успешных испытаний от 0 до Х.

Рис. 2. Расчет в Excel вероятностей распределения Пуассона при λ = 3

Аппроксимация биноминального распределения с помощью распределения Пуассона

Если число n велико, а число р - мало, биномиальное распределение можно аппроксимировать с помощью распределения Пуассона. Чем больше число n и меньше число р , тем выше точность аппроксимации. Для аппроксимации биномиального распределения используется следующая модель Пуассона.

где Р(Х) - вероятность X успехов при заданных параметрах n и р , n - объем выборки, р - истинная вероятность успеха, е - основание натурального логарифма, X - количество успехов в выборке (X = 0, 1, 2, …, n ).

Теоретически случайная величина, имеющая распределение Пуассона, принимает значения от 0 до ∞. Однако в тех ситуациях, когда распределение Пуассона применяется для приближения биномиального распределения, пуассоновская случайная величина - количество успехов среди n наблюдений - не может превышать число n . Из формулы (2) следует, что с увеличением числа n и уменьшением числа р вероятность обнаружить большое количество успехов уменьшается и стремится к нулю.

Как говорилось выше, математическое ожидание µ и дисперсия σ 2 распределения Пуассона равны λ. Следовательно, при аппроксимации биномиального распределения с помощью распределения Пуассона для приближения математического ожидания следует применять формулу (3).

(3) µ = Е(Х) = λ = np

Для аппроксимации стандартного отклонения используется формула (4).

Обратите внимание на то, что стандартное отклонение, вычисленное по формуле (4), стремится к стандартному отклонению в биномиальной модели – , когда вероятность успеха p стремится к нулю, и, соответственно, вероятность неудачи 1 – р стремится к единице.

Предположим, что 8% шин, произведенных на некотором заводе, являются бракованными. Чтобы проиллюстрировать применение распределения Пуассона для аппроксимации биномиального распределения, вычислим вероятность обнаружить одну дефектную шину в выборке, состоящей из 20 шин. Применим формулу (2), получим

Если бы мы вычислили истинное биномиальное распределение, а не его приближение, то получили бы следующий результат:

Однако эти вычисления довольно утомительны. В то же время, если вы используете Excel для вычисления вероятностей, то применение аппроксимации в виде распределения Пуассона становится излишним. На рис. 3 показано, что трудоемкость вычислений в Excel одинакова. Тем не менее, этот раздел, на мой взгляд, полезен понимаем того, что при некоторых условиях биноминальное распределение и распределение Пуассона дают близкие результаты.

Рис. 3. Сравнение трудоемкости расчетов в Excel: (а) распределение Пуассона; (б) биноминальное распределение

Итак, в настоящей и двух предыдущих заметках были рассмотрены три дискретных числовых распределения: , и Пуассона. Чтобы лучше представлять, как эти распределения соотносятся друг с другом приведем небольшое дерево вопросов (рис. 4).

Рис. 4. Классификация дискретных распределений вероятностей

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 320–328

Биномиальный закон распределения относится к случаям, когда была сделана выборка фиксированного объема. Распределение Пуассона относится к случаям, когда число случайных событий происходит на определенных длине, площади, объеме или времени, при этом определяющим параметром распределения является среднее число событийт , а не объем выборки п и вероятность успеха р. Например, количество несоответствий в выборке или количество несоответствий, приходящихся на единицу продукции.

Распределение вероятностей для числа успехов х имеет при этом следующий вид:

Или можно сказать, что дискретная случайная величина X распределена по закону Пуассона, если ее возможные значения 0,1, 2, ...т, ...п, а вероятность появления таких значений определяется соотношением:

(14)

где m или λ- некоторая положительная величина, называемая параметром распределения Пуассона.

Закон Пуассона распространяется на «редко» происходящие события, при этом возможность очередной удачи (например, сбоя) сохраняется непрерывно, является постоянной и не зависит от числа предыдущих удач или неудач (когда речь идет о процессах, развивающихся во времени, это называют «независимостью от прошлого»). Классическим примером, когда применим закон Пуассона, является число телефонных вызовов на телефонной станции в течение заданного интервала времени. Другими примерами могут быть число чернильных клякс на странице, неаккуратно написанной рукописи, или число соринок, оказавшихся на кузове автомобиля во время его окраски. Закон распределения Пуассона измеряет число дефектов, а не число бракованных изделий.

Распределению Пуассона подчиняется количество случайных событий, которые появляются в фиксированные промежутки времени или в фиксированной области пространства, При λ<1 значение P(m) монотонно убывает с ростом m то, a при λ> 1 значениеP(m)с ростом т проходит через максимум вблизи /

Особенностью распределения Пуассона является равенство дисперсии математическому ожиданию. Параметры распределения Пуассона

M(x) = σ 2 = λ (15)

Эта особенность распределения Пуассона позволяет на практике утверждать, что экспериментально полученное распределение случайной величины подчинено распределению Пуассона, если выборочные значения математического ожидания и дисперсии примерно равны.

Закон редких событий применяется в машиностроении для выборочного контроля готовой продукции, когда по техническим условиям в принимаемой партии продукции допускается некоторый процент брака (обычно небольшой) q<<0.1.

Если вероятность q события А очень мала (q≤0,1), а число испытаний велико, то вероятность того, что событие А наступит m раз в n испытаниях, будет равна



,

где λ = М(х) = nq

Для вычисления распределения Пуассона можно пользоваться следующими рекуррентными соотношениями

и (16)

Распределение Пуассона играет важную роль в статистических методах обеспечения качества, поскольку с его помощью можно аппроксимировать гипергеометрическое и биномиальное распределения.

Такая аппроксимация допустима, когда , при условии, что qn имеет конечный предел и q<0.1. Когда п →∞ , а р → 0, среднее п р = т = const.

При помощи закона редких событий можно вычислить вероятность того, что в выборке из n единиц будет содержаться: 0,1,2,3, и т.д. бракованных деталей, т.е. заданное m раз. Можно также вычислить вероятность появления в такой выборке m штук дефектных деталей и более. Эта вероятность на основании правила сложения вероятностей будет равна-:

Пример 1 . В партии имеются бракованные детали, доля которых составляет 0,1. Последовательно берут 10 деталей и обследуют, после чего их возвращают в партию, т.е. испытания носят независимый характер. Какова вероятность того, что при проверке 10 деталей попадется одна бракованная?

Решение Из условия задачи q=0,1; n=10; m=1.Очевидно, что р=1-q=0,9.

Полученный результат можно отнести и к тому случаю, когда извлекается подряд 10 деталей без возврата их обратно в партию. При достаточно большой партии, например, 1000 шт., вероятность извлечения деталей изменится ничтожно мало. Поэтому при таких условиях извлечение бракованной детали можно рассматривать как событие, не зависящее от результатов предшествующих испытаний.

Пример 2. В партии имеется 1% бракованных дета- лей. Какова вероятность того, что при взятии из партии выборки объемом 50 единиц продукции в ней будет находиться 0, 1, 2, 3 ,4дефектных деталей??

Решение. Здесь q=0.01, nq=50*0.01=0.5

Таким образом, для эффективного применения распределения Пуассона как аппроксимации биномиального необходимо, чтобы вероятность успеха р была существенно меньше q . a п р = т была порядка единицы (или нескольких единиц).

Таким образом, в статистических методах обеспечения качества

гипергеометрический закон применим для выборок любого объема п и любого уровня несоответствий q ,

биномиальный закон и закон Пуассона являются его частными случаями соответственно при условии, если n/N<0,1 и

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину , которая может принимать только целые, неотрицательные значения:

причем последовательность этих значений теоретически не ограничена.

Говорят, что случайная величина распределена по закону Пуассона, если вероятность того, что она примет определенное значение , выражается формулой

где а – некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины , распределенной по закону Пуассона, имеет вид:

Убедимся, прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. что сумма всех вероятностей равна единице. Имеем:

.

На рис. 5.9.1 показаны многоугольники распределения случайной величины , распределенной по закону Пуассона, соответствующие различным значениям параметра . В таблице 8 приложения приведены значения для различных .

Определим основные характеристики – математическое ожидание и дисперсию – случайной величины , распределенной по закону Пуассона. По определению математического ожидания

.

Первый член суммы (соответствующий ) равен нулю, следовательно, суммирование можно начать с :

Обозначим ; тогда

. (5.9.2)

Таким образом, параметр представляет собой не что иное, как математическое ожидание случайной величины .

Для определения дисперсии найдем сначала второй начальный момент величины :

По ранее доказанному

кроме того,

Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна её математическому ожиданию .

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики – математическое ожидание и дисперсию – случайной величины. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины , распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного . Обозначим эту вероятность :

Очевидно, вероятность может быть вычислена как сумма

Однако значительно проще определить её из вероятности противоположного события:

(5.9.4)

В частности, вероятность того, что величина примет положительное значение, выражается формулой

(5.9.5)

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1. Вероятность попадания того или иного числа точек на отрезок зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределяются на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через .

2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3. Вероятность попадания на малый участок двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины и рассмотрим дискретную случайную величину – число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина имеет закон распределения Пуассона. Для этого вычислим вероятность того, что на отрезок попадет ровно точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно (т.к. на единицу длины попадает в среднем точек). Согласно условию 3 для малого отрезка можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание числа точек, попадающих на участок , будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при можно считать вероятность того, что на участок попадет одна (хотя бы одна) точка, равной , а вероятность того, что не попадет ни одной, равной .

Воспользуемся этим для вычисления вероятности попадания на отрезок ровно точек. Разделим отрезок на равных частей длиной . Условимся называть элементарный отрезок «пустым», если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок окажется «занятым», приближенно равна ; вероятность того, что он окажется «пустым», равна . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как независимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью . Найдем вероятность того, что среди отрезков будет ровно «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая ,

(5.9.7)

При достаточно большом эта вероятность приближенно равна вероятности попадания на отрезок ровно точек, так как попадание двух или больше точек на отрезок имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение , нужно в выражении (5.9.7) перейти к пределу при :

(5.9.8)

Преобразуем выражение, стоящее под знаком предела:

(5.9.9)

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при , очевидно, стремятся к единице. Выражение от не зависит. Числитель последней дроби можно преобразовать так:

(5.9.10)

При и выражение (5.9.10) стремится к . Таким образом, доказано, что вероятность попадания ровно точек в отрезок выражается формулой

где , т.е. величина Х распределена по закону Пуассона с параметром .

Отметим, что величина по смыслу представляет собой среднее число точек, приходящееся на отрезок .

Величина (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок попадет хотя бы одна точка:

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек , попадающих в любую область (плоскую или пространственную), распределяются по закону Пуассона:

где – среднее число точек, попадающих в область .

Для плоского случая

где – площадь области ; для пространственного

где - объем области .

Заметим, что для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности () несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножение плотности на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему. (Подробнее об этом см. n° 19.4)

Наличие случайных точек, разбросанных на линии, на плоскости или объеме – неединственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

, (5.9.12)

если одновременно устремлять число опытов к бесконечности, а вероятность – к нулю, причем их произведение сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

. (5.9.14)

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

, (5.9.16)

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов , в каждом из которых событие имеет очень малую вероятность . Тогда для вычисления вероятности того, что событие появится ровно раз, можно воспользоваться приближенной формулой:

, (5.9.17)

где - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона – выражать биномиальное распределение при большом числе опытов и малой вероятности события – происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

Кв.м. Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение. . По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции пользуемся таблицей 2 приложения).

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 куб. дм воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб.

Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель попадет: ни одного снаряда, один снаряд, два снаряда.

Решение. Имеем . По таблице 8 приложения находим вероятности.

Например, регистрируется количество дорожных происшествий за неделю на определенном участке дороги. Это число представляет собой случайную величину, которая может принимать значения: (верхнего предела нет). Число дорожных происшествий может быть каким угодно большим. Если рассмотреть какой-либо короткий временной промежуток в течение недели, скажем минуту, то происшествие либо произойдет на его протяжении, либо нет. Вероятность дорожного происшествия в течение отдельно взятой минуты очень мала, и примерно такая же она для всех минут.

Распределение вероятностей числа происшествий описывается формулой:

где m - среднее количество происшествий за неделю на определенном участке дороги; е - константа, равная 2,718...

Характерные особенности данных, для которых наилучшим образом подходит распределение Пуассона, следующие:

1. Каждый малый интервал времени может рассматриваться как опыт, результатом которого является одно из двух: либо происшествие (“успех”), либо его отсутствие (“неудача”). Интервалы столь малы, что может быть только один “успех” в одном интервале, вероятность которого мала и неизменна.

2. Число “успехов" в одном большом интервале не зависит от их числа в другом, т.е. “успехи” беспорядочно разбросаны по временным промежуткам.

3. Среднее число “успехов” постоянно на протяжении всего времени. Распределение вероятностей Пуассона может быть использовано не только при работе со случайными величинами на временных интервалах, но и при учете дефектов дорожного покрытия на километр пути или опечаток на страницу текста. Общая формула распределения вероятностей Пуассона:

где m - среднее число “успехов” на единицу.

В таблицах распределения вероятностей Пуассона значения табулированы для определенных значений m и

Пример 2.7. В среднем на телефонной станции заказывают три телефонных разговора в течение пяти минут. Какова вероятность, что будет заказано 0, 1,2, 3, 4 или больше четырех разговоров в течение пяти минут?

Применим распределение вероятностей Пуассона, так как:

1. Существует неограниченное количество опытов, т.е. маленьких отрезков времени, когда может появиться заказ на телефонный разговор, вероятность чего мала и постоянна.

2. Считается, что спрос на телефонные разговоры беспорядочно распределен во времени.

3. Считается, что среднее число телефонных разговоров в любом -минутном отрезке времени одинаково.

В этом примере среднее число заказов равно 3 за 5 минут. Отсюда, распределение Пуассона:

При распределении вероятностей Пуассона, зная среднее число “успехов” на 5-минутном промежутке (например как в примере 2.7), для того чтобы узнать среднее число “успехов” за один час, нужно просто умножить на 12. В примере 2.7 среднее число заказов в час составит: 3 х 12 = 36. Аналогично, если требуется определить среднее число заказов в минуту:

Пример 2.8. В среднем за пять дней рабочей недели на автоматической линии происходят 3,4 неполадок. Какова вероятность двух неполадок в каждый день работы? Решение.

Можно применить распределение Пуассона:

1. Существует неограниченное количество опытов, т.е. малых промежутков времени, в течение каждого из них может произойти или не произойти неполадка на автоматической линии. Вероятность этого для каждого промежутка времени мала и постоянна.

2. Предполагается, что неполадки беспорядочно расположены во времени.

3. Предполагается, что среднее число неполадок в течение любых пяти дней постоянно.

Среднее число неполадок равно 3, 4 за пять дней. Отсюда число неполадок в день:

Следовательно,

Наиболее общим случаем различного рода вероятностных распределений является биномиальное распределение. Воспользуемся его универсальностью для определения наиболее часто встречающихся на практике частных видов распределений.

Биномиальное распределение

Пусть имеется некое событие A . Вероятность появления события A равна p , вероятность непоявления события A равна 1 – p , иногда ее обозначают как q . Пусть n — число испытаний, m — частота появления события A в этих n испытаниях.

Известно, что суммарная вероятность всех возможных комбинаций исходов равна единице, то есть:

1 = p n + n · p n – 1 · (1 – p ) + C n n – 2 · p n – 2 · (1 – p ) 2 + … + C n m · p m · (1 – p ) n – m + … + (1 – p ) n .

p n — вероятность того, что в n n раз;

n · p n – 1 · (1 – p ) — вероятность того, что в n n – 1) раз и не произойдет 1 раз;

C n n – 2 · p n – 2 · (1 – p ) 2 — вероятность того, что в n испытаниях событие A произойдет (n – 2) раза и не произойдет 2 раза;

P m = C n m · p m · (1 – p ) n – m — вероятность того, что в n испытаниях событие A произойдет m раз и не произойдет (n – m ) раз;

(1 – p ) n — вероятность того, что в n испытаниях событие A не произойдет ни разу;

— число сочетаний из n по m .

Математическое ожидание M биномиального распределения равно:

M = n · p ,

где n — число испытаний, p — вероятность появления события A .

Среднеквадратичное отклонение σ :

σ = sqrt(n · p · (1 – p )) .

Пример 1 . Вычислить вероятность того, что событие, имеющее вероятность p = 0.5 , в n = 10 испытаниях произойдет m = 1 раз. Имеем: C 10 1 = 10 , и далее: P 1 = 10 · 0.5 1 · (1 – 0.5) 10 – 1 = 10 · 0.5 10 = 0.0098 . Как видим, вероятность наступления этого события достаточно мала. Объясняется это, во-первых, тем, что абсолютно не ясно, произойдет ли событие или нет, поскольку вероятность равна 0.5 и шансы здесь «50 на 50»; а во-вторых, требуется исчислить то, что событие произойдет именно один раз (не больше и не меньше) из десяти.

Пример 2 . Вычислить вероятность того, что событие, имеющее вероятность p = 0.5 , в n = 10 испытаниях произойдет m = 2 раза. Имеем: C 10 2 = 45 , и далее: P 2 = 45 · 0.5 2 · (1 – 0.5) 10 – 2 = 45 · 0.5 10 = 0.044 . Вероятность наступления этого события стала больше!

Пример 3 . Увеличим вероятность наступления самого события. Сделаем его более вероятным. Вычислить вероятность того, что событие, имеющее вероятность p = 0.8 , в n = 10 испытаниях произойдет m = 1 раз. Имеем: C 10 1 = 10 , и далее: P 1 = 10 · 0.8 1 · (1 – 0.8) 10 – 1 = 10 · 0.8 1 · 0.2 9 = 0.000004 . Вероятность стала меньше, чем в первом примере! Ответ, на первый взгляд, кажется странным, но поскольку событие имеет достаточно большую вероятность, вряд ли оно произойдет только один раз. Более вероятно, что оно произойдет большее, чем один, количество раз. Действительно, подсчитывая P 0 , P 1 , P 2 , P 3 , …, P 10 (вероятность того, что событие в n = 10 испытаниях произойдет 0, 1, 2, 3, …, 10 раз), мы увидим:

C 10 0 = 1 , C 10 1 = 10 , C 10 2 = 45 , C 10 3 = 120 , C 10 4 = 210 , C 10 5 = 252 ,
C 10 6 = 210 , C 10 7 = 120 , C 10 8 = 45 , C 10 9 = 10 , C 10 10 = 1 ;

P 0 = 1 · 0.8 0 · (1 – 0.8) 10 – 0 = 1 · 1 · 0.2 10 = 0.0000… ;
P 1 = 10 · 0.8 1 · (1 – 0.8) 10 – 1 = 10 · 0.8 1 · 0.2 9 = 0.0000… ;
P 2 = 45 · 0.8 2 · (1 – 0.8) 10 – 2 = 45 · 0.8 2 · 0.2 8 = 0.0000… ;
P 3 = 120 · 0.8 3 · (1 – 0.8) 10 – 3 = 120 · 0.8 3 · 0.2 7 = 0.0008… ;
P 4 = 210 · 0.8 4 · (1 – 0.8) 10 – 4 = 210 · 0.8 4 · 0.2 6 = 0.0055… ;
P 5 = 252 · 0.8 5 · (1 – 0.8) 10 – 5 = 252 · 0.8 5 · 0.2 5 = 0.0264… ;
P 6 = 210 · 0.8 6 · (1 – 0.8) 10 – 6 = 210 · 0.8 6 · 0.2 4 = 0.0881… ;
P 7 = 120 · 0.8 7 · (1 – 0.8) 10 – 7 = 120 · 0.8 7 · 0.2 3 = 0.2013… ;
P 8 = 45 · 0.8 8 · (1 – 0.8) 10 – 8 = 45 · 0.8 8 · 0.2 2 = 0.3020… (самая большая вероятность!);
P 9 = 10 · 0.8 9 · (1 – 0.8) 10 – 9 = 10 · 0.8 9 · 0.2 1 = 0.2684… ;
P 10 = 1 · 0.8 10 · (1 – 0.8) 10 – 10 = 1 · 0.8 10 · 0.2 0 = 0.1074…

Разумеется, P 0 + P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 + P 10 = 1 .

Нормальное распределение

Если изобразить величины P 0 , P 1 , P 2 , P 3 , …, P 10 , которые мы подсчитали в примере 3, на графике, то окажется, что их распределение имеет вид, близкий к нормальному закону распределения (см. рис. 27.1 ) (см. лекцию 25. Моделирование нормально распределенных случайных величин).

Рис. 27.1. Вид биномиального распределения
вероятностей для различных m при p = 0.8, n = 10

Биномиальный закон переходит в нормальный, если вероятности появления и непоявления события A примерно одинаковы, то есть, условно можно записать: p ≈ (1 – p ) . Для примера возьмем n = 10 и p = 0.5 (то есть p = 1 – p = 0.5 ).

Содержательно к такой задаче мы придем, если, например, захотим теоретически посчитать, сколько будет мальчиков и сколько девочек из 10 родившихся в роддоме в один день детей. Точнее, считать будем не мальчиков и девочек, а вероятность, что родятся только мальчики, что родится 1 мальчик и 9 девочек, что родится 2 мальчика и 8 девочек и так далее. Примем для простоты, что вероятность рождения мальчика и девочки одинакова и равна 0.5 (но на самом деле, если честно, это не так, см. курс «Моделирование систем искусственного интеллекта»).

Ясно, что распределение будет симметричное, так как вероятность рождения 3 мальчиков и 7 девочек равна вероятности рождения 7 мальчиков и 3 девочек. Наибольшая вероятность рождения будет у 5 мальчиков и 5 девочек. Эта вероятность равна 0.25, кстати, не такая уж она и большая по абсолютной величине. Далее, вероятность того, что родится сразу 10 или 9 мальчиков намного меньше, чем вероятность того, что родится 5 ± 1 мальчик из 10 детей. Как раз биномиальное распределение нам поможет сделать этот расчет. Итак.

C 10 0 = 1 , C 10 1 = 10 , C 10 2 = 45 , C 10 3 = 120 , C 10 4 = 210 , C 10 5 = 252 ,
C 10 6 = 210 , C 10 7 = 120 , C 10 8 = 45 , C 10 9 = 10 , C 10 10 = 1 ;

P 0 = 1 · 0.5 0 · (1 – 0.5) 10 – 0 = 1 · 1 · 0.5 10 = 0.000977… ;
P 1 = 10 · 0.5 1 · (1 – 0.5) 10 – 1 = 10 · 0.5 10 = 0.009766… ;
P 2 = 45 · 0.5 2 · (1 – 0.5) 10 – 2 = 45 · 0.5 10 = 0.043945… ;
P 3 = 120 · 0.5 3 · (1 – 0.5) 10 – 3 = 120 · 0.5 10 = 0.117188… ;
P 4 = 210 · 0.5 4 · (1 – 0.5) 10 – 4 = 210 · 0.5 10 = 0.205078… ;
P 5 = 252 · 0.5 5 · (1 – 0.5) 10 – 5 = 252 · 0.5 10 = 0.246094… ;
P 6 = 210 · 0.5 6 · (1 – 0.5) 10 – 6 = 210 · 0.5 10 = 0.205078… ;
P 7 = 120 · 0.5 7 · (1 – 0.5) 10 – 7 = 120 · 0.5 10 = 0.117188… ;
P 8 = 45 · 0.5 8 · (1 – 0.5) 10 – 8 = 45 · 0.5 10 = 0.043945… ;
P 9 = 10 · 0.5 9 · (1 – 0.5) 10 – 9 = 10 · 0.5 10 = 0.009766… ;
P 10 = 1 · 0.5 10 · (1 – 0.5) 10 – 10 = 1 · 0.5 10 = 0.000977…

Разумеется, P 0 + P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 + P 10 = 1 .

Отразим на графике величины P 0 , P 1 , P 2 , P 3 , …, P 10 (см. рис. 27.2 ).

Рис. 27.2. График биномиального распределения при параметрах
p = 0.5 и n = 10, приближающих его к нормальному закону

Итак, при условиях m n /2 и p ≈ 1 – p или p ≈ 0.5 вместо биномиального распределения можно использовать нормальное. При больших значениях n график сдвигается вправо и становится все более пологим, так как математическое ожидание и дисперсия возрастают с увеличением n : M = n · p , D = n · p · (1 – p ) .

Кстати, биномиальный закон стремится к нормальному и при увеличении n , что вполне естественно, согласно центральной предельной теореме (см. лекцию 34. Фиксация и обработка статистических результатов).

Теперь рассмотрим, как изменится биномиальный закон в случае, когда p q , то есть p –> 0 . В этом случае применить гипотезу о нормальности распределения нельзя, и биномиальное распределение переходит в распределение Пуассона.

Распределение Пуассона

Распределение Пуассона — это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)).

Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:

где a = n · p — параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения

P m = C n m · p m · (1 – p ) n – m

может быть написан, если положить p = a /n , в виде

Так как p очень мало, то следует принимать во внимание только числа m , малые по сравнению с n . Произведение

весьма близко к единице. Это же относится к величине

Величина

очень близка к e –a . Отсюда получаем формулу:

Пример . В ящике находится n = 100 деталей, как качественных, так и бракованных. Вероятность достать бракованное изделие составляет p = 0.01 . Допустим, что мы вынимаем изделие, определяем, бракованное оно или нет, и кладем его обратно. Поступая таким образом, получилось, что из 100 изделий, которые мы перебрали, два оказались бракованными. Какова вероятность этого?

По биномиальному распределению получаем:

По распределению Пуассона получаем:

Как видно, величины получились близкими, поэтому в случае редких событий вполне допустимо применять закон Пуассона, тем более что он требует меньших вычислительных затрат.

Покажем графически вид закона Пуассона. Возьмем для примера параметры p = 0.05 , n = 10 . Тогда:

C 10 0 = 1 , C 10 1 = 10 , C 10 2 = 45 , C 10 3 = 120 , C 10 4 = 210 , C 10 5 = 252 ,
C 10 6 = 210 , C 10 7 = 120 , C 10 8 = 45 , C 10 9 = 10 , C 10 10 = 1 ;

P 0 = 1 · 0.05 0 · (1 – 0.05) 10 – 0 = 1 · 1 · 0.95 10 = 0.5987… ;
P 1 = 10 · 0.05 1 · (1 – 0.05) 10 – 1 = 10 · 0.05 1 · 0.95 9 = 0.3151… ;
P 2 = 45 · 0.05 2 · (1 – 0.05) 10 – 2 = 45 · 0.05 2 · 0.95 8 = 0.0746… ;
P 3 = 120 · 0.05 3 · (1 – 0.05) 10 – 3 = 120 · 0.05 3 · 0.95 7 = 0.0105… ;
P 4 = 210 · 0.05 4 · (1 – 0.05) 10 – 4 = 210 · 0.05 4 · 0.95 6 = 0.00096… ;
P 5 = 252 · 0.05 5 · (1 – 0.05) 10 – 5 = 252 · 0.05 5 · 0.95 5 = 0.00006… ;
P 6 = 210 · 0.05 6 · (1 – 0.05) 10 – 6 = 210 · 0.05 6 · 0.95 4 = 0.0000… ;
P 7 = 120 · 0.05 7 · (1 – 0.05) 10 – 7 = 120 · 0.05 7 · 0.95 3 = 0.0000… ;
P 8 = 45 · 0.05 8 · (1 – 0.05) 10 – 8 = 45 · 0.05 8 · 0.95 2 = 0.0000… ;
P 9 = 10 · 0.05 9 · (1 – 0.05) 10 – 9 = 10 · 0.05 9 · 0.95 1 = 0.0000… ;
P 10 = 1 · 0.05 10 · (1 – 0.05) 10 – 10 = 1 · 0.05 10 · 0.95 0 = 0.0000…

Разумеется, P 0 + P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 + P 10 = 1 .

Рис. 27.3. График распределения Пуассона при p = 0.05 и n = 10

При n –> ∞ распределение Пуассона переходит в нормальный закон, согласно центральной предельной теореме (см.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....