Ядерно магнитно резонансный томограф. Магниторезонансная томография

Магнитно-резонансная томография (МРТ) выполняется с использованием ядерно-магнитного резонанса (ЯМР) - одного из новейших достижений медицинской науки в области диагностики. Основное условие для создания этого технического шедевра - современнейшие компьютеры и компьютерные программы.

Этот метод от обычной компьютерной томографии отличается способом получения изображения. Вместо обычных рентгеновских лучей используется сильное магнитное поле. Во время этого обследования больной не подвергается радиоактивному рентгеновскому облучению, не возникают побочные реакции, характерные для облучения.

Как проводится МРТ?

Основные необходимые приборы для выполнения этого метода - большая магнитная цилиндрическая труба и компьютер. Для получения изображения используется особенное свойство атомов излучать электромагнитные волны под воздействием сильных магнитных импульсов. В зависимости от плотности ткани, поток электромагнитных волн будет различным, и на компьютере будет получено их изображение. Пациента помещают в «магнитную трубу» и кратковременно активизируют магнитное поле. Специальное устройство регистрирует электромагнитные волны, идущие от тела обследуемого, компьютер эти волны превращает в изображение. Если необходимо получить несколько изображений срезов, то измерения должны быть повторены. Ряд срезов компьютер может превратить в трехмерное пластическое изображение.

Что можно диагностировать с помощью МРТ?

Метод МРТ является одним из наиболее точных в диагностике. При его применении обнаруживают изменения белого вещества мозга, выполняют специальные исследования кровеносных сосудов, исследование циркуляции мозговой жидкости, а с помощью новейшей техники - исследование энергетического обмена мозга и обмена веществ в мозге. Обычная компьютерная томография незаменима при диагностике травм, кровяного давления, переломов костей. С помощью ЯМР лучше всего исследовать ткани, в которых много жидкости. Его можно использовать при изучении внутренних органов - сердца и почек.

Опасна ли МРТ?

До сих пор нет данных, что эти обследования вредны для человека. Однако магнитное поле при обследовании пациентов, в теле которых находятся металлические протезы и имплантаты, может вызвать у них проблемы. В этих случаях применение МРТ запрещено. При работе с этим аппаратом в одежде не должно быть никаких металлических предметов.

Единственная проблема магнитно-резонансной томографии - дороговизна. Это обследование выполняется только в случае невозможности диагностирования другими методами. Кроме того, для выполнения этого исследования необходимо больше времени. Несколько ограниченны возможности обследования детей из-за их страха перед закрытыми пространствами (необходимость нахождения в цилиндрической «трубе»).

Этот исследовательский метод постоянно совершенствуется. Магнитно-резонансная томография - информативный, безопасный метод диагностики, позволяющий получить изображения органов в различных плоскостях. На экране компьютера видно трехмерное изображение, что, например, позволяет осмотреть мозг человека со всех сторон и на любой глубине.

Сегодня уже стало привычным направлять пациента не на рентгенографию, не на электрокардиограмму, а на ЯМР-томографию. Для того чтобы разобраться, что стоит за этими словами, следует начать издалека, а именно с понимания того, что такое магнетизм атомного ядра. Но еще до этого нам надо ввести важные понятия, которые отсутствуют в основном курсе школьной физики.

Магнитный момент

Магнитные свойства маленького плоского контура с током, помещенного в магнитное поле, определяются магнитным моментом этого тока, равным

где I - ток, S - площадь контура, - вектор нормали к контуру, построенный по правилу буравчика (рис. 1).

В частности, энергия контура в магнитном поле с индукцией равна

(ось z направлена вдоль ).

Для поворота контура с изменением проекции вектора от μ z до –μ z надо совершить работу А = 2μ z B.

Атомный электрон, движущийся по орбите вокруг атомного ядра, можно считать эквивалентным круговому току и приписать ему магнитный момент. Наличие такого «орбитального» магнитного момента у электрона проявляется в изменении его энергии при помещении атома в магнитное поле (формула для W ).

При тщательном анализе экспериментальных данных оказалось, что свойства атома во внешнем магнитном поле определяются не только движением электрона вокруг ядра, но и наличием у электрона скрытого «внутреннего вращения», которое назвали спином. Спин есть у всех элементарных частиц (у некоторых спин равен нулю). Интенсивность «вращения» описывается спиновым числом s , которое может быть только целым или полуцелым. Для электрона, протона, нейтрона s = 1/2. «Внутреннее вращение», аналогично орбитальному, приводит к появлению у частицы спинового магнитного момента. Проекция спинового магнитного момента на ось z (направление магнитного поля) принимает значения

μ z = γm s ћ ,

где ћ = h /(2π) - постоянная Планка, m s принимает (2s + 1) значений: –s , –s + 1, ..., s – 1, s , а γ называют гиромагнитным фактором. Сам вектор имеет модуль больше, чем его максимальная проекция: , т. е. во всех стационарных состояниях расположен под углом к оси z и быстро вращается вокруг этой оси: μ z = const, μ x и μ y быстро меняются (рис. 2). Для электрона, протона, нейтрона m s принимает всего два значения: . Для электрона , для протона . Спиновый магнитный момент есть даже у нейтрона, несмотря на то что он в целом электронейтрален. (Это свидетельствует о том, что нейтрон должен иметь внутреннюю структуру. Как и протон, он состоит из заряженных кварков.) Для нейтрона .

Видно, что магнитный момент протона и нейтрона на три порядка (–10 3) меньше, чем магнитный момент электрона (их масса примерно в 2000 раз больше). Примерно такой же по порядку величины магнитный момент должен быть у всех остальных атомных ядер, состоящих из протонов и нейтронов. Магнитные моменты всех ядер измерены с большой точностью. Именно наличие у ядер этих маленьких (в сравнении с атомными) магнитных моментов, значения которых различны для разных ядер, и лежит в основе явления ЯМР - ядерного магнитного резонанса, а также ЯМР-томографии. Мы в основном будем говорить о ядрах водорода - протонах, которые имеют наиболее широкое распространение в природе. Изотопом водорода является дейтерий, чье ядро также обладает магнитным моментом.

Что такое ядерный магнитный резонанс

Рассмотрим ядро атома водорода (протон) во внешнем магнитном поле . Протон может находиться только в двух стационарных квантовых состояниях: в одном из них проекция магнитного момента на направление магнитного поля положительна и равна

А в другом - такая же по модулю, но отрицательная. В первом состоянии энергия ядра в магнитном поле равна –μ z B , во втором + μ z B. Изначально все ядра находятся в первом состоянии, а для перехода во второе состояние ядру надо сообщить энергию

ΔE = 2μ z B .

Нетрудно понять, что заставить ядро изменить направление своего магнитного момента можно, подействовав на него электромагнитным излучением с частотой ω, соответствующей переходу между этими состояниями:

ћ ω = 2μ z B .

Подставляя сюда магнитный момент протона, получим

откуда для B = 1 Тл находим частоту волны: ν ≈ 4·10 7 Гц и соответствующую длину волны: λ = с/ ν ≈ 7 м - типичные частота и длина волны радиовещательного диапазона. Фотоны именно этой длины волны поглощаются ядрами с переворотом магнитных моментов по отношению к направлению поля. При этом их энергия в поле повышается как раз на величину, соответствующую энергии такого кванта.

Отметим, что в экспериментах по ЯМР, т. е. для типичных частот среднего радио-вещательного диапазона, электромагнитные волны используются вовсе не в том виде, к которому мы привыкли при обсуждении распространения света или поглощения и излучения света атомами. В простейшем случае мы имеем дело с катушкой, по которой протекает созданный генератором переменный ток радиочастоты. Образец, содержащий исследуемые ядра, которые мы хотим подвергнуть воздействию электромагнитного поля, помещается на оси катушки. Ось катушки, в свою очередь, направлена перпендикулярно статическому магнитному полю B 0 (последнее создается с помощью электромагнита или сверхпроводящего соленоида). При протекании по катушке переменного тока на ее оси индуцируется переменное магнитное поле B 1 , амплитуда которого выбирается гораздо меньшей величины B 0 (обычно в 10000 раз). Это поле осциллирует с той же частотой, что и ток, т. е. с радиочастотой генератора.

Если частота генератора близка к вычисленной частоте, то происходит интенсивное поглощение ядрами водорода квантов света с переходом ядер в состояние с отрицательной проекцией μ z (поворот ядер). Если же частота генератора отличается от вычисленной, то поглощения квантов не происходит. Именно в связи с резкой (резонансной) зависимостью от частоты переменного магнитного поля интенсивности процесса передачи энергии от этого поля ядрам атомов, сопровождаемое поворотом их магнитных моментов, явление получило название ядерного магнитного резонанса (ЯМР).

Как же можно заметить такие перевороты ядерных моментов по отношению к статическому магнитному полю? Будучи вооруженными современной техникой ЯМР, это оказывается совсем нетрудно: выключив создающий поле B 1 генератор радиочастоты, следует одновременно включить приемник, использующий ту же катушку в качестве антенны. При этом он будет регистрировать радиоволны, излучаемые ядрами по мере их возвращения к первоначальной ориентации вдоль поля B 0 . Этот сигнал индуцируется в той же катушке, посредством которой ранее возбуждались магнитные моменты. Его временная зависимость обрабатывается компьютером и представляется в виде соответствующего спектрального распределения.

Из этого описания вы можете представить, что ЯМР-спектрометр весьма существенно отличается от привычных спектрометров, проводящих измерения в диапазоне видимого света.

До сих пор мы рассматривали упрощенную картину: поведение в магнитном поле изолированного ядра. В то же время понятно, что в твердых телах или жидкостях ядра совсем изолированными не являются. Они могут взаимодействовать между собой, а также и со всеми другими возбуждениями, распределение по энергиям которых определяется температурой и статистическими свойствами системы. Взаимодействия возбуждений различной природы, их происхождение и динамика являются предметом изучения современной физики конденсированного состояния.

Как был открыт ЯМР

Первые сигналы, соответствующие ядерному магнитному резонансу, были получены более шестидесяти лет назад группами Феликса Блоха в Оксфорде и Эдварда Парселла в Гарварде. В те времена экспериментальные трудности были огромны. Все оборудование изготавливалось самими учеными прямо в лабораториях. Вид аппаратов того времени несопоставим с сегодняшними (использующими мощные сверхпроводящие соленоиды) приборами ЯМР, которые можно увидеть в больницах или поликлиниках. Достаточно сказать, что магнит в экспериментах Парселла был создан с использованием утиля, найденного на задворках Бостонской трамвайной компании. При этом он был калиброван настолько плохо, что магнитное поле в действительности имело величину большую, чем требовалось для переворота ядерных моментов при облучении радиоволнами с частотой ν = 30 МГц (частота радиогенератора) .

Парселл со своими молодыми сотрудниками тщетно искали подтверждения того, что явление ядерного магнитного резонанса имело место в его экспериментах. После многих дней бесплодных попыток разочарованный и грустный Парселл решает, что ожидаемое им явление ЯМР не наблюдаемо, и дает указание выключить питающий электромагнит ток. Пока магнитное поле уменьшалось, разочарованные экспериментаторы продолжали глядеть на экран осциллографа, где все это время надеялись увидеть желанные сигналы. В некоторый момент магнитное поле достигло необходимой для резонанса величины, и на экране неожиданно появился соответствующий ЯМР сигнал. Если бы не счастливый случай, возможно прошли бы еще многие годы, прежде чем существование этого замечательного явления было бы подтверждено экспериментально.

С этого момента техника ЯМР стала бурно развиваться. Она получила широкое применение в научных исследованиях в областях физики конденсированного состояния, химии, биологии, метрологии и медицины. Наиболее известным применением стало получение с помощью ЯМР изображения внутренних органов.

Как осуществляется визуализация внутренних органов посредством ЯМР

До сих пор мы неявно предполагали, что, в пренебрежении влиянием слабых электронных токов в катушках, магнитное поле, в которое помещаются ядра, однородно, т. е. имеет одну и ту же величину во всех точках. В 1973 году Пол Латербур предложил проводить ЯМР-исследования, помещая образец в магнитное поле, меняющееся от точки к точке. Понятно, что в этом случае и резонансная частота для исследуемых ядер изменяется от точки к точке, что позволяет судить об их пространственном расположении. А поскольку интенсивность сигнала от определенной области пространства пропорциональна числу атомов водорода в этой области, мы получаем информацию о распределении плотности вещества по пространству. Собственно, в этом и заключается принцип техники ЯМР-исследования. Как видите, принцип прост, хотя для получения реальных изображений внутренних органов на практике следовало получить в распоряжение мощные компьютеры для управления радиочастотными импульсами и еще долго совершенствовать методологию создания необходимых профилей магнитного поля и обработки сигналов ЯМР, получаемых с катушек.

Представим себе, что вдоль оси х расположены маленькие заполненные водой сферы (рис. 3). Если магнитное поле не зависит от х, то возникает одиночный сигнал (см. рис. 3, а ). Далее предположим, что посредством дополнительных катушек (по отношению к той, которая создает основное, направленное по оси z, магнитное поле) мы создаем дополнительное, меняющееся вдоль оси х, магнитное поле B 0 , причем его величина возрастает слева направо. При этом понятно, что для сфер с различными координатами сигнал ЯМР теперь будет соответствовать различным частотам и измеряемый спектр будет содержать в себе пять характерных пиков (см. рис. 3, б ). Высота этих пиков будет пропорциональна количеству сфер (т. е. массе воды), имеющих соответствующую координату, и, таким образом, в рассматриваемом случае интенсивности пиков будут относиться как 3:1:3:1:1. Зная величину градиента магнитного поля (т. е. скорость его изменения вдоль оси х ), можно представить измеряемый частотный спектр в виде зависимости плотности атомов водорода от координаты х . При этом можно будет сказать, что там где пики выше, число атомов водорода больше: в нашем примере числа атомов водорода, соответствующих положениям сфер, действительно соотносятся как 3:1:3:1:1.

Расположим теперь в постоянном магнитном поле B 0 некоторую более сложную конфигурацию маленьких заполненных водой сфер и наложим дополнительное магнитное поле, изменяющееся вдоль всех трех осей координат. Измеряя радиочастотные спектры ЯМР и зная величины градиентов магнитного поля вдоль координат, можно создать трехмерную карту распределения сфер (а следовательно, и плотности водорода) в исследуемой конфигурации. Сделать это гораздо сложнее, чем в рассмотренном выше одномерном случае, однако интуитивно понятно, в чем этот процесс заключается.

Техника восстановления образов, сходная с той, которую мы описали, и осуществляется при ЯМР-томографии. Закончив накопление данных, компьютер посредством весьма быстрых алгоритмов начинает «обработку» сигналов и устанавливает связь между интенсивностью измеренных сигналов при определенной частоте и плотностью резонирующих атомов в данной точке тела. В конце этой процедуры компьютер визуализирует на своем экране двумерное (или даже трехмерное) «изображение» определенного органа или части тела пациента.

Поразительные «образы»

Чтобы полностью оценить результаты ЯМР-исследования внутренних органов человека (например, различных сечений головного мозга, которые физик-медик сегодня может получить не дотрагиваясь до черепа!), следует прежде всего понимать, что речь идет о компьютерном воссоздании именно «образов», а не о реальных тенях, возникающих на фоточувствительной пленке при поглощении рентгеновских лучей в процессе получения рентгеновского снимка.

Человеческий глаз является чувствительным датчиком электромагнитного излучения в видимом диапазоне. К счастью или несчастью, излучения, происходящие от внутренних органов, до наших глаз не доходят - мы видим человеческие тела только извне. В то же время, как мы только что обсуждали, в определенных условиях ядра атомов внутренних органов человеческого тела могут излучать электромагнитные волны в диапазоне радиочастот (т. е. частот, гораздо меньших, чем для видимого света), причем частота слегка меняется в зависимости от точки излучения. Глазом его не увидеть, поэтому такое излучение регистрируется с помощью сложной аппаратуры, а затем собирается в единое изображение с помощью специальной компьютерной обработки. И тем не менее, речь идет о совершенно реальном видении внутренней части предмета или человеческого тела.

К такому поразительному успеху человечество пришло благодаря ряду фундаментальных достижений научной мысли: это и квантовая механика с ее теорией магнитного момента, и теория взаимодействия излучения с веществом, и цифровая электроника, и математические алгоритмы преобразования сигналов, и компьютерная техника.

Преимущества ЯМР-томографии по сравнению с другими диагностическими методами многочисленны и значительны. Оператор может легко выбирать, какие сечения тела пациента просканировать, а также может подвергать исследованию одновременно несколько сечений выбранного органа. В частности, выбирая соответствующим образом градиенты магнитного поля, можно получить вертикальные сечения изображения внутренностей нашего черепа. Это может быть центральное сечение или сечения, смещенные вправо или влево. (Такие исследования практически невозможны в рамках рентгеновской радиографии.) Оператор может «сужать» поле наблюдения, визуализируя сигналы ЯМР, происходящие только от одного выбранного органа или только от одной из его частей, увеличивая таким образом разрешение изображения. Важным преимуществом ЯМР-томографии является также и возможность прямого измерения локальной вязкости и направления течения крови, лимфы и других жидкостей внутри человеческого тела. Подбирая необходимое соотношение между соответствующими параметрами, например длительностью и частотой импульсов, для каждой патологии оператор может достигать оптимальных характеристик получаемого изображения, скажем, повышать его контрастность (рис. 4).

Суммируя, можно сказать, что для каждой точки изображения (пикселя), соответствующей крошечному объему исследуемого объекта, оказывается возможным извлечь различную полезную информацию, в некоторых случаях включая и распределение концентрации тех или иных химических элементов в организме. Для повышения чувствительности измерений, т. е. увеличения отношения интенсивности сигнала к шуму, следует накапливать и суммировать большое число сигналов. В этом случае удается получить качественное изображение, адекватно передающее реальность. Именно поэтому времена проведения ЯМР-томографии оказываются довольно большими - пациент должен относительно неподвижно пребывать в камере несколько десятков минут.

В 1977 году английский физик Питер Мэнсфилд придумал такую комбинацию градиентов магнитного поля, которая, не давая особенно хорошего качества изображения, тем не менее позволяет получать его чрезвычайно быстро: для соответствующего построения хватает единственного сигнала (на практике это занимает приблизительно 50 миллисекунд). С помощью такой техники - ее называют планарным эхом - сегодня можно следить за пульсациями сердца в реальном времени: в таком фильме на экране чередуются его сокращения и расширения.

Можно ли было представить себе на заре создания квантовой механики, что через сто лет развитие науки приведет к возможности таких чудес?

Нельзя не отметить, что в 2003 году Пол Лотербур и Питер Мэнсфилд были удостоены Нобелевской премии в области медицины «за изобретение метода магнитно-резонансной томографии».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ядерно-магнитный резонанс

Введение

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Однако такие переходы осуществляются индуцировано под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщепленными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом. В зависимости от типа частиц - носителей магнитного момента - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

ядерный магнитный резонанс томография

1. Ядерно-магнитный резонанс

Ядерный магнитный резонанс (ЯМР) -- резонансное поглощение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленное переориентацией магнитных моментов ядер. Явление магнитного резонанса было открыто в 1945--1946 гг. двумя независимыми группами ученых. Вдохновителями этого были Ф. Блох и Э. Пёрселл.

Физическая сущность ЯМР.В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля. Таким образом, ядра обладают угловым моментом J=hI, связанным с магнитным моментом м соотношением м=J, где h -- постоянная Планка, I -- спиновое квантовое число,-- гиромагнитное отношение.

Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением: JZ=hµI, где µI-- магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра µI=I, I-1, I-2, …, -I. то есть ядро может находиться в 2I+1 состояниях.

Спектры ЯМР.В спектрах ЯМР различают два типа линий по их ширине. Спектры твердых тел имеют большую ширину, и эту область применения ЯМР называют ЯМР широких линий. В жидкостях наблюдаются узкие линии, и это называют ЯМР высокого разрешения. Возможности метода ЯМР высокого разрешения связаны с тем, что ядра одного вида в различном химическом окружении при заданном приложенном постоянном поле поглощают энергию высокочастотного поля при разных частотах, что обусловлено разной степенью экранирования ядер от приложенного магнитного поля. Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

2. Использования ЯМР в медико-биологических исследованиях

Ядерным магнитным резонансом называется избирательное поглощение электромагнитных волн (читайте, радиоволн) веществом (в данном случае телом человека), находящимся в магнитном поле, что возможно благодаря наличию ядер с ненулевым магнитным моментом. Во внешнем магнитном поле протоны и нейтроны этих ядер как маленькие магниты ориентируются строго определенным образом и меняют по этой причине свое энергетическое состояние. Расстояние между этими уровнями энергии столь мало, что переходы между ними способно вызвать даже радиоизлучение. Энергия радиоволн в миллиарды раз меньше, чем у рентгеновского излучения, поэтому они не могут вызвать какие-либо повреждения молекул. Итак, сначала происходит поглощение радиоволн. Затем происходит испускание радиоволн ядрами и переход их на более низкие энергетические уровни. И тот, и другой процесс можно зафиксировать, изучая спектры поглощения и излучения ядер. Эти спектры зависят от множества факторов и прежде всего - от величины магнитного поля. Для получения пространственного изображения в ЯМР-томографе, в отличие от КТ нет необходимости в механическом сканировании системой источник-детектор (антенна передатчик и приемник в случае ЯМР). Эта задача решается изменением напряженности магнитного поля в различных точках. Ведь при этом будет изменяться частота (длина волны), на которой происходит передача и прием сигнала. Если мы знаем величину напряженности поля в данной точке, то можем точно связать с ней передаваемый и принимаемый радиосигнал. Т.е. благодаря созданию неоднородного магнитного поля можно настраивать антенну на строго определенный участок органа или ткани без ее механического перемещения и снимать показания с этих точек, лишь меняя частоту приема волны. Следующий этап - обработка информации от всех просканированных точек и формирование изображения. В результате компьютерной обработки информации получаются изображения органов и систем в «срезах», сосудистых структур в различных плоскостях, формируются трехмерные конструкции органов и тканей с высокой разрешающей способностью.

В чем же преимущества ЯМР-томографии?

Первое преимущество - замена рентгеновских лучей радиоволнами. Это позволяет устранить ограничения на контингент обследуемых (детей, беременных), т.к. снимается понятие лучевой нагрузки на пациента и врача.

Второе преимущество - чувствительность метода к отдельным жизненно важным изотопам и особенно к водороду, одному из самых распространенных элементов мягких тканей.

Третье преимущество заключается в чувствительности к различным химическим связям у различным молекул, что повышает контрастность картинки.

Четвертое преимущество кроется в изображении сосудистого русла без дополнительного контрастирования и даже с определением параметров кровотока.

Пятое преимущество заключается в большей на сегодня разрешающей способности исследования - можно увидеть объекты размером в доли миллиметра.

И, наконец, шестое - МРТ позволяет легко получать не только изображения поперечных срезов, но и продольных.

Конечно же, как и любая другая методика, ЯМР-томография имеет свои недостатки. К ним относят:

1. Необходимость создания магнитного поля большой напряженности, что требует огромных энергозатрат при работе оборудования и/или использования дорогих технологий для обеспечения сверхпроводимости.

2. Низкая, особенно в сравнении с рентгенологическими, чувствительность метода ЯМР-томографии, что требует увеличения времени просвечивания. Это приводит к появлению искажений картинки от дыхательных движений (что особенно снижает эффективность исследования легких, исследовании сердца).

3. Невозможность надежного выявления камней, кальцификатов, некоторых видов патологии костных структур.

4. Не следует забывать и о том, что относительное противопоказание для ЯМР-томографии - беременность.

Заключение

История науки учит нас, что каждое новое физическое явление или новый метод проходит трудный путь, начинающийся в момент открытия данного явления и проходящий через несколько фаз. Сначала почти никому не приходит мысль о возможности, даже весьма отдаленной, применения этого явления в повседневной жизни, в науке или технике. Затем наступает фаза развития, во время которой данные экспериментов убеждают всех в большой практической значимости данного явления. Наконец, следует фаза стремительного взлета. Новые инструменты входят в моду, становятся высокопродуктивными, приносят большую прибыль и превращаются в решающий фактор научно- технического прогресса. Приборы, основанные на когда-то давно открытом явлении, заполняют физику, химию, промышленность и медицину.

Наиболее ярким примером изложенной выше несколько упрощенной схемы эволюции служит явление магнитного резонанса, открытое Е. К. Завойским в 1944 г. в форме парамагнитного резонанса и независимо открытого Блохом и Парселлом в 1946 г. в виде резонансного явления магнитных моментов атомных ядер. Сложная эволюция ЯМР часто толкала скептиков к пессимистическим заключениям. Говорили, что “ ЯМР мертв “, что “ ЯМР себя полностью исчерпал“. Однако вопреки и наперекор этим заклинаниям ЯМР продолжал идти вперед и постоянно доказывал свою жизнеспособность. Много раз эта область науки оборачивалась к нам новой, часто совсем неожиданной стороной и давала жизнь новому направлению. Последние революционизирующие изобретения в области ЯМР, включая удивительные методы получения ЯМР - изображений, убедительно свидетельствуют о том, что границы возможного в ЯМР действительно безграничны. Замечательные преимущества ЯМР - интроскопии, которые будут высоко оценены человечеством и которые сейчас являются мощным стимулом стремительного развития ЯМР - интроскопии и широкого применения в медицине, заключаются в очень малой вредности для здоровья человека, свойственной этому новому методу.

Список использованной литературы и источников

1. Антонов В. Ф., Коржуев А. В. Физика и биофизика: курс лекций для студентов медицинских вузов. - Москва: ГЭОТАР-МЕД, 2004.

2. Кузнецов А.Н. Метод спинового зонда. - Москва: Наука, 1976.

3. Материалы сайта www.wikipedia.org

4. Материалы сайта www.humuk.ru;

5. Ремизов А. Н., Максина А. Г., Потапенко А. Я. Медицинская и биологическая физика. - Москва: Дрофа, 2003.

6. Хауссер К. Х., Кальбитцер Х. Р. ЯМР в медицине и биологии: структура молекул, томография, спектроскопия in-vivo. - Киев: Наукова думка, 1993.

7. Эмануэль Н. М., Кузьмин М. Г. Электронный парамагнитный резонанс. - Москва: Издательство Московского университета.1985.

Размещено на Allbest.ru

...

Подобные документы

    Физическое явление ядерно-магнитного резонанса, условия для его возникновения. Принцип получения изображения в магнитно-резонансном томографе. Получение двумерного изображения. Основные преимущества постоянных, резистивных и сверхпроводящих томографов.

    презентация , добавлен 13.10.2013

    Методы современной диагностики. Явление ядерного магнитного резонанса (ЯМР). Сущность явления ЯМР. Спин-спиновое взаимодействие. Анализаторы веществ на основе ЯМР. Техническая реализация ЯМР-томографа. Основные блоки магниторезонансной томографии.

    реферат , добавлен 12.05.2015

    История открытия и сущность ядерно-магнитного резонанса. Спин-спиновое взаимодействие. Понятие магнитно-резонансной томографии (МРТ). Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность. Противопоказания и потенциальные опасности МРТ.

    реферат , добавлен 11.06.2014

    Обеспечение селективности при качественном анализе избирательным поглощением монохроматического света. Спектроскопия ядерного магнитного резонанса. Спектральные линии для проверки шкалы длин волн. Калибровка оборудования, а также подготовка образцов.

    реферат , добавлен 30.04.2014

    Преимущества диагностического способа магнитно-резонансной томографии в акушерстве для прямой визуализации плода. Показания, методика и особенности проведения исследования. Специфика подготовки к МРТ беременной женщины. Ограничения и безопасность метода.

    презентация , добавлен 15.02.2016

    Электротерапия - метод физиотерапии, основанный на использовании дозированного воздействия на организм электрических токов, магнитных или электромагнитных полей. Механизм действия и эффект от методов. Особенности лечения постоянным и импульсным током.

    реферат , добавлен 17.12.2011

    Процессы в замкнутом волноводном тракте. Поляризация и наложение волн, резонанс бегущей и стоячей волны в волноводе. Основными элементами системы генератора качающейся частоты. КСВН волноводной кольцевой системы в режиме бегущих и стоячих волн.

    отчет по практике , добавлен 13.01.2011

    Сущность и значение метода магнитно-резонансной томографии, история его формирования и развития, оценка эффективности на современном этапе. Физическое обоснование данной методики, порядок и принципы построения изображений. Определение и выделение среза.

    реферат , добавлен 24.06.2014

    Возможности использования ядерно-физических феноменов для исследования больных. Методы радионуклидного исследования. Клиническая и лабораторная радиометрия. Радионуклидное сканирование и сцинтиграфия. Радиоизотопная диагностическая лаборатория.

    реферат , добавлен 24.01.2011

    Условия достижения эффекта томографии. Основные задачи и направления применения рентгенологического исследования - ангиографии, венографии и лимфографии. История открытия, принцип действия и преимущества использования метода компьютерной томографии.

МРТ получила начало, как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения. Метод зарекомендовал себя как исключительно информативный, и являясь относительно молодым постоянно развивается, открывая новые возможности.

Магнитно-резонансная томография (МРТ)

Магнитно-резонансная томография (МРТ) является методом отображения, который используется, главным образом, в медицинских установках, для получения высококачественных изображений органов человеческого тела. В основе метода лежат принципы ядерно-магнитного резонанса (ЯМР), методе спектроскопии, который используется ученными для получения сведений о химических и физических свойствах молекул. Но не смотря на свое основание, метод распространился под названием магнитно-резонансной томографии - МРТ, а не ядерно-магнитной резонансной томографии - ЯМРТ, и причиной тому послужили негативные ассоциации со словом "ядерный", возникшие в связи с трагической аварией на Чернобыльской АЭС в 1986 году. В то время термин ЯМР-томография был заменён на МРТ, так в новом термине исчезло указание на «ядерность» происхождения метода, что и позволило ему вполне безболезненно влиться в повседневную медицинскую практику. Но несмотря на это изначальное название - ЯМРТ, также имеет место.

История развития МРТ

В 1946 году Феликс Блох из Стенфордского университета и Эдвард Парселл из Гарвардского университета независимо друг от друга открыли явление ядерного магнитного резонанса. В 1952 году оба они были удостоены Нобелевской премии по физике «за развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия». В период с 1950 по 1970 годы, ЯМР развивался и использовался для химического и физического молекулярного анализа. В 1972 году прошел клинические испытания первый компьютерный томограф (КТ) , основанный на рентгеновском излучении. Эта дата стала важной вехой в истории МРТ, так как показала, что медицинские учреждения были готовы тратить большие суммы денег на оборудование для визуализации.

Годом основания магнитно-резонансной томографии принято считать 1973 год, когда профессор химии и радиологии из Нью-Йоркского университета Стони Брук - Пол Лотербур, опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса» в которой были представлены трехмерные изображения объектов, полученные по спектрам протонного магнитного резонанса воды из этих объектов. Эта работа и легла в основу метода магнитной резонансной томографии (МРТ). Позже доктор Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. Оба они были удостоены Нобелевской премии за 2003 год в области физиологии и медицины за решающий вклад в изобретение и развитие метода магнитной резонансной томографии.

В 1975 году Ричард Эрнст предложил магнитно-резонансную томографию с использованием фазового и частотного кодирования, метод, который используется в МРТ в настоящее время. В 1980 году Эдельштейн с сотрудниками, используя этот метод, продемонстрировали отображение человеческого тела. Для получения одного изображения требовалось приблизительно 5 минут. К 1986 году время отображения было снижено до 5 секунд без какой-либо значимой потери качества. В том же году был создан ЯМР-микроскоп, который позволял добиваться разрешения 10 mм на образцах размером в 1 см. В 1988 году Думоулин усовершенствовал МРТ-ангиографию, которая делала возможным отображение текущей крови без применения контрастирующих агентов. В 1989 году был представлен метод планарной томографии, который позволял захватывать изображения с видеочастотами (30 мс). Многие клиницисты считали, что этот метод найдет применение в динамической МР-томографии суставов, но вместо этого, он был использован для отображения участков мозга, ответственных за мыслительную и двигательную деятельность. В 1991 году Ричард Эрнст был удостоен Нобелевской премии по химии за достижения в области импульсных ЯМР и МРТ. В 1994 году исследователи Нью-Йоркского государственного университета в Стоуни Брок и Принстонского университета продемонстрировали отображение гиперполяризированного газа 129Xe для исследования процессов дыхания. В создание магнитно-резонансной томографии известный вклад внёс также Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера.

Первые томографы для исследования тела человека появились в клиниках в 1980-1981 годах, а сегодня томография стала целой областью медицины. Магнитно-резонансный томограф (МРТ) – один из наиболее эффективных современных инструментов диагностики, позволяющий визуализировать с высоким качеством головной, спинной мозг и другие внутренние органы. Современные методики МРТ делают возможным неинвазивного исследования функции органов - измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры (функциональная МРТ). По мнению многих ученых, именно появление КТ и МРТ послужило стимулом для невиданного прогресса современной медицины в последние годы.

Магниторезонансная томография (МРТ) − способ получения томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса. За изобретение метода МРТ Питер Мэнсфилд и Пол Лотербур получили в 2003 году Нобелевскую премию в области медицины.
Вначале этот метод назывался ядерно-магнитно резонансная томография (ЯМР-томография). Но потом, чтобы не пугать зомбированную радиофобией публику, убрали упоминание о "ядерном" происхождении метода, тем более, что ионизирующие излучения в этом методе не используются.

Ядерный магнитный резонанс

Ядерный магнитный резонанс реализуется на ядрах с ненулевыми спинами. Наиболее интересными для медицины являются ядра водорода (1 H), углерода (13 C), натрия (23 Na) и фосфора (31 P), так как все они присутствуют в теле человека. В нем больше всего (63%) атомов водорода, которые содержатся в жире и воде, которых больше всего в человеческом теле. По этим причинам современные МР-томографы чаще всего «настроены» на ядра водорода − протоны.

При отсутствии внешнего поля спины и магнитные моменты протонов ориентированы хаотически (рис. 8а). Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному полю (рис. 8б), причём во втором случае его энергия будет выше.

Частица со спином, помещенная в магнитное поле, напряженностью В, может поглощать фотон, с частотой ν, которая зависит от ее гиромагнитного отношения γ.

Для водорода, γ = 42.58 MГц/Тл.
Частица может подвергаться переходу между двумя энергетическими состояниями, поглощая фотон. Частица на нижнем энергетическом уровне поглощает фотон и оказывается на верхнем энергетическом уровне. Энергия данного фотона должна точно соответствовать разнице между этими двумя состояниями. Энергия протона, Е, связана с его частотой, ν, через постоянную Планка (h = 6.626·10 -34 Дж·с).

В ЯМР величина ν называется резонансной или частотой Лармора. ν = γB и E = hν, поэтому, для того, чтобы вызвать переход между двумя спиновыми состояниями, фотон должен обладать энергией

Когда энергия фотона соответствует разнице между двумя состояниями спина, происходит поглощение энергии. Напряженность постоянного магнитного поля и частота радиочастотного магнитного поля должны строго соответствовать друг другу (резонанс). В ЯМР экспериментах частота фотона соответствует радиочастотному (РЧ) диапазону. В клинической МРТ, для отображения водорода, ν как правило находится между 15 и 80 MГц.
При комнатной температуре количество протонов со спинами на нижнем энергетическом уровне незначительно превосходит их количество на верхнем уровне. Сигнал в ЯМР-спектроскопии пропорционален разности в заселенностях уровней. Число избыточных протонов пропорционально B 0 . Эта разница в поле 0.5 Tл, составляет всего лишь 3 протона на миллион, в поле 1.5 Tл – 9 протонов на миллион. Однако общее количество избыточных протонов в 0.02 мл воды в поле 1.5 Tл – 6.02·10 15 . Чем больше напряженность магнитного поля, тем лучше изображение.

В состоянии равновесия, вектор суммарной намагниченности параллелен направлению примененного магнитного поля B 0 и называется равновесной намагниченностью M 0 . В этом состоянии, Z-составляющая намагниченности M Z равна M 0 . Еще M Z называется продольной намагниченностью. В данном случае, поперечной (M X или M Y) намагниченности нет. Посылая РЧ импульс с ларморовской частотой, можно вращать вектор суммарной намагниченности в плоскости, перпендикулярной оси Z, в данном случае плоскости X-Y.

T1 Релаксация
После прекращения действия РЧ импульса, суммарный вектор намагниченности будет восстанавливаться по Z-оси, излучая радиочастотные волны. Временная константа, описывающая, как M Z возвращается к равновесному значению, называется временем спин-решеточной релаксации (T 1 ).

M Z = M 0 (1 - e -t/T 1 )

T1 релаксация происходит в объеме, содержащем протоны. Однако связи протонов в молекулах неодинаковые. Эти связи различны для каждой ткани. Один атом 1 H может быть связан очень сильно, как в жировой ткани, в то время как другой атом может иметь более слабую связь, например в воде. Сильно связанные протоны выделяют энергию намного быстрее, чем протоны со слабой связью. Каждая ткань выделяет энергию с различной скоростью, и именно поэтому МРТ имеет такое хорошее контрастное разрешение.

T2 Релаксация
T1 релаксация описывает процессы, происходящие в Z направлении, в то время как T2 релаксация описывает процессы в плоскости X-Y.
Сразу после воздействия РЧ импульсом суммарный вектор намагниченности (теперь называемый поперечной намагниченностью) начинает вращаться в плоскости X-Y вокруг оси Z . Все векторы имеют одно и то же направление, потому что они находятся в фазе. Однако они не сохраняют это состояние. Вектор суммарной намагниченности начинает сдвигаться по фазе (расфазировываться) из-за того, что каждый спиновый пакет испытывает магнитное поле, немного отличающееся от магнитного поля, испытываемого другими пакетами, и вращается со своей собственной частотой Лармора. Сначала количество дефазированных векторов будет небольшим, но быстро увеличивающимся до момента, когда фазовая когерентность исчезнет: не будет ни одного вектора, совпадающего по направлению с другим. Суммарная намагниченность в плоскости XY стремится к нулю, и затем продольная намагниченность возрастает до тех пор пока M 0 не будет вдоль Z.


Рис. 9. Спад магнитной индукции

Временная константа, описывающая поведение поперечной намагниченности, M XY , называется спин-спиновым временем релаксации, T 2 . T2 релаксация называется спин-спиновой релаксацией, потому что она описывает взаимодействия между протонами в их непосредственной среде (молекулах). T2 релаксация – затухающий процесс, означающий высокую фазовую когерентность в начале процесса, но быстро уменьшающуюся до полного исчезновения когерентности в конце. Cигнал в начале сильный, но быстро ослабевает за счет T2 релаксации. Сигнал называется спадом магнитной индукции (FID - Free Induction Decay) (рис. 9).

M XY =M XYo e -t/T 2

T 2 всегда меньше чем T 1 .
Скорость смещения по фазе различна для каждой ткани. Дефазирование в жировой ткани происходит быстрее по сравнению с водой. Еще одно замечание относительно T2 релаксации: она протекает гораздо быстрее T1 релаксации. T2 релаксация происходит за десятки миллисекунд, в то время как T1 релаксация может достигать секунд.
Для иллюстрации в таблице 1 приведены значения времен T 1 и T 2 для различных тканей.

Таблица 1

Ткани T 1 (мс), 1.5 T T 2 (мс)
МОЗГ
Серое вещество 921 101
Белое вещество 787 92
Опухоли 1073 121
Отек 1090 113
ГРУДЬ
Фиброзная ткань 868 49
Жировая ткань 259 84
Опухоли 976 80
Карцинома 923 94
ПЕЧЕНЬ
Нормальная ткань 493 43
Опухоли 905 84
Цирроз печени 438 45
МЫШЦА
Нормальная ткань 868 47
Опухоли 1083 87
Карцинома 1046 82
Отек 1488 67

Устройство магнитно-резонансного томографа


Рис. 10. Схема МРТ

Схема магнитнорезонансного томографа показана на рис. 10. В состав МРТ входят магнит, градиентные катушки и радиочастотные катушки.

Постоянный магнит
МРТ сканеры используют мощные магниты. От величины напряженности поля зависит качество и скорость получения изображения. В современных МР-томографах используются либо постоянные, либо сверхпроводящие магниты. Постоянные магниты дёшевы и просты в эксплуатации, но не позволяют создавать магнитные поля с напряженностью большей 0.7 Тл. Большинство магнитно-резонансных томографов это модели со сверхпроводящими магнитами (0.5 – 1.5 Тл). Томографы со сверхсильным полем (выше 3.0 Тл) очень дороги в эксплуатации. На МР-томографах с полем ниже 1 Тл нельзя качественно сделать томографию внутренних органов, так как мощность таких аппаратов слишком низкая, чтобы получать снимки высокого разрешения. На томографах с напряженностью магнитного поля < 1 Тл можно проводить только исследования головы, позвоночника и суставов.


Рис. 11.

Градиентные катушки
Внутри магнита расположены градиентные катушки. Градиентные катушки позволяют создавать дополнительные магнитные поля, накладывающиеся на основное магнитное поле B 0 . Имеются 3 набора катушек. Каждый набор может создавать магнитное поле в определенном направлении: Z, X или Y. Например, когда ток поступает в Z градиент, в Z направлении (вдоль длинной оси тела)создается однородное линейное изменение поля. В центре магнита поле имеет напряженность B 0 , а резонансная частота равняется ν 0 , но на расстоянии ΔZ поле меняется на величину ΔB, а соответственно меняется и резонансная частота (рис. 11). За счет добавления к общему однородному магнитному полю градиентного магнитного возмущения, обеспечивается локализация ЯМР-сигнала. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. От мощности и скорости действия катушек зависит быстродействие, отношение сигнал/шум, разрешающая способность томографа.

РЧ катушки
РЧ катушки создают поле B 1 , которое поворачивает суммарную намагниченность в импульсной последовательности. Они также регистрируют поперечную намагниченность, в то время как она прецессирует в плоскости XY. РЧ катушки бывают трех основных категорий: передающие и принимающие, только принимающие, только передающие. РЧ катушки служат излучателями полей B 1 и приемниками РЧ энергии от исследуемого объекта.

Кодирование сигнала

Когда пациент находится в однородном магнитном поле B 0 , все протоны от головы до пальцев ног выравниваются вдоль B 0 . Все они вращаются с Ларморовой частотой. Если сгенерировать РЧ импульс возбуждения для перевода вектора намагниченности в плоскость X-Y, все протоны реагируют и возникает ответный сигнал, но локализации источника сигнала нет.

Срез-кодирующий градиент
При включенном Z-градиенте, в этом направлении генерируется дополнительное магнитное поле G Z , накладывающееся на B 0 . Более сильное поле означает более высокую Ларморову частоту. Вдоль всего наклона градиента поле B различно и, следовательно, протоны вращаются с разными частотами. Теперь, если сгенерировать РЧ импульс с частотой ν + Δν, прореагируют только протоны в тонком срезе, потому что они - единственные, вращающиеся с этой же самой частотой. Ответный сигнал будет только от протонов из этого среза. Таким образом локализуется источник сигнала по оси Z. Протоны в этом срезе вращаются с одной частотой и имеют одинаковую фазу. В срезе находится огромное количество протонов, и неизвестна локализация источников по осям X и Y. Поэтому для точного определения непосредственного источника сигнала требуется дальнейшее кодирование.


Рис. 12.

Фазо-кодирующий градиент
Для дальнейшего кодирования протонов на очень короткое время включается градиент G Y . В течение этого времени в направлении по оси Y создается дополнительное магнитное поле градиента. В этом случае протоны будут иметь немного различающиеся скорости вращения. Они больше не вращаются в фазе. Разность фаз будет накапливаться. Когда градиент G Y выключен, протоны в срезе будут вращаться с одинаковой частотой, но иметь различную фазу. Это называется кодированием фазы.

Частотно-кодирующий градиент
Для кодирования левого-правого направления включается третий градиент G X . Протоны с левой стороны вращаются с более низкой частотой, чем с правой. Они накапливают дополнительный сдвиг фазы из-за различий в частотах, но уже приобретенная разность фаз, полученная при кодировании фазы градиента на предыдущем шаге, сохраняется.

Таким образом для локализации источника сигналов, которые принимаются катушкой, используются градиенты магнитного поля.

  1. G Z градиент выбирает аксиальный срез.
  2. G Y градиент создает строки с разными фазами.
  3. G X градиент формирует столбцы с разными частотами.

За один шаг кодирование фазы выполняется только для одной строки. Для сканирования целого среза полный процесс кодирования среза, фазы и частоты должен быть повторен несколько раз.
Таким образом созданы маленькие объемы (вокселы). Каждый воксел имеет уникальную комбинацию частоты и фазы (рис. 12). Количество протонов в каждом вокселе определяет амплитуду РЧ волны. Полученный сигнал, поступающий из различных областей тела, содержит сложное сочетание частот, фаз и амплитуд.

Импульсные последовательности

На рис. 13 показана диаграмма простейшей последовательности. Вначале включается срезо-селективный градиент (1) (Gss). Одновременно c ним генерируется 90 0 РЧ импульс выбора среза (2), который "переворачивает" суммарную намагниченность в плоскость X-Y. Затем включается фазо-кодирующий градиент (3) (Gpe) для выполнения первого шага кодирования фазы. После этого подается частотно-кодирующий или считывающий градиент (4) (Gro), в течение которого регистрируется сигнал спада свободной индукции (5) (FID). Последовательность импульсов обычно повторяется 128 или 256 раз для сбора всех необходимых данных для построения изображения. Время между повторениями последовательности называется временем повторения (repetition time, TR). С каждым поторением последовательности меняется величина фазо-кодирующего градиента. Однако в этом случае сигнал (FID) был крайне слабый, поэтому результирующее изображение было плохим. Для повышения величины сигнала применяется последовательность спин-эхо.

Последовательность спин-эхо
После применения 90 0 импульса возбуждения суммарная намагниченность находится в плоскости X-Y. Сразу же начинается смещение фаз вследствие T2 релаксации. Именно из-за этого дефазирования сигнал резко снижается. В идеале, необходимо сохранить фазовую когерентность, обеспечивающую лучший сигнал. Для этого через короткое время после 90 0 РЧ импульса применяется 180 0 импульс. 180 0 импульс вызывает перефазирование спинов. Когда все спины восстановлены по фазе, сигнал снова становится высоким и качество изображения значительно выше.
На рис. 14 показана диаграмма импульсной последовательности спин-эхо.


Рис. 14. Диаграмма импульсной последовательности спин-эхо

Сначала включается срезо-селективный градиент (1) (G SS ). Одновременно c ним применяется 90º РЧ импульс. Затем включается фазо-кодирующий градиент (3) (Gре) для выполнения первого шага кодирования фазы. Gss (4) снова включается во время 180º перефазирующего импульса (5), таким образом, воздействие оказывается на те же протоны, которые были возбуждены 90º импульсом. После этого подается частотно-кодирующий или считывающий градиент (6) (Gro), в течение которого принимается сигнал (7).
TR (Время повторения). Полный процесс должен повторяться неоднократно. TR время между двумя 90ºимпульсами возбуждения. TE (Время эхо). Это время между 90ºимпульсом возбуждения и эхо.

Контраст изображения

При ЯМР сканировании одновременно происходят два процесса релаксации T1 и T2. Причем
T1 >> T2. Контраст изображения сильно зависит от этих процессов и от того, насколько полно каждый из них проявляется при выбранных временных параметрах сканирования TR и TE. Рассмотрим получение контрастного изображения на примере сканирования мозга.

T1 контраст


Рис. 15. а) спин-спиновая релаксация и б) спин-решеточная релаксация в различных тканях мозга

Выберем следующие параметры сканирования: TR = 600 мс и TE = 10 мс. То есть T1 релаксация протекает за 600 мс, а T2 релаксация – только за
5 мс (TE/2). Как видно из рис. 15а через 5 мс смещение фаз невелико и оно не сильно отличается у разных тканей. Контраст изображения, поэтому, очень слабо зависит от T2 релаксации. Что касается Т1 релаксации, то через 600 мс жир практически полностью релаксировал, но для CSF необходимо еще некоторое время
(рис. 15б). Это означает, что вклад от CSF в общий сигнал будет незначительным. Контраст изображения становится зависимым от процесса релаксации Т1. Изображение "взвешено по T1" потому, что контраст больше зависит от процесса релаксации Т1. В результирующем изображении CSF будет темной, жировая ткань будет яркой, а интенсивность серого вещества будет чем-то средним между ними.

T2 контраст


Рис. 16. а) спин-спиновая релаксация и б) спин-решеточная релаксация в различных тканях мозга

Теперь зададим следующие параметры: TR = 3000 мс и TE = 120 мс, то есть T2 релаксации протекать за 60 мс. Как следует из рис. 16б, практически все ткани подверглись полной T1 релаксации. Здесь TE является доминирующим фактором для контраста изображения. Изображение "взвешено по T2". На изображении CSF будет яркой, в то время как другие ткани будут обладать различными оттенками серого.

Контраст протонной плотности

Существует еще один тип контраста изображения, называемый протонной плотностью (PD).
Зададим следующие параметры: TR = 2000 мс и TE 10 мс. Таким образом, как и в первом случае T2 релаксация вносит незначительный вклад в контраст изображения. С TR = 2000 мс, суммарная намагниченность большинства тканей восстановится вдоль Z-оси. Контраст изображения в PD изображениях не зависит ни от T2, ни от T1 релаксации. Полученный сигнал полностью зависит от количества протонов в ткани: небольшое количество протонов означает низкий сигнал и темное изображение, в то время как большое их количество производит сильный сигнал и яркое изображение.


Рис. 17.

Все изображения имеют сочетания T1 и T2 контрастов. Контраст зависит только от того, за сколько времени позволено протекать T2 релаксации. В спин-эхо (SE) последовательностях наиболее важны для контраста изображения времена TR и TE.
На рис. 17 схематически показано, как TR и TE связаны в терминах контраста изображения в SE последовательности. Короткое TR и короткое TE дают контраст, взвешенный по T1. Длинное TR и короткое TE дают контраст PD. Длинное TR и длинное TE приводят к контрасту, взвешенному по T2.


Рис. 18. Изображения с разными контрастами: взвешенный по T1, протонная плотность и взвешенный по T2. Отметьте различия в интенсивности сигнала тканей. CSF темная на T1, серая на PD и яркая на T2.


Рис. 19. Магниторезонансный томограф

МРТ хорошо отображает мягкие ткани, тогда как КТ лучше визуализирует костные структуры. Нервы, мышцы, связки и сухожилия наблюдаются гораздо более четко в МРТ, чем в КТ. Кроме того, магнитно-резонансный метод незаменим при обследовании головного и спинного мозга. В головном мозге МРТ может различать белое и серое вещества. Благодаря высокой точности и четкости полученных изображений магнитно-резонансная томография успешно используется в диагностике воспалительных, инфекционных, онкологических заболеваний, при исследовании суставов, всех отделов позвоночника, молочных желез, сердца, органов брюшной полости, малого таза, сосудов. Современные методики МРТ делают возможным исследовать функцию органов – измерять скорость кровотока, тока спинномозговой жидкости, наблюдать структуру и активацию различных участков коры головного мозга.

Последние материалы раздела:

Скачать Тесты по психологии на андроид v
Скачать Тесты по психологии на андроид v

– приложение на андроид с развлекательным характером. С его помощью пользователь узнает свои стороны личности, а также познакомится ос страхами и...

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....