Вектор длина которого равна 1 называется. Вектор

Выпускная работа в форме ЕГЭ для 11-классников обязательно содержит задания на вычисление пределов, промежутков убывания и возрастания производной функции, поиск точек экстремума и построение графиков. Хорошее знание этой темы позволяет правильно ответить на несколько вопросов экзамена и не испытывать затруднений в дальнейшем профессиональном обучении.

Основы дифференциального исчисления – одна из главных тем математики современной школы. Она изучает применение производной для исследования зависимостей переменных – именно через производную можно проанализировать возрастание и убывание функции без обращения к чертежу.

Комплексная подготовка выпускников к сдаче ЕГЭ на образовательном портале «Школково» поможет глубоко понять принципы дифференцирования – подробно разобраться в теории, изучить примеры решения типовых задач и попробовать свои силы в самостоятельной работе. Мы поможем вам ликвидировать пробелы в знаниях – уточнить представление о лексических понятиях темы и зависимостях величин. Ученики смогут повторить, как находить промежутки монотонности, что значит подъем или убывание производной функции на определенном отрезке, когда граничные точки включаются и не включаются в найденные интервалы.

Прежде чем начинать непосредственное решение тематических задач, мы рекомендуем сначала перейти к разделу «Теоретическая справка» и повторить определения понятий, правила и табличные формулы. Здесь же можно прочитать, как находить и записывать каждый промежуток возрастания и убывания функции на графике производной.

Все предлагаемые сведения излагаются в максимально доступной форме для понимания практически «с нуля». На сайте доступны материалы для восприятия и усвоения в нескольких различных формах – чтения, видеопросмотра и непосредственного тренинга под руководством опытных учителей. Профессиональные педагоги подробно расскажут, как найти промежутки возрастания и убывания производной функции аналитическими и графическими способами. В ходе вебинаров можно будет задать любой интересующий вопрос как по теории, так и по решению конкретных задач.

Вспомнив основные моменты темы, просмотрите примеры на возрастание производной функции, аналогичные заданиям экзаменационных вариантов. Для закрепления усвоенного загляните в «Каталог» - здесь вы найдете практические упражнения для самостоятельной работы. Задания в разделе подобраны разного уровня сложности с учетом наработки навыков. К каждому из них, например, на прилагаются алгоритмы решений и правильные ответы.

Выбирая раздел «Конструктор», учащиеся смогут попрактиковаться в исследовании возрастания и убывания производной функции на реальных вариантах ЕГЭ, постоянно обновляемых с учетом последних изменений и нововведений.

Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются:

Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0 .

Пример. Пусть в двухмерном пространстве начало вектора имеет координаты A (12,6) , а конец вектора - координаты B (12,6). Тогда вектор является нулевым вектором.

Длина отрезка AB называется модулем (длиной , нормой ) вектора и обозначается |a |. Вектор длины, равной единице, называется единичным вектором . Кроме модуля вектор характеризуется направлением: вектор имеет направление от A к B . Вектор называется вектором, противоположным вектору .

Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными , если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными , если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.

Два вектора называются равными если они имеют равные модули и одинаково направлены. На рисунке Рис.2 векторы равны т.к. их модули равны и имеют одинаковое направление.

Векторы называются компланарными , если они лежат на одной плоскости или в параллельных плоскостях.

В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:

(1)

где x 1 , x 2 , ..., x n координаты конечной точки вектора x .

Вектор, записанный в виде (1) называется вектор-строкой , а вектор, записанный в виде

(2)

называется вектор-столбцом .

Число n называется размерностью (порядком ) вектора. Если то вектор называется нулевым вектором (т.к. начальная точка вектора ). Два вектора x и y равны тогда и только тогда, когда равны их соответствующие элементы.

Дата создания: 2009-04-11 15:25:51
Последний раз редактировалось: 2012-02-08 09:19:45

Долго я не хотел писать данную статью - думал как подавать материал. Ещё и картинки нужно рисовать. Но, видать сегодня удачно сложились звёзды и статье про векторы быть. Хотя, это всего лишь черновой вариант. В будущем данную статью разобью на несколько отдельных - материала достаточно. Также, постепенно статья будет улучшаться: буду вносить в неё изменения - т.к. за один присест не получится раскрыть все аспекты.

Векторы были введены в математику в девятнадцатом века, для описания величин, которые трудно было описывать с помощью скалярных значений.

Векторы интенсивно применяются при разработке компьютерных игр. Применяются они не только традиционно - для описания таких величин как сила или скорость, но и в областях, которые казалось бы никак не связаны с векторами: хранение цвета, создание теней.

Скаляры и векторы

Для начала напомню, что такое скаляр, и чем он отличается от вектора.

Скалярные значения хранят какую-то величину: масса, объём. То есть это сущность, которая характеризуется только одним числом (например, количество чего-либо).

Вектор в отличии от скаляра описывается с помощью двух значений: величина и направление.

Важное отличие векторов от координат: векторы не привязаны к конкретному местоположению! Ещё раз повторюсь, главное в векторе - длина и направление.

Вектор обозначается жирной буквой латинского алфавита. Например: a , b , v .

На первом рисунке можно увидеть как вектор обозначают на плоскости.

Векторы в пространстве

В пространстве векторы можно выражать с помощью координат. Но прежде нужно ввести одно понятие:

Радиус-вектор точки

Возьмём в пространстве какую-нибудь точку M(2,1). Радиус-вектор точки - это вектор начинающийся в начале координат и заканчивающийся в точке.

У нас здесь ни что иное как вектор OM . Координаты начала вектора (0,0), координаты конца (2,1). Обозначима этот вектор как a .

В данном случае вектор можно записать следующим образом a = <2, 1>. Это координатная форма вектора a .

Координаты вектора называются его компонентами относительно осей. Напрмер, 2 - компонета вектора a относительно оси x.

Давайте ещё раз остановимся на том, что такое координаты точки. Координата точки (например x) - это проекция точки на ось, т.е. основание перпендикуляра, опущенного из точки на ось. В нашем примере 2.

Но вернёмся к первому рисунку. У нас здесь две точки A и B. Пусть координатами точек будут (1,1) и (3,3). Вектор v в данном случае можно обозначить так v = <3-1, 3-1>. Вектор лежащий в двух точках трёхмерного пространстве будет выглядеть так:

v =

Думаю никаких сложностей тут нет.

Умножение вектора на скаляр

Вектор можно умножать на скалярные значения:

kv = =

При этом скалярное значение перемножается с каждой компонентой вектора.

Если k > 1, то вектор увеличится, если k меньше единицы, но больше нуля - вектор уменьшится в длину. Если же k меньше нуля, то вектор поменяет направление.

Единичные векторы

Единичные векторы - это векторы длина которых равна единице. Заметьте, вектор с координатами <1,1,1> не будет равным единице! Нахождение длины вектора описано ниже по тексту.

Существуют так называемые орты - это единичные векторы, которые по направлению совпадают с осями координат. i - орт оси x, j - орт оси y, k - орт оси z.

При этом i = <1,0,0>, j = <0,1,0>, k = <0,0,1>.

Теперь мы знаем что такое умножение вектора на скаляр и что такое единичные векторы. Теперь мы можем записать v в векторной форме.

v = v x i + v y j + v z k , где v x , v y , v z - соответствующие компоненты вектора

Сложение векторов

Чтобы полностью разобраться в предыдущей формуле необходимо понять, как работает сложение векторов.

Тут всё просто. Возьмём два вектора v1 = и v 2 =

v 1 + v 2 =

Мы всего лишь складываем соответствующие компоненты двух векторов.

Разность вычисляется так же.

Это, что касается математической формы. Для полноты, стоит рассмотреть как будет выглядеть сложение и вычитание векторов графически.


Для того, чтобы сложить два вектора a +b . Нужно совместить начало вектора b и конец вектора a . Затем, между началом вектора a и концом вектора b провести новый вектор. Для наглядности смотрите второй рисунок (буква "а").

Для вычитания векторов нужно совместить начала двух векторов и провести новый вектор из конца второго вектора к концу первого. На втором рисунке (буква "б") показано как оно выглядит.

Длина и направление вектора

Сначала рассмотрим длину.

Длина - это числовое значение вектора, без учёта направления.

Длина определяется по формуле (для трёхмерного вектора):

корень квадратный из суммы квадратов компонент вектора.

Знакомая формула, не правда ли? В общем-то - это формула длины отрезка

Направление вектора определяется по направляющим косинусам углов образованных между вектором и осями координат. Для нахождения направляющих косинусов используются соответствующие компоненты и длина (картинка будет позже).

Представление векторов в программах

Представлять векторы в программах можно различными способами. Как с помощью обычных переменных, что не эффективно, так и с помощью массивов, классов и структур.

Float vector3 = {1,2,3}; // массив для хранения вектора struct vector3 // структура для хранения векторов { float x,y,z; };

Самые большие возможности при хранении векторов нам предоставляют классы. В классах мы можем описать не только сам вектор (переменные), но и векторные операции (функции).

Скалярное произведение векторов

Существует два типа перемножения векторов: векторное и скалярное.

Отличительная особенность скалярного произведения - в результате всегда будет скалярное значение, т.е. число.

Тут стоит обратить внимание вот на какой момент. Если результат данной операции равен нулю, значит, два вектора перпендикулярны - угол между ними 90 градусов. Если результат больше нуля - угол меньше 90 градусов. Если результат меньше нуля, угол больше 90 градусов.

Данную операцию представляет следующая формула:

a · b = a x *b x + a y *b y + a z *b z

Скалярное произведение - это сумма произведений соответствующих компонент двух векторов. Т.е. Берём x"ы двух векторов, перемножаем их, затем складываем с произведением y"ов и так далее.

Векторное произведение векторов

Результатом векторного произведения двух векторов будет вектор перпендикулярный этим векторам.

a x b =

Мы пока не будем обсуждать подробно эту формулу. К тому же она довольно трудна для запоминания. Мы ещё вернёмся к этому моменту после знакомства с определителями.

Ну и для общего развития полезно знать, что длина полученного вектора, равна площади параллелограмма построенного на векторах a и b .

Нормализация вектора

Нормализованный вектор - это вектор, длина которого равна единице.

Формула для нахождения нормализованного вектора следующая - все компоненты вектора необходимо разделить на его длину:

v n = v /|v| =

Послесловие

Как Вы, наверное, убедились, векторы не сложны для понимания. Мы рассмотрели ряд операций над векторами.

В следующих статьях раздела "математика" мы будем обсуждать матрицы, определители, системы линейных уравнений. Это всё теория.

После этого, мы рассмотрим преобразования матриц. Именно тогда Вы поймёте насколько важна математика в создании компьютерных игр. Данная тема как раз и станет практикой по всем предыдущим темам.

Вектором называется упорядоченная пара точек. Первая точка называется началом вектора, вторая - концом вектора. Расстояние между началом и концом вектора называется его длиной. Вектор, начало и конец которого совпадают, называется нулевым, его длина равна нулю. Если длина вектора положительна, то его называют ненулевым. Ненулевой вектор можно определить также как направленный отрезок, т.е. отрезок, у которого одна из ограничивающих его точек считается первой (началом вектора), а другая - второй (концом вектора). Направление нулевого вектора, естественно, не определено.

Вектор с началом в точке A и концом в точке B обозначается и изображается стрелкой, обращенной острием к концу вектора (рис.1.1,а). Начало вектора называют также его точкой приложения. Говорят, что вектор \overrightarrow{AB} приложен к точке A . Длина вектора \overrightarrow{AB} или \vec{a} равна длине отрезка AB или a и обозначается \vline\,\overrightarrow{AB}\,\vline или |\vec{a}| . Имея в виду это обозначение, длину вектора называют также модулем, абсолютной величиной. Нулевой вектор, например \overrightarrow{CC} , обозначается символом \vec{o} и изображается одной точкой (точка C на рис.1.1,а). Вектор, длина которого равна единице или принята за единицу, называется единичным вектором.

Ненулевой вектор АВ кроме направленного отрезка определяет также содержащие его луч AB (с началом в точке A ) и прямую AB (рис.1.1,а).

Коллинеарные векторы

Два ненулевых вектора называются коллинеарными, если они принадлежат либо одной прямой, либо - двум параллельным прямым, в противном случае они называются неколлинеарными. Коллинеарность векторов обозначается знаком \parallel . Поскольку направление нулевого вектора не определено, он считается коллинеарным любому вектору. Каждый вектор коллинеарен самому себе.

Два ненулевых коллинеарных вектора называются одинаково направленными (сонаправленными), если они принадлежат параллельным прямым и их концы лежат в одной полуплоскости от прямой, проходящей через их начала (рис.1.2,а); либо, если векторы принадлежат одной прямой, и луч, определяемый одним вектором, целиком принадлежит лучу, определяемому другим вектором (рис. 1.2,6). В противном случае коллинеарные векторы называются противоположно направленными (рис.1.2,в,г). Одинаково направленные и противоположно направленные векторы обозначаются парами стрелок \uparrow\uparrow и \uparrow\downarrow соответственно. Понятия коллинеарных, одинаково направленных векторов распространяются на любое число векторов.

Компланарные векторы

Три ненулевых вектора называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях (рис.1.3,а), в противном случае они называются некомпланарными (рис. 1.3,6). Так как направление нулевого вектора не определено, он считается компланарным с любыми двумя векторами. Понятие компланарных векторов распространяется на любое число векторов.

Равные векторы

Два вектора называются равными, если они:

а) коллинеарны, одинаково направлены;

б) имеют равные длины.

Все нулевые векторы считаются равными друг другу.

Это определение равенства векторов характеризует так называемые свободные векторы. Данный свободный вектор можно переносить, не меняя его направления и длины, в любую точку пространства (откладывать от любой точки), при этом будем получать векторы, равные данному. Таким образом, свободный вектор определяет целый класс равных ему векторов, отличающихся только точкой приложения. Далее будут рассматриваться, как правило, свободные векторы, при этом слово "свободные" будет опускаться.

Замечания 1.1.

1. Определение равенства векторов можно сформулировать, не используя понятия длины вектора. Два вектора \overrightarrow{AB} и , не лежащие на одной прямой, называются равными, если четырехугольник ABCD является параллелограммом (рис.1.4,а). Векторы \overrightarrow{AB} и \overrightarrow{CD} , принадлежащие одной прямой, считаются равными, если существует равный им вектор \overrightarrow{EF} , не принадлежащий этой прямой (рис. 1.4,6). Это определение эквивалентно следующему: два вектора \overrightarrow{AB} и \overrightarrow{CD} называются равными, если середины отрезков AD и AD совпадают (рис. 1.4,в).

2. Отношение равенства векторов является отношением эквивалентности. В самом деле, для отношения равенства = ( \vec{a}=\vec{b} - "вектор \vec{a} равен вектору \vec{b} "), определенного на множестве упорядоченных пар \langle\vec{a},\vec{b}\rangle векторов, выполняются следующие условия:

а) каждый вектор равен самому себе (рефлексивность);

б) если вектор \vec{a} равен вектору \vec{b} , то вектор \vec{b} равен вектору \vec{a} (симметричность);

в) если вектор \vec{a} равен вектору \vec{b} и вектор \vec{b} равен вектору \vec{c} , то вектор \vec{a} равен вектору \vec{c} (транзитивность).

Это означает, что множество векторов разбивается на непересекающиеся классы (см. разд.В.З), т.е. с каждым вектором связывается целый класс равных ему векторов, отличающихся только точками приложения. Поэтому говорят , что свободный вектор определяет класс равных ему векторов.

3. Для любой точки A и любого вектора \vec{a} существует единственная точка B , для которой . В самом деле, если вектор \vec{a} ненулевой, то через точку A проходит единственная прямая, параллельная вектору a (рис.1.5,а), либо его содержащая (рис. 1.5,б). На этой прямой существуют две точки, удаленные от точки A на расстояние |\vec{a}|>0 . Из этих двух точек выберем такую точку B , для которой векторы \overrightarrow{AB} и \vec{a} оказываются одинаково направленными. По построению получаем \overrightarrow{AB}=\vec{a} . Если вектор \vec{a} нулевой, то искомая точка B совпадает с данной точкой A .

Таким образом, любой вектор \vec{a} ставит в соответствие каждой точке A единственную точку B такую, что \overrightarrow{AB}=\vec{a} . Это соответствие называют параллельным переносом. Поэтому свободный вектор можно отождествить с параллельным переносом.

4. Построение, рассмотренное в пункте 3, называется откладыванием вектора \vec{a} от точки A или приложением вектора \vec{a} к точке A .


Используя это построение, можно дать эквивалентные определения коллинеарности и компланарности. Два ненулевых вектора называются коллинеарными, если после приложения их к одной точке они лежат на одной прямой. Три ненулевых вектора называются компланарными, если после приложения их к одной точке они лежат в одной плоскости.

5. Кроме свободных векторов в приложениях векторной алгебры используются скользящие векторы, связанные (приложенные) векторы и др., которые отличаются от свободных векторов определением равенства. Например, скользящие векторы называются равными, если они лежат на одной прямой, одинаково направлены и имеют равные длины. Другими словами, в отличие от свободного вектора, скользящий вектор можно переносить, не меняя направления и длины, только вдоль содержащей этот вектор прямой. Например, в механике сила, действующая на абсолютно твердое тело, изображается скользящим вектором, а угловая скорость - свободным вектором. Сила, действующая на деформируемое тело, является примером так называемого приложенного вектора. Изменение точки приложения силы приведет к изменению ее воздействия на тело.

Пример 1.1. Дан треугольник ABC (рис. 1.6), точки L,M,N - середины его сторон. Для векторов, изображенных на рис. 1.6, указать коллинеарные, одинаково направленные, противоположно направленные, равные.

Решение. По теореме о средней линии треугольника заключаем, что ML \parallel AB,~LN \parallel AC . Поэтому векторы \overrightarrow{AM},\overrightarrow{MC},\overrightarrow{NL} - коллинеарные (так как лежат на одной или параллельных прямых), одинаково направленные и имеют равные длины. Следовательно, это равные векторы: \overrightarrow{AM}=\overrightarrow{MC}=\overrightarrow{NL} . Аналогично, находим

\overrightarrow{AN}=\overrightarrow{ML},\quad \overrightarrow{AN} \uparrow\downarrow \overrightarrow{BN},\quad \overrightarrow{BN} \uparrow\downarrow \overrightarrow{ML},\quad \overrightarrow{CL} \uparrow\downarrow \overrightarrow{BL}\,.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....