В каком созвездии находится звезда имеющая координаты. Практическая работа с подвижной картой звездного неба

Примечание:

  1. (Альфа Большого Пса ; α CMa,Сириус ). Самая яркая звезда в созвездии Большого Пса и самая яркая звезда в небе. Это визуально-двойная звезда с периодом обращения 50 лет, основной компонент которой (A) является A-звездой, а второй компонент (B, Щенок) - белым карликом 8-й звездной величины. Сириус B оптически был впервые обнаружен в 1862г, а его тип был определен по спектру в 1925г. Сириус удален от нас на расстояние 8,7 световых лет и по близости к Солнечной системе занимает седьмое место. Название унаследовано от древних греков и означает "опаляющий", что подчеркивает блеск звезды. В связи с именем созвездия, к которому принадлежит Сириус, его называют также "Собачьей звездой". Третья звезда, коричневый карлик, ближе к (А), чем компонент (В), открыта французскими астрономами в 1995г.
  2. (Альфа Волопаса , α Boo, Арктур ). Самая яркая звезда в созвездии Волопаса, оранжевый гигант, K-звезда, четвертая по яркости звезда в небе. Двойная, переменная. Название имеет греческое происхождение и означает “сторож медведя”. Арктур был первой звездой, которую удалось увидеть днём с помощью телескопа французскому астроному и астрологу Морен в 1635 году.
  3. (Альфа Лиры ; α Lyr, Вега ). Самая яркая звезда в созвездии Лиры и пятая по яркости звезда в небе. Это A-звезда. В 2005 году космическим телескопом «Спитцер» были получены изображения Веги, а также окружающей звезду пыли в инфракрасном спектре. Вокруг звезды формируется планетная система.
  4. (Альфа Возничего ; α Aur, Капелла ). Самая яркая звезда в созвездии Возничего, спектрально-двойная звезда, в которой основной компонент - гигантская G-звезда. Ее имя латинского происхождения и означает “маленькая козочка”.
  5. (Бета Ориона ; β Ori, Ригель ). Самая яркая звезда в созвездии Ориона. Для ее обозначения использована греческая буква Бета, хотя она чуть ярче Бетельгейзе, обозначенной как Альфа Ориона. Ригель - сверхгигант, B-звезда с компаньоном 7-й звездной величины. Название, имеющее арабское происхождение, означает "нога гиганта".
  6. (Альфа Малого Пса ; α CMi, Процион ). Самая яркая звезда в созвездии Малого Пса. Процион занимает по яркости пятое место среди всех звезд. В 1896 г. Дж. M. Шеберль обнаружил, что Процион представляет собой двойную систему. Главный компаньон - нормальная F-звезда, а слабый компаньон - белый карлик 11-й звездной величины. Период обращения системы составляет 41 год. Название Процион имеет греческое происхождение и означает "перед собакой" (напоминание о том, что звезда восходит перед "Собачьей звездой", т.е. Сириусом).
  7. (Альфа Орла ; α Aql, Альтаир ). Самая яркая звезда в созвездии Орла. Арабское слово "альтаир" означает "летящий орел". Альтаир - А-звезда. Это одна из ближайших среди наиболее ярких звезд (находящаяся на расстоянии 17 световых лет).
  8. (Альфа Ориона ; α Ori, Бетельгейзе ). Красный сверхгигант, M-звезда, одна из самых больших известных звезд. Посредством точечной интерферометрии и другими интерференционными методами удалось измерить ее диаметр, который оказался равным примерно 1000 диаметров Солнца. Было обнаружено и присутствие больших ярких “звездных пятен”. Наблюдения в ультрафиолете, проведенные с помощью Космического телескопа Хаббла, показали, что Бетельгейзе окружена обширной хромосферой, масса которой составляет приблизительно двадцать солнечных. Переменная. Яркость нерегулярно изменяется между величинами 0,4 и 0,9 с периодом около пяти лет. Примечателен тот факт, что за время наблюдения с 1993 по 2009 год диаметр звезды уменьшился на 15 %, с 5.5 астрономических единиц до приблизительно 4.7, и астрономы пока не могут объяснить с чем это связано. При этом яркость звезды не изменилась сколько-нибудь заметно за это время.
  9. (Альфа Тельца ; α Tau, Альдебаран ). Самая яркая звезда в созвездии Тельца. Арабское название означает “следующий” (т.е. идущий вслед за Плеядами). Альдебаран - гигантская K-звезда. Переменная. Хотя в небе звезда выглядит частью скопления Гиад, фактически она не является его членом, находясь вдвое ближе к Земле. В 1997 сообщалось о возможном существовании у него спутника - крупной планеты (или небольшого коричневого карлика), с массой равной 11 массам Юпитера на расстоянии 1,35 а.е. Беспилотный космический аппарат Пионер-10 направляется в сторону Альдебарана. Если с ним ничего не случится по пути, он достигнет области звезды примерно через 2 миллиона лет.
  10. (Альфа Скорпиона ; α Sco, Антарес ). Самая яркая звезда в созвездии Скорпиона. Красный сверхгигант, M-звезда, переменная, двойная Название имеет греческое происхождение и означает “конкурент Марса”, что напоминает о замечательном цвете этой звезды. Антарес- полуправильная переменная звезда, яркость которой изменяется между звездными величинами 0,9 и 1,1 с пятилетним периодом. Имеет голубую звезду- компаньона 6-й звездной величины, удаленную всего на 3 дуговых секунды. Антарес В был открыт во время одного из таких покрытий 13 апреля 1819 года. Период обращения спутника — 878 лет.
  11. (Альфа Девы ; α Vir, Спика ). Самая яркая звезда в созвездии Девы. Это затменная двойная, переменная, яркость которой изменяется примерно на 0,1 звездной величины с периодом 4,014 суток. Основной компонент - бело-голубая B-звезда с массой около одиннадцати масс Солнца. Название означает "кукурузный початок".
  12. (Бета Близнецов ; β Gem, Поллукс ). Самая яркая звезда в созвездии Близнецов, хотя ее обозначение - Бета, а не Альфа. Кажется маловероятным, что Поллукс со времен Байера (1572-1625) стал ярче. Поллукс - оранжевый гигант, K-звезда. В классической мифологии близнецы Кастор и Поллукс были сыновьями Леды. В 2006г у звезды обнаружена экзопланета.
  13. (Альфа Южной Рыбы ; α PsA,
  14. (Эпсилон Большого Пса ; ε CMa, Адара ). Вторая по яркости (после Сириуса) звезда в созвездии Большого Пса, гигантская B-звезда. Имеет звезду-компаньон 7,5 m . Арабское название звезды означает “девственница”. Примерно 4,7 миллиона лет назад расстояние от ε Большого Пса до Земли составляло 34 световых года, и звезда была ярчайшей на небе, её блеск был равен −4,0 m
  15. (Альфа Близнецов ; α Gem, Кастор ). Вторая по яркости в созвездии Близнецов после Поллукса. Ее звездная величина при наблюдении невооруженным глазом оценивается как 1,6, но это - объединенная яркость множественной системы, состоящей по крайней мере из шести компонентов. Имеются две А-звезды с звездными величинами 2,0 и 2,9, образующие близкую визуальную пару, каждая из которых спектрально-двойная, и более отдаленная красная звезда 9-й звездной величины, которая является затменной двойной.
  16. (Гамма Ориона ; γ Ori, Беллатрикс ). Гигант, B-звезда, переменная, двойная. Название имеет латинское происхождение и означает “женщина-воительница”. Одна из 57 навигационных звёзд древности
  17. (Бета Тельца ; β Tau, Нат ). Вторая по яркости в созвездии Тельца, лежащая на острие одного из рогов быка. Название происходит от арабского выражения "бодающий рогами". Эта звезда на старинных картах изображала правую ногу человеческой фигуры в созвездии Возничего и имела другое обозначение, Гамма Возничего. Эльнат - B-звезда.
  18. (Эпсилон Ориона ; ε Ori, Альнилам ). Одна из трех ярких звезд, образующих пояс Ориона. Арабское название переводится как "нитка жемчуга". Альнилам - сверхгигант, В-звезда, переменная
  19. (Дзета Ориона ; ζ Ori, Альнитак ). Одна из трех ярких звезд, образующих пояс Ориона. Арабское название переводится как "пояс". Альнитак - сверхгигант, О-звезда, тройная звезда.
  20. (Эпсилон Большой Медведицы ; ε UMa, Алиот ). Самая яркая звезда в созвездии Большой Медведицы. Греческие буква в данном случае закреплены за звездами в порядке их положения, а не яркости. Алиот - А-звезда, возможно имеет планету в 15 раз массивнее Юпитера.
  21. (Альфа Большой Медведицы ; α UMa, Дубхе ). Одна из двух звезд (вторая - Мерак) Большого Ковша в Большой Медведице, называемых Указателями. Гигант, K-звезда, переменная. Компаньон 5-й звездной величины вращается вокруг нее с периодом в 44 года. Дубхе, буквально "медведь", является сокращенной версией арабского названия, означающего "спина большего медведя".
  22. (Альфа Персея ;α Per, Мирфак ). Самая яркая звезда в созвездии Персея. Желтый сверхгигант, F- звезда, переменная. Название, арабского происхождения, означает "локоть".
  23. (Эта Большой Медведицы ; η UMa, Бенетнаш ). Звезда расположенная в конце “хвоста”. B-звезда, переменная. Арабское название означает “руководитель плакальщиков” (для арабов созвездие виделось как катафалк, а не медведь).
  24. (Бета Большого Пса ; β CMa, Мирзам ). Вторая по яркости в созвездии Большого Пса. Гигантская B- звезда, переменная, представляет собой прототип класса слабо переменных звезд типа Беты Большого Пса. Ее яркость изменяется каждые шесть часов на несколько сотых долей звездной величины. Такой низкий уровень переменности невооруженным глазом не обнаруживается.
  25. (Альфа Гидры ; α Hya, Альфард ). Самая яркая звезда в созвездии Гидры. Имя арабского происхождения означает “уединившаяся змея”. Альфард - K-звезда, переменная, тройная.
  26. (Альфа Малой Медведицы ; α UMi, Полярная ). Самая яркая звезда в созвездии Малой Медведицы, находящаяся вблизи северного небесного полюса (на расстоянии меньше одного градуса). Полярная является ближайшей к Земле пульсирующей переменной звездой типа дельта Цефея с периодом 3,97 дней. Но Полярная — очень нестандартная цефеида: её пульсации затухают за время порядка десятков лет: в 1900 изменение яркости составляло ±8 %, а в 2005 — приблизительно 2 %. Кроме того, за это время звезда стала в среднем на 15 % ярче.

Чтобы сделать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. Координаты звезд относительно горизонта, например высота, хотя и наглядны, но непригодны для составления карт, так как все время меняются. Надо использовать такую систему координат, которая вращалась бы вместе со звездным небом. Она называется экваториальной системой. В ней одной координатой является угловое расстояние светила от небесного экватора, называемое склонением (рис. 19). Оно меняется в пределах ±90° и считается положительным к северу от экватора и отрицательным - к югу. Склонение аналогично географической широте.

Вторая координата аналогична географической долготе и называется прямым восхождением а.

Рис. 18. Суточные пути Солнца над горизонтом в разные времена года при наблюдениях: а - в средних географических широтах; б - на экваторе Земли.

Рис. 19. Экваториальные координаты.

Рис. 20. Высота светила в верхней кульминации.

Прямое восхождение светила М измеряется углом между плоскостями большого круга, проведенного через полюсы мира и данное светило и большого круга, проходящего через полюсы мира и точку весеннего равноденствия (рис. 19). Этот угол отсчитывают от точки весеннего равноденствия Т против хода часовой стрелки, если смотреть с северного полюса. Он изменяется от 0 до 360° и называется прямым восхождением потому, что звезды, расположенные на небесном экваторе, восходят в порядке возрастания их прямого восхождения. В этом же порядке они кульминируют друг за другом. Поэтому а выражают обычно не в угловой мере, а во временной, и исходят из того, что небо за поворачивается на 15°, а за 4 мин - на 1°. Поэтому прямое восхождение 90° иначе будет 6 ч, а 7 ч 18 мин . В единицах времени по краям звездной карты надписывают прямые восхождения.

Существуют также и звездные глобусы, где звезды изображены на сферической поверхности глобуса.

На одной карте можно изобразить без искажений только часть звездного неба Начинающим пользоваться такой картой трудно, потому что они не знают, какие созвездия видны в данное время и как они расположены относительно горизонта. Удобнее подвижная карта звездного неба. Идея ее устройства проста. На карту наложен круг с вырезом, изображающим линию горизонта. Вырез горизонта эксцентричен, и при вращении накладного круга в вырезе будут видны созвездия, находящиеся над горизонтом в разное время. Как пользоваться такой картой, сказано в приложении VII.

(см. скан)

2. Высота светил в кульминации.

Найдем зависимость между высотой светила М в верхней кульминации, его склонением 6 и широтой местности

На рисунке 20 изображены отвесная линия ось мира и проекции небесного экватора и линии горизонта (полуденная линия) на плоскость небесного меридиана Угол между полуденной линией и осью мира равен, как мы знаем, широте местности Очевидно, наклон плоскости небесного экватора к горизонту, измеряемый углом равен 90° - (рис. 20). Звезда М со склонением 6, кульминирующая к югу от зенита, имеет в верхней кульминации высоту

Из этой формулы видно, что географическую широту можно определить, измеряя высоту любой звезды с известным склонением 6 в верхней кульминации. При этом следует учитывать, что если звезда в момент кульминации находится к югу от экватора, то ее склонение отрицательно.

(см. скан)

3. Точное время.

Для измерения коротких промежутков времени в астрономии основной единицей является средняя длительность солнечных суток, т. е. средний промежуток времени между двумя верхними (или нижними) кульминациями центра Солнца. Среднее значение приходится использовать, потому что в течение года длительность солнечных суток слегка колеблется. Это связано с тем, что Земля обращается вокруг Солнца не по кругу, а по эллипсу и скорость ее движения при этом немного меняется. Это и вызывает небольшие неравномерности в видимом движении Солнца по эклиптике в течение года.

Момент верхней кульминации центра Солнца, как мы уже говорили, называется истинным полднем. Но для проверки часов, для определения точного времени нет надобности отмечать по ним именно момент кульминации Солнца. Удобнее и точнее отмечать моменты кульминации звезд, так как разность моментов кульминации любой звезды и Солнца точно известна для любого времени. Поэтому для определения точного времени с помощью специальных оптических приборов отмечают моменты кульминаций звезд и проверяют по ним правильность хода часов, «хранящих» время. Определяемое таким образом время было бы абсолютно точным, если бы наблюдаемое вращение небосвода происходило со строго постоянной угловой скоростью. Однако оказалось, что скорость вращения Земли вокруг оси, а следовательно и видимое вращение небесной

сферы, испытывает со временем очень небольшие изменения. Поэтому для «хранения» точного времени сейчас используются специальные атомные часы, ход которых контролируется колебательными процессами в атомах, происходящими на неизменной частоте. Часы отдельных обсерваторий сверяются по сигналам атомного времени. Сравнение времени, определяемого по атомным часам и по видимому движению звезд, позволяет исследовать неравномерности вращения Земли.

Определение точного времени, его хранение и передача по радио всему населению составляют задачу службы точного времени, которая существует во многих странах.

Сигналы точного времени по радио принимают штурманы морского и воздушного флота, многие научные и производственные организации, нуждающиеся в знании точного времени. Знать точное время нужно, в частности, и для определения географических долгот разных пунктов земной поверхности.

4. Счет времени. Определение географической долготы. Календарь.

Из курса физической географии СССР вам известны понятия местного, поясного и декретного счета времени, а также что разность географических долгот двух пунктов определяют по разности местного времени этих пунктов. Эта задача решается астрономическими методами, использующими наблюдения звезд. На основании определения точных координат отдельных пунктов производится картографирование земной поверхности.

Для счета больших промежутков времени люди с древних пор использовали продолжительность либо лунного месяца, либо солнечного года, т. е. продолжительность оборота Солнца по эклиптике. Год определяет периодичность сезонных изменений. Солнечный год длится 365 солнечных суток 5 часов 48 минут 46 секунд. Он практически несоизмерим с сутками и с длиной лунного месяца - периодом смены лунных фаз (около 29,5 сут). Это и составляет трудность создания простого и удобного календаря. За многовековую историю человечества создавалось и использовалось много различных систем календарей. Но все их можно разделить на три типа: солнечные, лунные и лунно-солнечные. Южные скотоводческие народы пользовались обычно лунными месяцами. Год, состоящий из 12 лунных месяцев, содержал 355 солнечных суток. Для согласования счета времени по Луне и по Солнцу приходилось устанавливать в году то 12, то 13 месяцев и вставлять в год добавочные дни. Проще и удобнее был солнечный календарь, применявшийся еще в Древнем Египте. В настоящее время в большинстве стран мира принят тоже солнечный календарь, но более совершенноро устройства, называемый григорианским, о котором говорится дальше.

При составлении календаря необходимо учитывать, что продолжительность календарного года должна быть как можно ближе к продолжительности оборота Солнца по эклиптике и что календарный год должен содержать целое число солнечных суток, так как неудобно начинать год в разное время суток.

Этим условиям удовлетворял календарь, разработанный

александрийским астрономом Созигеном и введенный в 46 г. до н. э. в Риме Юлием Цезарем. Впоследствии, как вам известно из курса физической географии, он получил название юлианского или старого стиля. В этом календаре годы считаются трижды подряд по 365 сут и называются простыми, следующий за ними год - в 366 сут. Он называется високосным. Високосными годами в юлианском календаре являются те годы, номера которых без остатка делятся на 4.

Средняя продолжительность года по этому календарю составляет 365 сут 6 ч, т. е. она примерно на 11 мин длиннее истинной. В силу этого старый стиль отставал от действительного течения времени примерно на 3 сут за каждые 400 лет.

В григорианском календаре (новом стиле), введенном в СССР в 1918 г. и еще ранее принятом в большинстве стран, годы, оканчивающиеся на два нуля, за исключением 1600, 2000, 2400 и т. п. (т. е. тех, у которых число сотен делится на 4 без остатка), не считаются високосными. Этим и исправляют ошибку в 3 сут, накапливающуюся за 400 лет. Таким образом, средняя продолжительность года в новом стиле оказывается очень близкой к периоду обращения Земли вокруг Солнца.

К XX в. разница между новым стилем и старым (юлианским) достигла 13 сут. Поскольку в нашей стране новый стиль был введен только в 1918 г., то Октябрьская революция, совершенная в 1917 г. 25 октября (по старому стилю), отмечается 7 ноября (по новому стилю).

Разница между старым и новым стилями в 13 сут сохранится и в XXI в., а в XXII в. возрастет до 14 сут.

Новый стиль, конечно, не является совершенно точным, но ошибка в 1 сут накопится по нему только через 3300 лет.

Лабораторная работа № 6.
Определите экваториальных координат звезд

с помощью подвижной карты звездного неба

Цель работы: научиться пользоваться подвижной картой звездного неба и определять с ее помощью координаты звезд.

Оборудование: подвижная карта звездного неба.

Теоретическая часть.
Астрономия – наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел.
Основные задачи астрономии:


  1. Изучение видимых, а затем действительных положений и движений небесных тел в пространстве, определение их размеров и формы;

  2. изучение физического строения небесных тел, химического состава, физических условий на поверхности и в недрах;

  3. решение проблем происхождения и развития небесных тел.

Основные разделы астрономии:


  1. астрометрия – изучает положение небесных тел и вращение Земли;

  2. небесная механика – изучает движение небесных тел и искусственных спутников под действием тяготения;

  3. астрофизика:
а) космогония – рассматривает происхождение, строение, физический состав, химические свойства и эволюцию отдельных тел;

б) космология – рассматривает Вселенную как целое, ее развитие и происхождение.
Основные этапы развития астрономии


  1. Древний (до телескопический).

  2. Телескопический (с Г. Галилея).

  3. Всеволновой (с 1800 г.).

  4. Внеатмосферный (с 1961 г.).

Небесная сфера
Для изучения видимого расположения свети и явлений, которые можно наблюдать на небе в течение суток или многих месяцев в астрономии применяют понятие «небесная сфера».

Небесная сфера – воображаемая сфера произвольного радиуса, в центре которой находится глаз наблюдателя. На поверхность этой сферы проецируют видимое положение всех светил, отвлекаясь от действительных расстояний, и рассматривают лишь угловое расстояние между ними. А для удобства измерений строят ряд точек и линий.

Основные линии и точки небесной сферы.

Z – зенит;

Z / – надир;

ZZ / – отвесная линия;

P – северный полюс мира;

P / – южный полюс мира;

PP / – ось мира – ось видимого вращения небесной сферы;

Плоскость перпендикулярная отвесной линии и проходящая через центр небесной сферы называется плоскостью истинного математического горизонта.

Ось мира для наблюдателя всегда параллельна оси вращения Земли.

Плоскость, проходящая через центр небесной сферы, перпендикулярно оси мира называется небесным экватором.

Точки, в которых небесный экватор пересекает плоскость истинного математического горизонта, называются точками Востока (E) и Запада (W). Две другие равно отдаленные от них называются точками Севера (N) и Юга (S).

SN – полуденная линия.

Окружность, проходящая через полюсы мира, зенит, надир, через точку Севера и Юга называется небесным меридианом.

Небесные координаты
Системы координат:

– горизонтальная;

– первая экваториальная;

– вторая экваториальная;

– эклиптическая;

– галактическая;

– квазарная.
Горизонтальная система координат
Предназначена для непосредственных наблюдений.

Основная линия – отвесная (вертикальная) линия.

Основная плоскость – плоскость истинного математического горизонта.

Через зенит, надир и точку, в которой в данный момент находится светило M, можно провести большой полукруг небесной сферы, который называется вертикалом или кругом высоты. Мгновенное положение светила M относительно горизонта и небесного меридиана определяется двумя координатами: высотой и азимутом.


Высота светила (h o ) – дуга вертикала от горизонта до светила (
). Изменяется в пределах от – 90 0 до +90 0 . Измеряется в градусах (минутах и секундах). Иногда вместо высоты светила рассматривают зенитное расстояние (z o ) – дуга вертикала от зенита до светила (

Азимут (A o ) – дуга горизонта от точки Юга до точки пересечения вертикала с горизонтом, по часовой стрелке (т. е. от Юга к Западу) (
). Изменяется в пределах от 0 0 до 360 0 . Измеряется в градусах (минутах и секундах).

Первая экваториальная система координат
Предназначена для измерения времени.

Основная линия – ось мира.

Основная плоскость –

кругом склонения светила.



Склонение () –
). Изменяется в пределах от – 90 0 до +90 0 . Измеряется в градусах (минутах и секундах). Иногда вместо склонения светила рассматривают полюсное (или полярное) расстояние (P o ) – дуга круга склонения от северного полюса до светила (
). Изменяется в пределах от 0 0 до 180 0 . Измеряется в градусах (минутах и секундах). Склонение положительно для звезд северного полушария и отрицательно для южного. На экваторе склонение равно нулю.

Часовой угол () – дуга небесного экватора от верхней точки экватора Q до точки пересечения круга склонения с экватором, по часовой стрелке (т. е. от Юга к Западу или в направлении суточного движения небесной сферы) (

Вторая экваториальная система координат
Предназначена для составления звездных карт, атласов и каталогов.

Основная линия – ось мира.

Основная плоскость – плоскость небесного экватора.

Большой круг небесной сферы, проходящий через полюсы мира и наблюдаемое светило, называется кругом склонения светила.



Склонение () – дуга круга склонения от экватора до светила (
). Изменяется в пределах от – 90 0 до +90 0 . Измеряется в градусах (минутах и секундах). Иногда вместо склонения светила рассматривают полюсное (или полярное) расстояние (P o ) – дуга круга склонения от северного полюса до светила (
). Изменяется в пределах от 0 0 до 180 0 . Измеряется в градусах (минутах и секундах).

Прямое восхождение (
) –
дуга небесного экватора от точки весеннего равноденствия до точки пересечения круга склонения с экватором, против часовой стрелке (т. е. от Юга к Востоку) (
). Изменяется в пределах от 0 h до 24 h . Измеряется в часах (минутах и секундах).

Созвездия и звезды
Все небо разделено на 88 участков, имеющих строго определенные границы – созвездия. Созвездия – соединение звезд в различные фигуры. Такое определение давалось тысячи лет назад. Сейчас созвездию мы можем дать такое определение. Созвездия – участки звездного неба, выделенные для удобства ориентировки на небесной сфере и обозначения звезд. В таблице 1 представлено несколько созвездия и некоторые входящие в их состав звезды.
Таблица 1.


Созвездие

Звезда

Созвездие

Звезда

Андромеда

Almaak

Лебедь

α Денеб

Mirach

Лев

α Регул

Близнецы

α Кастор

Лира

α Вега

β Поллукс

Малая Медведица

α Полярная звезда

γ Альхена

Малый Пес

α Процион

Большая Медведица

α Дубхе

Орион

α Бетельгейзе

ε Алиот

β Ригель

ξ Мицар

γ Беллатрикс

Алькор

ξ Алнитак

Большой Пес

α Сириус

ε Алнилам

Весы

α Zubenelgenub

Пегас

α Markab

Возничий

α Капелла

β Scheat

Волопас

α Арктур

ε Enif

Дева

α Спика

Персей

α Мирфак

Заяц

α Arneb

Северная Корона

α Alphekka

Кит

ο Мира

Скорпион

α Антарес

Кассиопея

α Shedir

Телец

α Альдебаран

δ Ruchbah

Цефей

γ Errai

β Caph

β Alfirk

Эклиптика
Воображаемая линия годового движения Солнца называется эклиптикой. Эклиптика и небесный экватор пересекаются в точке весеннего равноденствия и точке осеннего равноденствия. Всю эклиптику Солнце проходит ровно за год. С
озвездия, через которые проходит эклиптика, называют зодиакальными (их 12).

– точка весеннего равноденствия (21 марта)
,
;

– точка осеннего равноденствия (23 сентября)
,
;

– летнее солнцестояние (22 июня)
,
;

– зимнее солнцестояние (22 декабря)
,
.

Угол между эклиптикой и небесным экватором равен
.

Основы измерения времени
Верхняя кульминация – момент прохождения светила через небесный меридиан над горизонтом (M 3). Нижняя кульминация – момент прохождения светила через небесный меридиан под горизонтом (M 2). Светила, координаты (горизонтальные) которых в течение суток непрерывно изменяются и верхняя кульминация происходит над горизонтом, а нижняя – под горизонтом называются заходящими и восходящими (M 1 , M 2 , M 3). Есть незаходящие (M 5) и н
евосходящие
(M 4) светила.

Сутки – промежуток времени между двумя последовательными одноименными кульминациями

Точки весеннего равноденствия (звездные сутки);

Центра диска Солнца (истинные солнечные сутки);

- «фиктивные точки среднего солнца», движущиеся по экватору с постоянной скоростью, с периодом равным периода обращения истинного солнца (средние солнечные сутки).

Сутки – период смены дней (в основе суток – период обращения Земли вокруг своей оси).

Месяц связан с периодом смены лунных фаз (в основе – период обращения Луны вокруг Земли).

Год связан с периодом смены времен года (в основе – период обращения Земли вокруг Солнца).

Среднее эклиптическое Солнце – фиктивная точка, которая равномерно движется по эклиптике со средней скоростью Солнца и совпадает с ним около 3 января и 4 июля).

Среднее экваториальное Солнце – фиктивная точка, которая равномерно движется по экватору с постоянной скоростью среднего эклиптического Солнца и одновременно с ним проходит точку весеннего равноденствия.

Промежуток времени между двумя последовательными одноименными нижними кульминациями среднего экваториального Солнца на одном и том же географическом меридиане называется средними солнечными сутками или просто средними сутками (ими мы и пользуемся).

Время, прошедшее от нижней кульминации среднего экваториального Солнца до любого другого его положения, выраженное в долях средних солнечных суток (часах, минутах, секундах) называется средним солнечным временем или просто средним временем ():

, (1)

где – часовой угол.

Среднее солнечное время на данном меридиане:

, (2)

где – долгота.

Поясное время ():

, (3)

где – номер часового пояса;

– всемирное время (на нулевом гринвичском меридиане) .

Декретное время ():

– зимнее время (4)

– летнее время. (5)

Практическая часть.
1.) Найдите на карте звездного неба следующие созвездия и зарисуйте их: Андромеда, Близнецы, Большая Медведица, Большой Пес, Весы, Возничий, Волопас, Дева, Кассиопея, Лебедь, Лев, Лира, Малая Медведица, Малый Пес, Орел, Орион, Пегас, Северная Корона, Скорпион, Телец.
2.) В каких созвездиях находятся звезды, экваториальные координаты которых равны:

1.
,
; 2.
,
;

3.
,
; 4.
,
;

5.
,
; 6.
,
;, если склонение
(для г. Калуги) (
, так как определяем координаты звезды, находящейся в зените).

Какая звезда в момент рождения была в поблизости в верхней кульминации?
Сделайте вывод о проделанной работе.

Вопросы для защиты лабораторной работы.


  1. Дайте определение астрономии как науки.

  2. Перечислите основные этапы развития астрономии.

  3. Расскажите о небесной сфере.

  4. Какие небесные системы координат вы знаете?

  5. Расскажите о горизонтальной системе координат.

  6. Расскажите о второй экваториальной системе координат.

  7. Дайте определение созвездия. Приведите примеры.

  8. Дайте определение эклиптики.

  9. Уметь находить по карте звездного неба экваториальные координаты звезд и наоборот.

Наименование разделов и тем

Объем часов

Уровень освоения

Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил.

Воспроизведение определений терминов и понятий (созвездие, высота и кульминация звезд). Объяснение наблюдаемых невооруженным глазом движения звезд на различных географических широтах.

Тема 2.1. Звезды и созвездия. Небесные координаты и звездные карты.

2.1.1. Звезды и созвездия. Видимая звездная величина

Невооруженным глазом видно на небе большое количество звезд. Их так много, что, кажется, не сосчитать, однако звезд, которые видны невооруженным глазом, около трех тысяч. В общем случае на небе можно насчитать до 2500-3000 звезд (в зависимости от вашего зрения) – а всего видимых звезд около 6000.

Вероятно, еще на заре цивилизации люди, стремясь как-то разобраться во множестве звезд и запомнить их расположение, мысленно объединяли их в определенные фигуры. Тысячи лет назад люди глядели на небо, считали звезды и мысленно соединяли их в разнообразные фигуры (созвездия), называя их именами персонажей древних мифов и легенд, животных и предметов.

У разных народов имелись свои мифы и легенды о созвездиях, свои названия, разное их количество. Деления были чисто условны, рисунки созвездия редко соответствовали названной фигуре, однако это существенно облегчало ориентирование по небу. Даже босоногие мальчики в древней Халдее или Шумерах знали небо лучше любого из нас.

Многие характерные «звездные фигуры» уже в глубокой древности получили имена героев греческих мифов и легенд, а также тех мифических существ, с которыми эти герои сражались. Так появились на небе Геркулес, Персей, Орион, Андромеда и т. д., а также Дракон, Телец, Кит и т. п. Некоторые из этих созвездий упоминаются в древнегреческих поэмах «Илиада» и «Одиссея». Их изображения можно видеть в старинных звездных атласах, на глобусах и картах звездного неба (рис. 2.1).

Созвездия - это определенные участки звездного неба, разделенные между собой строго установленными границами . Созвездия - область неба с характерной группой звезд и всеми звездами, находящимися внутри его границ. Соседство звезд, кажущиеся, в проекции на небесную сферу.

Старейшие по названиям считаются созвездия зодиакальные – пояс, вдоль которого происходит годичное движение Солнца, а также видимые пути Луны и планет. Так созвездия Телец – было известно > 4000 лет назад, так как в это время в этом созвездии находилась точка весеннего равноденствия.

У разных народов и в разное время был разный принцип деления звезд.

  • 4 век до н.э. был список 809 звезд входящих в 122 созвездия.
  • 18 век – Монголия – было 237 созвездий.
  • 2 век – Птолемей (“Альмагеста”) – описано 48 созвездий.
  • 15-16 век – период великих морских путешествий – описано 48 созвездий южного неба.
  • В Русском звездном атласе Корнелия Рейссига, изданном в 1829г содержались 102 созвездия.

Были попытки переименовать установившиеся созвездия, но не одно название не прижилось у астрономов (так церковь в 1627г издала атлас созвездий «Христианское звездное небо», где им давались названия монархов – Георг, Карл, Людовик, Наполеон).

Многие звездные карты (атласы) 17-19 века содержали названия созвездий и рисунки фигур. Но прижился только один звездный атлас Яна Гевелия (1611-1687, Польша) изданный в 1690г и имеющий не только точное расположение звезд и впервые экваториальных координатах, но и прекрасные рисунки. (видеофильм «Звездный атлас Яна Гевелия »




Путаница с созвездиями прекращена в 1922г Международный астрономический союз разделил все небо на 88 созвездий, а границы окончательно установлены в 1928 году.

Среди всех 88 созвездий известное каждому Большая Медведица - одно из самых крупных.

Смотря на небо, нетрудно заметить, что звезды различны по яркости, или, как говорят астрономы, по блеску .

Видимые на небе невооруженным глазом звезды астрономы еще до нашей эры разделили на шесть величин. В 125г до НЭ Гиппарх (180-125, Греция) вводит деление звезд на небе по видимой яркости на звездные величины , обозначив самые яркие - первой звездной величины (1m), а еле видимые – 6m (т. е. разность в 5 звездных величин).

Звездная величина - видимая яркость (блеск) звезды . Звездная величина характеризует не размеры, а только блеск звезд. Чем слабее звезда, тем больше число, обозначающее ее звездную величину.

Когда ученые стали располагать приборами для измерения величины потока света, приходящего от звезд, оказалось, что от звезды первой величины света приходит в 2,5 раза больше, чем от звезды второй величины, от звезды второй величины в 2,5 раза больше, чем от звезды третьей величины, и т. д. Несколько звезд были отнесены к звездам нулевой величины, потому что от них света приходит в 2,5 раза больше, чем от звезд первой величины. А самая яркая звезда всего неба - Сириус (α Большого Пса) получила даже отрицательную звездную величину -1,5.

Было установлено, что поток энергии от звезды первой величины в 100 раз больше, чем от звезды шестой величины . К настоящему времени звездные величины определены для многих сотен тысяч звезд.

Звезды 1-й звездной величины - 1m, наиболее яркие назвали.

Звезды 2-й звездной величины - 2m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 1-й величины

Звезды 3-й звездной величины - 3m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 2-й величины

Звезды 4-й звездной величины - 4m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 3-й величины

Звезды 5-й звездной величины - 5m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 4-й величины

Звезды 6-й звездной величины - 6m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 5-й величины. Самые слабые по блеску из доступных невооруженному глазу Они слабее звезд 1-й звездной величины в 100 раз .

Всего на небе 22 звезды 1-й звездной величины, но блеск их не одинаков: одни из них несколько ярче 1-й величины, другие слабее. Так же обстоит дело со звездами 2-й, 3-й и последующих величин, поэтому для точного определения блеска той или иной пришлось ввести дробные числа. Измерения светового потока от звезд позволяют теперь определить их звездные величины с точностью до десятых и сотых долей.

Самая яркая звезда северного полушария неба Вега имеет блеск 0,14 звездной величины, а самая яркая звезда всего неба Сириус - минус 1,58 звездной величины, Солнце - минус 26,8.

Самые яркие звезды или наиболее интересные объекты из числа более слабых звезд получили собственные имена арабского и греческого происхождения (более 300 звезд имеют имена).

В 1603г Иоганн Байер (1572-1625, Германия) публикует каталог всех видимых звезд и впервые вводит их обозначение буквами греческого алфавита в порядке уменьшения блеска (наиболее яркие). Самые яркие – α , затем β, γ, δ, ε и т.д.

В каждом созвездии звезды обозначаются буквами греческого алфавита в порядке убывания их яркости. Наиболее яркая в этом созвездии звезда обозначается буквой α, вторая по яркости - β и т. д.

Поэтому звезды сейчас обозначаются: Вега (α Лиры), Сириус (α Большого Пса), Полярная (α М. Медведицы). Средняя звезда в ручке ковша Большой Медведицы называется Мицар, что по-арабски означает «конь». Эта звезда второй величины обозначается ζ Большой Медведицы. Рядом с Мицаром можно видеть более слабую звездочку четвертой величины, которую назвали Алькор - «всадник». По этой звезде проверяли качество зрения у арабских воинов несколько веков тому назад.

Звезды различаются не только по блеску, но и по цвету.

Они могут быть белыми, желтыми, красными . Чем краснее звезда, тем она холоднее. Солнце относится к желтым звездам.

С изобретением телескопа ученые получили возможность увидеть более слабые звезды, от которых приходит света гораздо меньше, чем от звезд шестой величины. Шкала звездных величин все дальше и дальше уходит в сторону их возрастания по мере того, как увеличиваются возможности телескопов. Так, например, хаббловский космический телескоп позволил получить изображение предельно слабых объектов - до тридцатой звездной величины.


2.1.2. Небесная сфера. Особые точки небесной сферы.

Люди в древности считали, что все звезды располагаются на небесной сфере, которая как единое целое вращается вокруг Земли. Уже более 2.000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что этой сферы реально не существует.

Небесная сфера - воображаемая шаровая поверхность произвольного радиуса, в центре которой находится глаз наблюдателя, и на которую мы проецируем положение небесных светил.

Понятием небесной сферы пользуются для угловых измерений на небе, для удобства рассуждений о простейших видимых небесных явлениях, для различных расчетов, например вычисления времени восхода и захода светил.

Построим небесную сферу и проведем из ее центра луч по направлению к звезде А (рис.1.1).

Там, где этот луч пересечет поверхность сферы, поместим точку А 1 изображающую эту звезду. Звезда В будет изображаться точкой В 1 . Повторив подобную операцию для всех наблюдаемых звезд, мы получим на поверхности сферы изображение звездного неба – звездный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направление на сами звезды и на их изображения на сфере будут совпадать.

  • Что является центром небесной сферы? (Глаз наблюдателя)
  • Каков радиус небесной сферы? (Произвольный)
  • Чем отличаются небесные сферы двух соседей по парте? (Положением центра).

Для решения многих практических задач расстояния до небесных тел не играют роли, важно лишь их видимое расположение на небе. Угловые измерения не зависят от радиуса сферы. Поэтому, хотя в природе небесной сферы и не существует, но астрономы для изучения видимого расположение светил и явлений, которые можно наблюдать на небе в течении суток или многих месяцев, применяют понятие Небесная сфера. На такую сферу и проецируются звезды, Солнце, Луна, планеты и т.д, отвлекаясь от действительных расстояний до светил и рассматривая лишь угловые расстояние между ними. Расстояния между звездами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующими им дугами на поверхности сферы.

Для приближенной оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звездами ковша Большой Медведицы (α и β) составляет около 5° (рис. 1.2), а от α Большой Медведицы до α Малой Медведицы (Полярной звезды) – в 5 раз больше – примерно 25°.

Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.

Только два светила – Солнце и Луну – мы видим как диски. Угловые диаметры этих дисков почти одинаковы – около 30" или 0,5°. Угловые размеры планет и звезд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооруженного глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2–3". Это означает, в частности, что наш глаз различает каждую по отдельности светящуюся точку (звезду) в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

Отвесная линия Z, Z’ , проходящая через глаз наблюдателя (точка С), находящегося в центре небесной сферы, пересекает небесную сферу в точках Z - зенит, Z’ - надир .

Зенит - эта наивысшая точка над головой наблюдателя.

Надир - противоположная зениту точка небесной сферы .

Плоскость, перпендикулярная отвесной линии, называется горизонтальной плоскостью (или плоскостью горизонта) .

Математическим горизонтом называется линия пересечения небесной сферы с горизонтальной плоскостью, проходящей через центр небесной сферы.

Невооруженным глазом на всем небе можно видеть примерно 6000 звезд, но мы видим лишь половину из них, потому что другую половину звездного неба закрывает от нас Земля. Движутся ли звезды по небосводу? Оказывается, движутся все и притом одновременно. В этом легко убедиться, наблюдая звездное небо (ориентируясь по определенным предметам).

Вследствие ее вращения вид звездного неба меняется. Одни звезды только еще появляются из-за горизонта (восходят) в восточной его части, другие в это время находятся высоко над головой, а третьи уже скрываются за горизонтом в западной стороне (заходят). При этом нам кажется, что звездное небо вращается как единое целое. Теперь каждому хорошо известно, что вращение небосвода - явление кажущееся, вызванное вращением Земли.

Картину того, что в результате суточного вращения Земли происходит со звездным небом, позволяет запечатлеть фотоаппарат.

На полученном снимке каждая звезда оставила свой след в виде дуги окружности (рис. 2.3). Но есть и такая звезда, передвижение которой в течение всей ночи почти незаметно. Эту звезду назвали Полярной. Она в течение суток описывает окружность малого радиуса и всегда видна почти на одной и той же высоте над горизонтом в северной стороне неба. Общий центр всех концентрических следов звезд находится на небе неподалеку от Полярной звезды. Эта точка, в которую направлена ось вращения Земли, получила название северный полюс мира. Дуга, которую описала Полярная звезда, имеет наименьший радиус. Но и эта дуга, и все остальные - независимо от их радиуса и кривизны - составляют одну и ту же часть окружности. Если бы удалось сфотографировать пути звезд на небе за целые сутки, то на фотографии получились бы полные окружности - 360°. Ведь сутки - это период полного оборота Земли вокруг своей оси. За час Земля повернется на 1/24 часть окружности, т. е. на 15°. Следовательно, длина дуги, которую звезда опишет за это время, составит 15°, а за полчаса - 7,5°.

Звезды в течение суток описывают тем большие окружности, чем дальше от Полярной звезды они находятся.

Ось суточного вращения небесной сферы называют осью мира (РР" ).

Точки пересечения небесной сферы с осью мира называют полюсами мира (точка Р - северный полюс мира, точка Р" - южный полюс мира).

Полярная звезда расположена вблизи северного полюса мира. Когда мы смотрим на Полярную звезду, точнее, на неподвижную точку рядом с ней - северный полюс мира, направление нашего взгляда совпадает с осью мира. Южный полюс мира находится в южном полушарии небесной сферы.

Плоскость ЕА WQ , перпендикулярная оси мира РР" и проходящая через центр небесной сферы, называется плоскостью небесного экватора , а линия пересечения ее с небесной сферой - небесным экватором .

Небесный экватор – линия окружности, полученная от пересечения небесной сферы с плоскостью проходящая через центр небесной сферы перпендикулярно к оси мира.

Небесный экватор делит небесную сферу на два полушария: северное и южное.

Ось мира, полюса мира и небесный экватор аналогичны оси, полюсам и экватору Земли, так как перечисленные названия связаны с видимым вращением небесной сферы, а оно является следствием действительного вращения земного шара.

Плоскость, проходящая через точку зенита Z , центр С небесной сферы и полюс Р мира, называют плоскостью небесного меридиана , а линия пересечения ее с небесной сферой образует линию небесного меридиана .

Небесный меридиан – большой круг небесной сферы, проходящий через зенит Z, полюс мира Р, южный полюс мира Р", надир Z"

В любом месте Земли плоскость небесного меридиана совпадает с плоскостью географического меридиана этого места.

Полуденная линия NS - это линия пересечения плоскостей меридиана и горизонта. N – точка севера, S – точка юга

Она названа так потому, что в полдень тени от вертикальных предметов падают по этому направлению.

  • Каков период вращения небесной сферы? (Равен периоду вращения Земли – 1 сутки).
  • В каком направлении происходит видимое (кажущееся) вращение небесной сферы? (Противоположно направлению вращения Земли).
  • Что можно сказать о взаимном расположении оси вращения небесной сферы и земной оси? (Ось небесной сферы и земная ось будут совпадать).
  • Все ли точки небесной сферы участвуют в видимом вращении небесной сферы? (Точки, лежащие на оси, покоятся).

Земля движется по орбите вокруг Солнца. Ось вращения Земли наклонена к плоскости орбиты на угол 66,5°. Вследствие действия сил тяготения со стороны Луны и Солнца ось вращения Земли смещается, в то время как наклон оси к плоскости земной орбиты остается постоянным. Ось Земли как бы скользит по поверхности конуса. (то же происходит с осью у обыкновенного волчка в конце вращения).

Это явление было открыто еще в 125 г. до н. э. греческим астрономом Гиппархом и названо прецессией .

Один оборот земная ось совершает за 25 776 лет – этот период называется платоническим годом. Сейчас вблизи Р – северного полюса мира находится Полярная звезда – α Малой Медведицы. Полярной называется та звезда, которая на сегодняшний день находится вблизи Северного полюса мира. В наше время, примерно с 1100 года, такой звездой является альфа Малой Медведицы – Киносура. Раньше титул Полярной поочередно присваивался π, η и τ Геркулеса, звездам Тубан и Кохаб. Римляне вовсе не имели Полярной звезды, а Кохаб и Киносуру (α Малой Медведицы) называли Стражами.

На начало нашего летоисчисление – полюс мира был вблизи α Дракона – 2000 лет назад. В 2100 г полюс мира будет всего в 28" от Полярной звезды – сейчас в 44". В 3200г полярным станет созвездие Цефей. В 14000 г – полярной будет Вега (α Лиры).

Как найти в небе Полярную звезду?

Чтобы найти Полярную звезду, нужно через звезды Большой Медведицы (первые 2 звезды "ковша") мысленно провести прямую линию и отсчитать по ней 5 расстояний между этими звездами. В этом месте рядом с прямой мы увидим звезду, почти одинаковую по яркости со звездами "ковша" – это и есть Полярная звезда.

В созвездии, которое нередко называют Малый Ковш, Полярная звезда является самой яркой. Но так же, как и большинство звезд ковша Большой Медведицы, Полярная - звезда второй величины.

Летний (летне-осенний) треугольник = звезда Вега (α Лиры, 25,3 св. лет), звезда Денеб (α Лебедя, 3230 св. лет), звезда Альтаир (α Орла, 16,8 св. лет)


2.1.3. Небесные координаты и звездные карты

Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координат азимут и высота. Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления.

Первое из них определяется с помощью отвеса и изображается на чертеже (рис. 1.3) отвесной линией ZZ", проходящей через центр сферы (точку О).

Точка Z, расположенная прямо над головой наблюдателя, называется зенитом.

Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность – истинный, или математический, горизонт.

Высота светила отсчитывается по окружности, проходящей через зенит и светило, и выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h.

Высота светила, которое находится в зените, равна 90°, на горизонте – 0°.

Положение светила относительно сторон горизонта указывает его вторая координата – азимут, обозначаемый буквой А. Азимут отсчитывается от точки юга в направлении движения часовой стрелки , так что азимут точки юга равен 0°, точки запада – 90° и т. д.

Горизонтальные координаты светил непрерывно меняются с течением времени и зависят от положения наблюдателя на Земле, потому что по отношению к мировому пространству плоскость горизонта в данном пункте Земли вращается вместе с ней.

Горизонтальные координаты светил измеряют для определения времени или географических координат различных пунктов на Земле. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами – теодолитами.

Чтобы создать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. Для этого нужно выбрать такую систему координат, которая вращалась бы вместе со звездным небом. Для указания положения светил на небе используют систему координат, аналогичную той, которая используется в географии, - систему экваториальных координат.

Система экваториальных координат сходна с системой географических координат на земном шаре. Как известно, положение любого пункта на земном шаре можно указать с помощью географических координат - широты и долготы.

Географическая широта - это угловое расстояние пункта от земного экватора. Географическая широта (φ) отсчитывается по меридианам от экватора к полюсам Земли.

Долгота - угол между плоскостью меридиана данного пункта и плоскостью начального меридиана. Географическая долгота (λ) отсчитывается вдоль экватора от начального (Гринвичского) меридиана.

Так, например, Москва имеет следующие координаты: 37°30" восточной долготы и 55°45" северной широты.

Введем систему экваториальных координат , которая указывает положение светил на небесной сфере относительно друг друга.

Проведем через центр небесной сферы (рис. 2.4) линию, параллельную оси вращения Земли, - ось мира. Она пересечет небесную сферу в двух диаметрально противоположных точках, которые называются полюсами мира - Р и Р΄. Северным полюсом мира называют тот, вблизи которого находится Полярная звезда. Плоскость, проходящая через центр сферы параллельно плоскости экватора Земли, в сечении со сферой образует окружность, называемую небесным экватором. Небесный экватор (подобно земному) делит небесную сферу на два полушария: Северное и Южное. Угловое расстояние светила от небесного экватора называется склонением. Склонение отсчитывается по кругу, проведенному через светило и полюса мира, оно аналогично географической широте.

Склонение - угловое расстояние светил от небесного экватора . Склонение обозначают буквой δ. В северном полушарии склонения считают положительными, в южном - отрицательными.

Вторая координата, которая указывает положение светила на небе, аналогична географической долготе. Эта координата называется прямым восхождением . Прямое восхождение отсчитывается по небесному экватору от точки весеннего равноденствия γ, в которой Солнце ежегодно бывает 21 марта (в день весеннего равноденствия). Оно отсчитывается от точки весеннего равноденствия γ против часовой стрелки, т. е. навстречу суточному вращению неба. Поэтому светила восходят (и заходят) в порядке возрастания их прямого восхождения.

Прямое восхождение - угол между плоскостью полукруга, проведенного из полюса мира через светило (круга склонения), и плоскостью полукруга, проведенного из полюса мира через лежащую на экваторе точку весеннего равноденствия (начального круга склонений). Прямое восхождение обозначается буквой α

Склонение и прямое восхождение (δ, α) называют экваториальными координатами.

Склонение и прямое восхождение удобно выражать не в градусах, а в единицах времени. Учитывая, что Земля делает один оборот за 24 ч, получаем:

360° - 24 ч, 1 ° - 4 мин;

15° - 1 ч, 15" -1 мин, 15" - 1 с.

Следовательно, прямое восхождение, равное, например, 12 ч, составляет 180°, а 7 ч 40 мин соответствует 115°.

Если не нужна особая точность, то небесные координаты для звезд можно считать неизменными. При суточном вращении звездного неба вращается и точка весеннего равноденствия. Поэтому положения звезд относительно экватора и точки весеннего равноденствия не зависят ни от времени суток, ни от положения наблюдателя на Земле.

Экваториальная система координат изображена на подвижной карте звездного неба.

Принцип создания карты звездного неба весьма прост. Спроектируем сначала все звезды на глобус: там, где луч, направленный на звезду, пересечет поверхность глобуса, будет находиться изображение этой звезды. Обычно на звездном глобусе изображаются не только звезды, но и сетка экваториальных координат. По сути дела, звездным глобусом является модель небесной сферы, которая используется на уроках астрономии в школе. На этой модели нет изображений звезд, но зато представлены ось мира, небесный экватор и другие круги небесной сферы.

Пользоваться звездным глобусом не всегда удобно, поэтому в астрономии (как и в географии) широкое распространение получили карты и атласы.

Атлас звездного неба начинающего наблюдателя

Карту земной поверхности можно получить, если все точки глобуса Земли спроектировать на плоскость (поверхность цилиндра или конуса). Проведя ту же операцию со звездным глобусом, можно получить карту звездного неба.

Познакомимся с простейшей звездной картой, помещенной в Школьном астрономическом календаре.

Расположим плоскость, на которой мы хотим получить карту, так, чтобы она касалась поверхности глобуса в точке, где находится северный полюс мира. Теперь надо спроектировать все звезды и сетку координат с глобуса на эту плоскость. Получим карту, подобную географическим картам Арктики или Антарктики, на которых в центре располагается один из полюсов Земли. В центре нашей звездной карты будет располагаться северный полюс мира, рядом с ним Полярная звезда, чуть дальше остальные звезды Малой Медведицы, а также звезды Большой Медведицы и других созвездий, которые находятся неподалеку от полюса мира. Сетка экваториальных координат представлена на карте радиально расходящимися от центра лучами и концентрическими окружностями. На краю карты против каждого луча написаны числа, обозначающие прямое восхождение (от 0 до 23 ч). Луч, от которого начинается отсчет прямого восхождения, проходит через точку весеннего равноденствия, обозначенную γ. Склонение отсчитывается по этим лучам от окружности, которая изображает небесный экватор и имеет обозначение 0°. Остальные окружности также имеют оцифровку, которая показывает, какое склонение имеет объект, расположенный на этой окружности.

В зависимости от звездной величины звезды изображают на карте кружками различного диаметра. Те из них, которые образуют характерные фигуры созвездий, соединены сплошными линиями. Границы созвездий обозначены пунктиром.


2.1.4. Высота полюса мира над горизонтом

Рассмотрим, какова высота полюса мира над горизонтом по рисунку 2.5, где часть небесной сферы и земной шар изображены в проекции на плоскость небесного меридиана.

Пусть ОР - ось мира, параллельная оси Земли; OQ - проекция части небесного экватора, параллельного экватору Земли; OZ - отвесная линия. Тогда высота полюса мира над горизонтом h P = PON, а географическая широта φ =Q 1 O 1 O. Очевидно, что эти углы (PON и Q 1 O 1 O) равны между собой, поскольку их стороны взаимно перпендикулярны (ОО 1 ON, a OQ OP). Отсюда следует, что высота полюса мира над горизонтом равна географической широте места наблюдения: h P = φ . Таким образом, географическую широту пункта наблюдения можно определить, если измерить высоту полюса мира над горизонтом.

В зависимости от места наблюдателя на Земле меняется вид звездного неба и характер суточного движения звезд.

Проще всего разобраться в том, что и как происходит, на полюсах Земли. Полюс такое место на земном шаре, где ось мира совпадает с отвесной линией, а небесный экватор с горизонтом (рис. 2.6).

Для наблюдателя, находящегося на Северном полюсе, Полярная звезда видна близ зенита. Здесь над горизонтом находятся только звезды Северного полушария небесной сферы (с положительным склонением). На Южном полюсе, наоборот, видны только звезды с отрицательным склонением. В обоих случаях, двигаясь вследствие вращения Земли параллельно небесному экватору, звезды остаются на неизменной высоте над горизонтом, не восходят и не заходят.

Отправимся с Северного полюса в привычные средние широты. Высота Полярной звезды над горизонтом будет постепенно уменьшаться, одновременно угол между плоскостями горизонта и небесного экватора будет увеличиваться.

Как видно из рисунка 2.7, в средних широтах (в отличие от Северного полюса) лишь часть звезд Северного полушария неба никогда не заходит. Все остальные звезды как Северного, так и Южного полушария восходят и заходят.

Продолжим наше воображаемое путешествие и отправимся из средних широт к экватору, географическая широта которого 0°.Здесь ось мира располагается в плоскости горизонта, а небесный экватор проходит через зенит. На экваторе в течение суток все светила побывают над горизонтом (рис. 2.9).

На полюсах Земли видна только половина небесной сферы. На экваторе Земли в течение года можно увидеть все созвездия. В средних широтах часть звезд является незаходящими, часть – невосходящими, остальные восходят и заходят каждые сутки.


2.1.5. Высота светила в кульминации

При своем суточном движении светило, вращаясь вокруг оси мира, за сутки дважды пересекает меридиан - над точками юга и севера. При этом оно один раз занимает самое высокое положение - верхняя кульминация, другой раз - самое низкое положение - нижняя кульминация.

В момент верхней кульминации над точкой юга светило достигает наибольшей высоты над горизонтом.

Кульминация - это явление прохождения светила через меридиан, м омент пересечения небесного меридиана.

Светило М в течение суток описывает суточную параллель – малый круг небесной сферы, плоскость которого перпендикулярна оси мира и проходит через глаз наблюдателя.

М 1 - верхняя кульминация (h max; А= 0 o), М2 – нижняя кульминация (h min; A =180 o), М 3 – точка восхода, М 4 – точка захода,

По суточному движению светила делятся на:

  • невосходящие
  • восходяще - заходящие (восходящие и заходящие в течении суток)
  • незаходящие.
  • К каким относится Солнце, Луна? (ко 2)

На рисунке 2.8 показано положение светила в момент верхней кульминации.

Как известно, высота полюса мира над горизонтом (угол PON): h P = φ. Тогда угол между горизонтом (NS) и небесным экватором (QQ 1) будет равен 180° - φ - 90° = 90° - φ. Угол MOS, который выражает высоту светила М в кульминации, представляет собою сумму двух углов: Q 1 OS и MOQ 1 . Величину первого из них мы только что определили, а второй является не чем иным, как склонением светила М, равным δ.

Таким образом, мы получаем следующую формулу, связывающую высоту светила в кульминации с его склонением и географической широтой места наблюдения:

h = 90° - φ + δ.

Зная склонение светила и определив из наблюдений его высоту в кульминации, можно узнать географическую широту места наблюдения.

На рисунке изображена небесная сфера. Рассчитаем зенитное расстояние светила в данном пункте в момент верхней кульминации, если его склонение известно.

Вместо высоты h часто употребляют зенитное расстояние Z, равное 90°-h.

Зенитное расстояние - угловое расстояние точки М от зенита.

Пусть в момент верхней кульминации светило находится в точке М, тогда дуга QМ есть склонение δ светила, так как AQ - небесный экватор, перпендикулярный оси мира РР". Дуга QZ равна дуге NP и равна географиче­ской широте местности φ. Очевидно, зенитное расстояние, изображаемое дугой ZM, равно z = φ - δ.

Если бы светило кульминировало к северу от зенита Z (т. е. точка М оказалась бы между Z и P), то z = δ- φ. По этим формулам можно рассчитать зенитное расстояние светила с известным склонением в момент верхней кульминации в пункте с известной географической широтой φ.

1. Созвездия

Знакомиться со звездным небом надо в безоблачную ночь, когда свет Луны не мешает наблюдать слабые звезды. Прекрасна картина ночного неба с рассыпанными по нему мерцающими звездами. Число их кажется бесконечным. Но так только кажется, пока вы не приглядитесь и не научитесь находить на небе знакомые группы звезд, неизменных по своему взаимному расположению. Эти группы, названные созвездия-м и, люди выделили тысячи лет назад. Под созвездием понимают область неба в пределах некоторых установленных границ. Все небо разделено на 88 созвездий, которые можно находить по характерному для них расположению звезд.

Многие созвездия сохраняют свое название с глубокой древности. Некоторые названия связаны с греческой мифологией, например Андромеда , Персей , Пегас , некоторые - с предметами, которые напоминают фигуры, образуемые яркими звездами созвездий: Стрела , Треугольник , Весы и др. Есть созвездия, названные именами животных, например Лев , Рак , Скорпион .

Созвездия на небосводе находят, мысленно соединяя их ярчайшие звезды прямыми линиями в некоторую фигуру, как показано на звездных картах (см. звездную карту в приложении VII, а также рис. 6, 7, 10). В каждом созвездии яркие звезды издавна обозначали греческими буквами * , чаще всего самую яркую звезду созвездия - буквой α, затем буквами β, γ и т. д. в порядке алфавита по мере убывания яркости; например, Полярная звезда есть а созвездия Малой Медведицы .

* (Греческий алфавит дан в приложении II. )

На рисунках 6 и 7 показаны расположение главных звезд Большой Медведицы и фигура этого созвездия, как его изображали на старинных звездных картах (способ нахождения Полярной звезды знаком вам из курса географии).

Невооруженным глазом в безлунную ночь можно видеть над горизонтом около 3000 звезд. В настоящее время астрономы определили точное местоположение нескольких миллионов звезд, измерили приходящие от них потоки энергии и составили списки-каталоги этих звезд.

2. Видимая яркость и цвет звезд

Днем небо кажется голубым оттого, что неоднородности воздушной среды сильнее всего рассеивают голубые лучи солнечного света.

Вне пределов земной атмосферы небо всегда черное, и на нем можно наблюдать звезды и Солнце одновременно.

Звезды имеют разную яркость и цвет: белый, желтый, красноватый. Чем краснее звезда, тем она холоднее. Наше Солнце относится к желтым звездам.

Ярким звездам древние арабы дали собственные имена. Белые звезды: Вега в созвездии Лиры, Альтаир в созвездии Орла (видны летом и осенью), Сириус - ярчайшая звезда неба (видна зимой); красные звезды: Бетельгейзе в созвездии Ориона и Альдебаран в созвездии Тельца (видны зимой), Антарес в созвездии Скорпиона (виден летом); желтая Капелла в созвездии Возничего (видна зимой) * .

* (Названия ярких звезд даны в приложении IV. )

Самые яркие звезды еще в древности назвали звездами 1-й величины, а самые слабые, видимые на пределе зрения,- звездами 6-й величины. Эта старинная терминология сохранилась и в настоящее время. К истинным размерам звезд термин "звездная величина" (обозначается буквой m) отношения не имеет, она характеризует световой поток, приходящий на Землю от звезды. Принято, что при разности в одну звездную величину видимая яркость звезд отличается примерно в 2,5 раза. Тогда разность в 5 звездных величин соответствует различию в яркости ровно в 100 раз. Так, звезды 1-й величины в 100 раз ярче звезд б-й величины. Современные методы наблюдений дают возможность обнаружить звезды примерно до 25-й звездной величины.

Точные измерения показывают, что звезды имеют как дробные, так и отрицательные звездные величины, например: для Альдебарана звездная величина m=1,06, для Беги m=0,14, для Сириуса m= - 1,58, для Солнца m= -26,80.

3. Видимое суточное движение звезд. Небесная Сфера

Из-за осевого вращения Земли звезды нам кажутся перемещающимися по небу. Если стать лицом к южной стороне горизонта и наблюдать суточное движение звезд в средних широтах северного полушария Земли, то можно заметить, что звезды восходят на восточной стороне горизонта, поднимаются выше всего над южной стороной горизонта и заходят на западной стороне, т. е. они движутся слева направо, по ходу часовой стрелки (рис. 8). При внимательном наблюдении можно заметить, что Полярная звезда почти не меняет положения относительно горизонта. Все же другие звезды описывают в течение суток полные круги с центром вблизи Полярной. В этом можно легко убедиться, проделав в безлунную ночь следующий опыт. Фотоаппарат, установленный на "бесконечность", направим на Полярную звезду и надежно укрепим в этом положении. Откроем затвор при полностью открытом объективе на полчаса или час. Проявив полученный таким образом снимок, увидим на нем концентрические дуги - следы путей звезд (рис. 9). Общий центр этих дуг - точка, которая остается неподвижной при суточном движении звезд, условно называется северным полюсом мира. Полярная звезда к нему очень близка (рис. 10). Диаметрально противоположная ему точка называется южным полюсом мира. Для наблюдателя северного полушария Земли он находится под горизонтом.

Явления суточного движения звезд удобно изучать, воспользовавшись математическим построением - небесной сферой , т. е. воображаемой сферой произвольного радиуса, центр которой находится в точке наблюдения. На поверхность этой сферы проецируют видимые положения всех светил, а для удобства измерений строят ряд точек и линий (рис. 11). Так, отвесная линия ZCZ", проходящая через наблюдателя, пересекает небо над головой в точке зенита Z. Диаметрально противоположная точка Z" называется надиром. Плоскость (NESW), перпендикулярная отвесной линии ZZ", является плоскостью горизонта - эта плоскость касается поверхности земного шара в точке, где расположен наблюдатель (точка С на рис. 12). Она делит поверхность небесной сферы на две полусферы: видимую, все точки которой находятся над горизонтом, и невидимую, точки которой лежат под горизонтом.

Ось видимого вращения небесной сферы, соединяющую оба полюca мира (Р и Р") и проходящую через наблюдателя (С), называют осью мира (рис. 11). Ось мира для любого наблюдателя всегда будет параллельна оси вращения Земли (рис. 12). На горизонте под северным полюсом мира лежит точка севера N (см. рис. 11 и 12), диаметрально противоположная ей точка S - точка юга. Линия NCS называется полуденной линией (рис. 11), так как вдоль нее на горизонтальной плоскости в полдень падает тень от вертикально поставленного стержня. (Как на местности провести полуденную линию и как по ней и по Полярной звезде ориентироваться по сторонам горизонта, вы изучали в. V классе в курсе физической географии.) Точки востока Е и запада W лежат на линии горизонта. Они отстоят от точек севера N и юга S на 90°. Через точку N, полосы мира, зенит Z и точку S проходит плоскость небесного меридиана (см. рис. 11), совпадающая для наблюдателя С с плоскостью его географического меридиана (см. рис. 12). Наконец, плоскость (QWQ"E), проходящая через центр сферы (точку С) перпендикулярно оси мира, образует плоскость небесного экватора , параллельную плоскости земного экватора (см. рис. 12). Небесный экватор делит поверхность небесной сферы на два полушария: северное с вершиной в северном полюсе мира и южное с вершиной в южном полюсе мира.

4. Звездные карты и небесные координаты

Чтобы сделать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. Координаты звезд относительно горизонта, например высота, хотя и наглядны, но непригодны для составления карт, так как все время меняются. Надо использовать такую систему координат, которая вращалась бы вместе со звездным небом. Такой системой координат является экваториальная система , она так названа потому, что экватор служит той плоскостью, от которой и в которой производятся отсчеты координат. В этой системе одной координатой является угловое расстояние светила от небесного экватора, называемое склонением δ (рис. 13). Оно меняется в пределах ±90° и считается положительным к северу от экватора и отрицательным к югу. Склонение аналогично географической широте.

Вторая координата аналогична географической долготе и называется прямым восхождением α.

Прямое восхождение светила М измеряется углом между плоскостями больших кругов , один проходит через полюсы мира и данное светило М, а другой - через полюсы мира и точку весеннего равноденствия , лежащую на экваторе (см. рис. 13). Так назвали эту точку потому, что в ней Солнце бывает (на небесной сфере) весной 20-21 марта, когда день равен ночи.

Прямое восхождение отсчитывают по дуге небесного экватора от точки весеннего равноденствия против хода часовой стрелки, если смотреть с северного полюса. Оно изменяется в пределах от 0 до 360° и называется прямым восхождением потому, что звезды, расположенные на небесном экваторе, восходят (и заходят) в порядке возрастания их прямого восхождения. Поскольку это явление связано с вращением Земли, то прямое восхождение принято выражать не в градусах, а в единицах времени. За 24 ч Земля (а нам кажется, что звезды) совершает один оборот - 360°. Следовательно, 360° соответствуют 24 ч, тогда 15°-1 ч, 1°-4 мин, 15"-1 мин, 15"-1 с. Например, 90° составляют 6 ч, а 7 ч 18 мин - 109°30".

В единицах времени прямое восхождение обозначается на координатной сетке звездных карт, атласов и глобусов, в том числе и на карте, приложенной к учебнику и "Школьному астрономическому календарю".

Упражнение 1

1. Что характеризует звездная величина?

2. Есть ли различие между северным полюсом мира и точкой севера?

3. Выразите 9 ч 15 мин 11 с в градусной мере.

Задание 1

1. По приложению VII ознакомьтесь с обращением и монтажом подвижной карты звездного неба.

2. По таблице координат ярких звезд, данной в приложении IV, найдите на звездной карте некоторые из указанных звезд.

3. По карте отсчитайте координаты нескольких ярких звезд и проверьте себя, используя приложение IV.

Последние материалы раздела:

Где в промышленности используется никель Из чего состоит никель
Где в промышленности используется никель Из чего состоит никель

Данный металл серебристо-серого цвета относится к переходным - он обладает и щелочными, и кислотными свойствами. Основными достоинствами металла...

Если разделить произведение на один множитель, то получится другой множитель
Если разделить произведение на один множитель, то получится другой множитель

Умножение - это арифметическое действие, в котором первое число повторяется в качестве слагаемого столько раз, сколько показывает второе число....

Световые явления в живой природе
Световые явления в живой природе

Первая задача посвящена прямолинейному распространению света в однородной прозрачной среде. Первый закон геометрической оптики: в однородной...