Уравнение клапейрона менделеева устанавливает соотношение между. Клапейрона уравнение

§2 Уравнение Менделеева-Клапейрона

Всякая система может находиться в различных состояниях, отличающихся температурой, давлением, объёмом и т.д.

Величины p , V , T и др. характеризующие состояние системы, называются параметрами состояния.

Если какой-либо из параметров меняется внутри системы от точки к точке, то такое состояние называется неравновесным . Если параметры системы во всех точках одинаковы при неизменных внешних условиях, то такое состояние называется равновесным .

Всякий процесс, т.е. переход системы из одного состояния в другое связанно с нарушением равновесия системы. Однако бесконечно медленный процесс будет состоять из последовательности равновесных состояний. Такой процесс называется равновесным . При достаточно медленном протекании реальные процессы могут приближаться к равновесному. Равновесный процесс является обратимым, т.е. система переходит из состояния 1 в состояние 2 и обратно 2 - 1, пр о ходя через одни и те же промежуточные состояния.

Процесс, при котором система, пройдя ряд промежуточных состояний, возвращается в исходное состояние, называется круговым процессом или циклом : процесс 1-2-3-4-1 на рисунке.

Связь между параметрами состояния называется уравнением состояния : f (p , V , T )=0

Клапейрон, используя законы Бойля-Мариотта и Шарля вывел уравнение состояния идеального газа.

1 - 1’: T = const - закон Бойля - Мариотта: p 1 V 1 = p 1 ’ V 2 ;

1’ - 2: V = const - закон Шарля:

т.к. состояния 1и 2 выбраны произвольно, то для данной массы газа величина остается постоянной

- уравнение Клапейрона

В- газовая постоянная, различая для различных газов.

Менделеев объединил уравнение Клапейрона с законом Авогадро

() V m - молярный объём

Уравнение Менделеева-Клапейрона

R - универсальная (молярная) газовая постоянная.

p = const; ;

Физический смысл R : численно равна работе, совершаемой газом при изобарическом ( p = const ) нагревании одного моля газа () на один Кельвин (?Т=1 К)

Введем постоянную Больцмана

тогда

p = n k T

p - давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых p и T все газы содержат в единице объёма одинаковое число молекул.

n - концентрация молекул (число молекул в единице объёма). Число молекул, содержащихся при нормальных условиях в 1 м 3 называется числом Лошмидта

§3 Основное уравнение молекулярно-кинетической теории (м.к.т.) газов.

При беспорядочном движении частицы газа сталкиваются между собой и со стенками сосуда. Механическое действие этих ударов о стенки сосуда воспринимается как давление на стенки. Выделим на стенке сосуда некую элементарную площадку ΔS и найдем давление, оказываемое на эту площадку.

Импульс, получаемый рассматриваемой стенкой, в результате удара одной молекулы будет равен

m 0 - масса одной молекулы

Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой Т.

Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде дается выражением

f (р, V, Т) =0,

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799-1864) вывел уравнение состояния идеального газа, объединив законы Бойля - Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V 1 , имеет давление р 1 и находится при температуре Т 1 . Эта же масса газа в другом произвольном состоянии характеризуется параметрами р 2 , V 2 , Т 2 (рис.63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1 -1 "), 2) изохорного (изохора 1 "-2).

В соответствии с законами Бойля - Мариотта (41.1) и Гей-Люссака (41.5) запишем:

p 1 V 1 =p " 1 V 2 , (42.1)

p " 1 /p " 2 =T 1 /T 2 . (42.2)

Исключив из уравнений (42.1) и (42.2) р" 1 , получим

p 1 V 1 /T 1 =p 2 V 2 / Т 2 .

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа

величина pV/T остается постоянной,

pV/T =B=const. (42.3)

Выражение (42.3) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834-1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем V т . Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем V m , поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению

pV m = RT (42.4)

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона - Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (42.4), полагая, что моль газа находится при нормальных условиях 0 = 1,013 10 5 Па, T 0 =273,15 K:, V m = 22,41 10 -3 м 3 /моль): R = 8,31 Дж/(моль К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейрона - Менделеева для произвольной массы газа. Если при некоторых заданных давлений и температуре один моль газа занимает молярный объем l/m, то при тех же условиях масса т газа займет объем V = (m/M) V m , где М - молярная масса (масса одного моля вещества). Единица молярной массы - килограмм на моль (кг/моль). Уравнение Клапейрона - Менделеева для массы т газа

где v = m/M - количество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:

k=R/N А =1,38 10 -2 3 Дж/К.

Исходя из этого уравнение состояния (42.4) запишем в виде

p = RT/V m = kN A T/V m = nkT,

где N A /V m = n -концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

p = nkT (42.6)

следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м 3 газа при нормальных условиях, называется числом Лошмидта :

N L = P0 /(kT 0 ) = 2,68 10 25 м -3 .

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.


Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/NА).

Решение задач


Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

Уравнение Менделеева-Клапейрона - уравнение состояния для идеального газа, отнесенное к 1 молю газа. В 1874 г. Д. И. Менделеев на основе уравнения Клапейрона объединив его с законом Авогадро, используя молярный объем V m и отнеся его к 1 молю, вывел уравнение состояния для 1 моля идеального газа:

pV = RT , где R - универсальная газовая постоянная,

R = 8,31 Дж/(моль. К)

Уравнение Клапейрона-Менделеева показывает, что для данной массы газа возможно одновременно изменение трех параметров, характеризующих состояние идеального газа. Для произвольной массы газа М, молярная масса которого m: pV = (М/m) . RT . или pV = N А kT ,

где N А - число Авогадро, k - постоянная Больцмана.

Вывод уравнения:


С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из параметров - давление, объем или температура - остается постоянным, а изменяются только остальные два и получить теоретически газовые законы для этих условий изменения состояния газа.

Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.


Изотермический процесс - процесс изменения состояния системы при постоянной температуре. Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется . Это закон Бойля - Мариотта.

Для того, чтобы температура газа оставалась в процессе неизменной, необходимо, чтобы газ мог обмениваться теплотой с внешней большой системой - термостатом. Роль термостата может играть внешняя среда (воздух атмосферы). Согласно закону Бойля-Мариотта, давление газа обратно пропорционально его объему: P 1 V 1 =P 2 V 2 =const. Графическая зависимость давления газа от объема изображается в виде кривой (гиперболы), которая носит название изотермы. Разным температурам соответствуют разные изотермы.


Изобарный процесс - процесс изменения состояния системы при постоянном давлении. Для газа данной массы отношение объема газа к его температуре остается постоянным, если давление газа не меняется . Это закон Гей-Люссака. Согласно закону Гей-Люссака, объем газа прямо пропорционален его температуре: V/T=const. Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.


Изохорный процесс - процесс изменения состояния системы при постоянном объеме. Для данной массы газа отношение давления газа к его температуре остается постоянным, если объем газа не меняется. Этот газовый закон Шарля. Согласно закону Шарля, давление газа прямо пропорционально его температуре: P/T=const. Графически эта зависимость в координатах P-Т изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Закон Шарля не соблюдается в области низких температур, близких и температуре сжижения (конденсации) газов.


Законы Бойля - Мариотта, Гей-Люссака и Шарля являются частными случаями объединенного газового закона: Отношение произведения давления газа и объема к температуре для данной массы газа - величина постоянная: PV/T=const.

Итак, из закона pV = (М/m) . RT выводятся следующие законы:

T = const => PV = const - закон Бойля - Мариотта.

p = const => V/T = const - закон Гей - Люссака .

V= const => p/T = const - закон Шарля

Если идеальный газ является смесью нескольких газов, то согласно закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Парциальное давление - это такое давление, которое производил бы газ, если бы он один занимал весь объем, равный объему смеси.


Некоторых, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро N A = 6,02·10 23 ? Значение числа Авогадро было экспериментально установлено только в конце XIX – начале XX века. Опишем один из таких экспериментов.

В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10 -4 атм (при температуре 27 о С). Изменением массы радия за год можно пренебречь. Итак, чему равна N A ?

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

Запишем уравнение Клапейрона-Менделеева PV = n RT и заметим, что число молей гелия n = N/N A . Отсюда:

N A = NRT = 5,83 . 10 17 . 0,0821 . 300 = 6,02 . 10 23

PV 7,95 . 10 -4 . 3 . 10 -2

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.

Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/N А).

Решение задач

Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...