Уравнение касательной производной. Урок "уравнение касательной к графику функции"

Пример 1. Дана функция f (x ) = 3x 2 + 4x – 5. Напишем уравнение касательной к графику функции f (x ) в точке графика с абсциссой x 0 = 1.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (3x 2 + 4x – 5)′ = 6x + 4.

Тогда f (x 0) = f (1) = 2; (x 0) = = 10. Уравнение касательной имеет вид:

y = (x 0) (x x 0) + f (x 0),

y = 10(x – 1) + 2,

y = 10x – 8.

Ответ. y = 10x – 8.

Пример 2. Дана функция f (x ) = x 3 – 3x 2 + 2x + 5. Напишем уравнение касательной к графику функции f (x ), параллельной прямой y = 2x – 11.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 3 – 3x 2 + 2x + 5)′ = 3x 2 – 6x + 2.

Так как касательная к графику функции f (x ) в точке с абсциссой x 0 параллельна прямой y = 2x – 11, то ее угловой коэффициент равен 2, т. е. (x 0) = 2. Найдем эту абсциссу из условия, что 3x – 6x 0 + 2 = 2. Это равенство справедливо лишь при x 0 = 0 и при x 0 = 2. Так как в том и в другом случае f (x 0) = 5, то прямая y = 2x + b касается графика функции или в точке (0; 5), или в точке (2; 5).

В первом случае верно числовое равенство 5 = 2×0 + b , откуда b = 5, а во втором случае верно числовое равенство 5 = 2×2 + b , откуда b = 1.

Итак, существует две касательные y = 2x + 5 и y = 2x + 1 к графику функции f (x ), параллельные прямой y = 2x – 11.

Ответ. y = 2x + 5, y = 2x + 1.

Пример 3. Дана функция f (x ) = x 2 – 6x + 7. Напишем уравнение касательной к графику функции f (x ), проходящей через точку A (2; –5).

Решение. Так как f (2) –5, то точка A не принадлежит графику функции f (x ). Пусть x 0 - абсцисса точки касания.

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 6x + 1)′ = 2x – 6.

Тогда f (x 0) = x – 6x 0 + 7; (x 0) = 2x 0 – 6. Уравнение касательной имеет вид:

y = (2x 0 – 6)(x x 0) + x – 6x + 7,

y = (2x 0 – 6)x x + 7.

Так как точка A принадлежит касательной, то справедливо числовое равенство

–5 = (2x 0 – 6)×2– x + 7,

откуда x 0 = 0 или x 0 = 4. Это означает, что через точку A можно провести две касательные к графику функции f (x ).

Если x 0 = 0, то уравнение касательной имеет вид y = –6x + 7. Если x 0 = 4, то уравнение касательной имеет вид y = 2x – 9.

Ответ. y = –6x + 7, y = 2x – 9.

Пример 4. Даны функции f (x ) = x 2 – 2x + 2 и g (x ) = –x 2 – 3. Напишем уравнение общей касательной к графикам этих функции.

Решение. Пусть x 1 - абсцисса точки касания искомой прямой с графиком функции f (x ), а x 2 - абсцисса точки касания той же прямой с графиком функции g (x ).

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 2x + 2)′ = 2x – 2.

Тогда f (x 1) = x – 2x 1 + 2; (x 1) = 2 x 1 – 2. Уравнение касательной имеет вид:

y = (2x 1 – 2)(x x 1) + x – 2x 1 + 2,

y = (2x 1 – 2)x x + 2. (1)

Найдем производную функции g (x ):

= (–x 2 – 3)′ = –2x .

Уравнение касательной к графику функции

П. Романов, Т. Романова,
г. Магнитогорск,
Челябинская обл.

Уравнение касательной к графику функции

Статья опубликована при поддержке Гостиничного комплекса «ИТАКА+». Останавливаясь в городе судостроителей Северодвинске, вы не столкнетесь с проблемой поиска временного жилья. , на сайте гостиничного комплекса «ИТАКА+» http://itakaplus.ru, вы сможете легко и быстро снять квартиру в городе, на любой срок, с посуточной оплатой.

На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности. Способность же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил, способностей и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.

Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя способами:

а) точкой, лежащей на плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок прямых).

В связи с этим при изучении темы «Касательная к графику функции» с целью вычленения элементов системы нами были выделены два типа задач:

1) задачи на касательную, заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым коэффициентом.

Обучение решению задач на касательную осуществлялось при помощи алгоритма, предложенного А.Г. Мордковичем . Его принципиальное отличие от уже известных заключается в том, что абсцисса точки касания обозначается буквой a (вместо x0), в связи с чем уравнение касательной приобретает вид

y = f(a) + f "(a)(x – a)

(сравните с y = f(x 0) + f "(x 0)(x – x 0)). Этот методический прием, на наш взгляд, позволяет учащимся быстрее и легче осознать, где в общем уравнении касательной записаны координаты текущей точки, а где – точки касания.

Алгоритм составления уравнения касательной к графику функции y = f(x)

1. Обозначить буквой a абсциссу точки касания.
2. Найти f(a).
3. Найти f "(x) и f "(a).
4. Подставить найденные числа a, f(a), f "(a) в общее уравнение касательной y = f(a) = f "(a)(x – a).

Этот алгоритм может быть составлен на основе самостоятельного выделения учащимися операций и последовательности их выполнения.

Практика показала, что последовательное решение каждой из ключевых задач при помощи алгоритма позволяет формировать умения написания уравнения касательной к графику функции поэтапно, а шаги алгоритма служат опорными пунктами действий. Данный подход соответствует теории поэтапного формирования умственных действий, разработанной П.Я. Гальпериным и Н.Ф. Талызиной .

В первом типе задач были выделены две ключевые задачи:

  • касательная проходит через точку, лежащую на кривой (задача 1);
  • касательная проходит через точку, не лежащую на кривой (задача 2).

Задача 1. Составьте уравнение касательной к графику функции в точке M(3; – 2).

Решение. Точка M(3; – 2) является точкой касания, так как

1. a = 3 – абсцисса точки касания.
2. f(3) = – 2.
3. f "(x) = x 2 – 4, f "(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение касательной.

Задача 2. Напишите уравнения всех касательных к графику функции y = – x 2 – 4x + 2, проходящих через точку M(– 3; 6).

Решение. Точка M(– 3; 6) не является точкой касания, так как f(– 3) ­ 6 (рис. 2).


2. f(a) = – a 2 – 4a + 2.
3. f "(x) = – 2x – 4, f "(a) = – 2a – 4.
4. y = – a 2 – 4a + 2 – 2(a + 2)(x – a) – уравнение касательной.

Касательная проходит через точку M(– 3; 6), следовательно, ее координаты удовлетворяют уравнению касательной.

6 = – a 2 – 4a + 2 – 2(a + 2)(– 3 – a),
a 2 + 6a + 8 = 0 ^ a 1 = – 4, a 2 = – 2.

Если a = – 4, то уравнение касательной имеет вид y = 4x + 18.

Если a = – 2, то уравнение касательной имеет вид y = 6.

Во втором типе ключевыми задачами будут следующие:

  • касательная параллельна некоторой прямой (задача 3);
  • касательная проходит под некоторым углом к данной прямой (задача 4).

Задача 3. Напишите уравнения всех касательных к графику функции y = x 3 – 3x 2 + 3, параллельных прямой y = 9x + 1.

Решение.

1. a – абсцисса точки касания.
2. f(a) = a 3 – 3a 2 + 3.
3. f "(x) = 3x 2 – 6x, f "(a) = 3a 2 – 6a.

Но, с другой стороны, f "(a) = 9 (условие параллельности). Значит, надо решить уравнение 3a 2 – 6a = 9. Его корни a = – 1, a = 3 (рис. 3).

4. 1) a = – 1;
2) f(– 1) = – 1;
3) f "(– 1) = 9;
4) y = – 1 + 9(x + 1);

y = 9x + 8 – уравнение касательной;

1) a = 3;
2) f(3) = 3;
3) f "(3) = 9;
4) y = 3 + 9(x – 3);

y = 9x – 24 – уравнение касательной.

Задача 4. Напишите уравнение касательной к графику функции y = 0,5x 2 – 3x + 1, проходящей под углом 45° к прямой y = 0 (рис. 4).

Решение. Из условия f "(a) = tg 45° найдем a: a – 3 = 1 ^ a = 4.

1. a = 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f "(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).

y = x – 7 – уравнение касательной.

Несложно показать, что решение любой другой задачи сводится к решению одной или нескольких ключевых задач. Рассмотрим в качестве примера следующие две задачи.

1. Напишите уравнения касательных к параболе y = 2x 2 – 5x – 2, если касательные пересекаются под прямым углом и одна из них касается параболы в точке с абсциссой 3 (рис. 5).

Решение. Поскольку дана абсцисса точки касания, то первая часть решения сводится к ключевой задаче 1.

1. a = 3 – абсцисса точки касания одной из сторон прямого угла.
2. f(3) = 1.
3. f "(x) = 4x – 5, f "(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой касательной.

Пусть a – угол наклона первой касательной. Так как касательные перпендикулярны, то – угол наклона второй касательной. Из уравнения y = 7x – 20 первой касательной имеем tg a = 7. Найдем

Это значит, что угловой коэффициент второй касательной равен .

Дальнейшее решение сводится к ключевой задаче 3.

Пусть B(c; f(c)) есть точка касания второй прямой, тогда

1. – абсцисса второй точки касания.
2.
3.
4.
– уравнение второй касательной.

Примечание. Угловой коэффициент касательной может быть найден проще, если учащимся известно соотношение коэффициентов перпендикулярных прямых k 1 k 2 = – 1.

2. Напишите уравнения всех общих касательных к графикам функций

Решение. Задача сводится к отысканию абсцисс точек касания общих касательных, то есть к решению ключевой задачи 1 в общем виде, составлению системы уравнений и последующему ее решению (рис. 6).

1. Пусть a – абсцисса точки касания, лежащей на графике функции y = x 2 + x + 1.
2. f(a) = a 2 + a + 1.
3. f "(a) = 2a + 1.
4. y = a 2 + a + 1 + (2a + 1)(x – a) = (2a + 1)x + 1 – a 2 .

1. Пусть c – абсцисса точки касания, лежащей на графике функции
2.
3. f "(c) = c.
4.

Так как касательные общие, то

Итак, y = x + 1 и y = – 3x – 3 – общие касательные.

Основная цель рассмотренных задач – подготовить учащихся к самостоятельному распознаванию типа ключевой задачи при решении более сложных задач, требующих определенных исследовательских умений (умения анализировать, сравнивать, обобщать, выдвигать гипотезу и т. д.). К числу таких задач можно отнести любую задачу, в которую ключевая задача входит как составляющая. Рассмотрим в качестве примера задачу (обратную задаче 1) на нахождение функции по семейству ее касательных.

3. При каких b и c прямые y = x и y = – 2x являются касательными к графику функции y = x 2 + bx + c?

Решение.

Пусть t – абсцисса точки касания прямой y = x с параболой y = x 2 + bx + c; p – абсцисса точки касания прямой y = – 2x с параболой y = x 2 + bx + c. Тогда уравнение касательной y = x примет вид y = (2t + b)x + c – t 2 , а уравнение касательной y = – 2x примет вид y = (2p + b)x + c – p 2 .

Составим и решим систему уравнений

Ответ:

Задачи для самостоятельного решения

1. Напишите уравнения касательных, проведенных к графику функции y = 2x 2 – 4x + 3 в точках пересечения графика с прямой y = x + 3.

Ответ: y = – 4x + 3, y = 6x – 9,5.

2. При каких значениях a касательная, проведенная к графику функции y = x 2 – ax в точке графика с абсциссой x 0 = 1, проходит через точку M(2; 3)?

Ответ: a = 0,5.

3. При каких значениях p прямая y = px – 5 касается кривой y = 3x 2 – 4x – 2?

Ответ: p 1 = – 10, p 2 = 2.

4. Найдите все общие точки графика функции y = 3x – x 3 и касательной, проведенной к этому графику через точку P(0; 16).

Ответ: A(2; – 2), B(– 4; 52).

5. Найдите кратчайшее расстояние между параболой y = x 2 + 6x + 10 и прямой

Ответ:

6. На кривой y = x 2 – x + 1 найдите точку, в которой касательная к графику параллельна прямой y – 3x + 1 = 0.

Ответ: M(2; 3).

7. Напишите уравнение касательной к графику функции y = x 2 + 2x – | 4x |, которая касается его в двух точках. Сделайте чертеж.

Ответ: y = 2x – 4.

8. Докажите, что прямая y = 2x – 1 не пересекает кривую y = x 4 + 3x 2 + 2x. Найдите расстояние между их ближайшими точками.

Ответ:

9. На параболе y = x 2 взяты две точки с абсциссами x 1 = 1, x 2 = 3. Через эти точки проведена секущая. В какой точке параболы касательная к ней будет параллельна проведенной секущей? Напишите уравнения секущей и касательной.

Ответ: y = 4x – 3 – уравнение секущей; y = 4x – 4 – уравнение касательной.

10. Найдите угол q между касательными к графику функции y = x 3 – 4x 2 + 3x + 1, проведенными в точках с абсциссами 0 и 1.

Ответ: q = 45°.

11. В каких точках касательная к графику функции образует с осью Ox угол в 135°?

Ответ: A(0; – 1), B(4; 3).

12. В точке A(1; 8) к кривой проведена касательная. Найдите длину отрезка касательной, заключенного между осями координат.

Ответ:

13. Напишите уравнение всех общих касательных к графикам функций y = x 2 – x + 1 и y = 2x 2 – x + 0,5.

Ответ: y = – 3x и y = x.

14. Найдите расстояние между касательными к графику функции параллельными оси абсцисс.

Ответ:

15. Определите, под какими углами парабола y = x 2 + 2x – 8 пересекает ось абсцисс.

Ответ: q 1 = arctg 6, q 2 = arctg (– 6).

16. На графике функции найдите все точки, касательная в каждой из которых к этому графику пересекает положительные полуоси координат, отсекая от них равные отрезки.

Ответ: A(– 3; 11).

17. Прямая y = 2x + 7 и парабола y = x 2 – 1 пересекаются в точках M и N. Найдите точку K пересечения прямых, касающихся параболы в точках M и N.

Ответ: K(1; – 9).

18. При каких значениях b прямая y = 9x + b является касательной к графику функции y = x 3 – 3x + 15?

Ответ: – 1; 31.

19. При каких значениях k прямая y = kx – 10 имеет только одну общую точку с графиком функции y = 2x 2 + 3x – 2? Для найденных значений k определите координаты точки.

Ответ: k 1 = – 5, A(– 2; 0); k 2 = 11, B(2; 12).

20. При каких значениях b касательная, проведенная к графику функции y = bx 3 – 2x 2 – 4 в точке с абсциссой x 0 = 2, проходит через точку M(1; 8)?

Ответ: b = – 3.

21. Парабола с вершиной на оси Ox касается прямой, проходящей через точки A(1; 2) и B(2; 4), в точке B. Найдите уравнение параболы.

Ответ:

22. При каком значении коэффициента k парабола y = x 2 + kx + 1 касается оси Ox?

Ответ: k = д 2.

23. Найдите углы между прямой y = x + 2 и кривой y = 2x 2 + 4x – 3.

29. Найдите расстояние между касательными к графику функции образующими с положительным направлением оси Ox угол 45°.

Ответ:

30. Найдите геометрическое место вершин всех парабол вида y = x 2 + ax + b, касающихся прямой y = 4x – 1.

Ответ: прямая y = 4x + 3.

Литература

1. Звавич Л.И., Шляпочник Л.Я., Чинкина М.В. Алгебра и начала анализа: 3600 задач для школьников и поступающих в вузы. – М., Дрофа, 1999.
2. Мордкович А. Семинар четвертый для молодых учителей. Тема «Приложения производной». – М., «Математика», № 21/94.
3. Формирование знаний и умений на основе теории поэтапного усвоения умственных действий. / Под ред. П.Я. Гальперина, Н.Ф. Талызиной. – М., МГУ, 1968.

Рассмотрим следующий рисунок:

На нем изображена некоторая функция y = f(x), которая дифференцируема в точке a. Отмечена точка М с координатами (а; f(a)). Через произвольную точку Р(a + ∆x; f(a + ∆x)) графика проведена секущая МР.

Если теперь точку Р сдвигать по графику к точке М, то прямая МР будет поворачиваться вокруг точки М. При этом ∆х будет стремиться к нулю. Отсюда можно сформулировать определение касательной к графику функции.

Касательная к графику функции

Касательная к графику функции есть предельное положение секущей при стремлении приращения аргумента к нулю. Следует понимать, что существование производной функции f в точке х0, означает, что в этой точке графика существует касательная к нему.

При этом угловой коэффициент касательной будет равен производной этой функции в этой точке f’(x0). В этом заключается геометрический смысл производной. Касательная к графику дифференцируемой в точке х0 функции f - это некоторая прямая, проходящая через точку (x0;f(x0)) и имеющая угловой коэффициент f’(x0).

Уравнение касательной

Попытаемся получить уравнение касательной к графику некоторой функции f в точке А(x0; f(x0)). Уравнение прямой с угловым коэффициентом k имеет следующий вид:

Так как у нас угловой коэффициент равен производной f’(x0) , то уравнение примет следующий вид: y = f’(x0) *x + b.

Теперь вычислим значение b. Для этого используем тот факт, что функция проходит через точку А.

f(x0) = f’(x0)*x0 + b, отсюда выражаем b и получим b = f(x0) - f’(x0)*x0.

Подставляем полученное значение в уравнение касательной:

y = f’(x0)*x + b = f’(x0)*x + f(x0) - f’(x0)*x0 = f(x0) + f’(x0)*(x - x0).

y = f(x0) + f’(x0)*(x - x0).

Рассмотрим следующий пример: найти уравнение касательной к графику функции f(x) = x 3 - 2*x 2 + 1 в точке х = 2.

2. f(x0) = f(2) = 2 2 - 2*2 2 + 1 = 1.

3. f’(x) = 3*x 2 - 4*x.

4. f’(x0) = f’(2) = 3*2 2 - 4*2 = 4.

5. Подставим полученные значения в формулу касательной, получим: y = 1 + 4*(x - 2). Раскрыв скобки и приведя подобные слагаемые получим: y = 4*x - 7.

Ответ: y = 4*x - 7.

Общая схема составления уравнения касательной к графику функции y = f(x):

1. Определить х0.

2. Вычислить f(x0).

3. Вычислить f’(x)

У = f(х) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f"(а). Мы этим уже несколько раз пользовались. Например, в § 33 было установлено, что график функции у = sin х(синусоида) в начале координат образует с осью абсцисс угол 45° (точнее, касательная к графику в начале координат составляет с положительным направлением оси х угол 45°), а в примере 5 § 33 были найдены точки на графике заданной функции , в которых касательная параллельна оси абсцисс. В примере 2 § 33 было составлено уравнение касательной к графику функции у = х 2 в точке х = 1 (точнее, в точке (1; 1), но чаще указывают только значение абсциссы, полагая, что если значение абсциссы известно, то значение ординаты можно найти из уравнения у = f(х)). В этом параграфе мы выработаем алгоритм составления уравнения касательной.к графику любой функции.

Пусть даны функция у = f(х) и точка М (а; f(а)), а также известно, что существует f"(а). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид у = кх+m, поэтому задача состоит в отыскании значений коэффициентов к и m.

С угловым коэффициентом к проблем нет: мы знаем, что к = f"(а). Для вычисления значения т воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(а) = ка+m, откуда находим, что m = f(а) - ка.
Осталось подставить найденные значения коэффициентов кит в уравнение прямой:

Нами получено уравнение касательной к графику функции у = f(х) в точке х=а.
Если, скажем,
Подставив в уравнение (1) найденные значения а = 1, f(а) = 1 f"(а) = 2, получим: у = 1+2(х-f), т.е. у = 2х-1.
Сравните этот результат с тем, что был получен в примере 2 из § 33. Естественно, получилось то же самое.
Составим уравнение касательной к графику функции у = tg х в начале координат. Имеем: значит, соs х f"(0) = 1. Подставив в уравнение (1) найденные значения а= 0, f(а)= 0, f"(а) = 1, получим: у=х.
Именно поэтому мы и провели тангенсоиду в § 15 (см. рис. 62) через начало координат под углом 45° к оси абсцисс.
Решая эти достаточно простые примеры, мы фактически пользовались определенным алгоритмом, который заложен в формуле (1). Сделаем этот алгоритм явным.

АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x)

1) Обозначить абсциссу точки касания буквой а.
2) Вычислить 1 (а).
3) Найти f"(х) и вычислить f"(а).
4) Подставить найденные числа а, f(а), (а) в формулу (1).

Пример 1. Составить уравнение касательной к графику функции в точке х = 1.
Воспользуемся алгоритмом, учитывая, что в данном примере

На рис. 126 изображена гипербола , построена прямая у= 2-х.
Чертеж подтверждает приведенные выкладки: действительно, прямая у = 2-х касается гиперболы в точке(1; 1).

Ответ: у =2- х.
Пример 2. К графику функции провести касательную так, чтобы она была параллельна прямой у =4х - 5.
Уточним формулировку задачи. Требование «провести касательную» обычно означает «составить уравнение касательной». Это логично, ибо если человек смог составить уравнение касательной, то вряд ли он будет испытывать затруднения с построением на координатной плоскости прямой по ее уравнению.
Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Но в отличие от предыдущего примера здесь имеется неясность: не указана явно абсцисса точки касания.
Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = 4х-5. Две прямые параллельны тогда и только тогда, когда равны их угловые коэффициенты. Значит, угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: Таким образом, значение а мы можем найти из уравнения f"(а)= 4.
Имеем:
Из уравнения Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 2, другая в точке с абсциссой -2.
Теперь можно действовать по алгоритму.


Пример 3. Из точки (0; 1) провести касательную к графику функции
Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее действуем по алгоритму.


По условию касательная проходит через точку (0; 1). Подставив в уравнение (2) значения х = 0, у = 1, получим:
Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение а =4 в уравнение (2), получим:

На рис. 127 представлена геометрическая иллюстрация рассмотренного примера: построен график функции


В § 32 мы отметили, что для функции у = f(х), имеющей производную в фиксированной точке х, справедливо приближенное равенство:


Для удобства дальнейших рассуждений изменим обозначения: вместо х будем писать а, вместо будем писать х и соответственно вместо будем писать х-а. Тогда написанное выше приближенное равенство примет вид:


А теперь взгляните на рис. 128. К графику функции у = f(х) проведена касательная в точке М (а; f (а)). Отмечена точка х на оси абсцисс близко от а. Ясно, что f(х) - ордината графика функции в указанной точке х. А что такое f(а) + f"(а) (х-а)? Это ордината касательной, соответствующая той же точке х - см. формулу (1). В чем же смысл приближенного равенства (3)? В том, что для вычисления приближенного значения функции берут значение ординаты касательной.


Пример 4. Найти приближенное значение числового выражения 1,02 7 .
Речь идет об отыскании значения функции у = х 7 в точке х = 1,02. Воспользуемся формулой (3), учтя, что в данном примере
В итоге получаем:

Если мы воспользуемся калькулятором, то получим: 1,02 7 = 1,148685667...
Как видите, точность приближения вполне приемлема.
Ответ: 1,02 7 =1,14.

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f (x 0). Тогда прямая, проходящая через точку (x 0 ; f (x 0)), имеющая угловой коэффициент f ’(x 0), называется касательной.

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример - функция y = |x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k - угловой коэффициент. Касательная - не исключение, и чтобы составить ее уравнение в некоторой точке x 0 , достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x ), которая имеет производную y = f ’(x ) на отрезке . Тогда в любой точке x 0 ∈ (a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x 0) · (x − x 0) + f (x 0)

Здесь f ’(x 0) - значение производной в точке x 0 , а f (x 0) - значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’(x 0) · (x − x 0) + f (x 0). Точка x 0 = 2 нам дана, а вот значения f (x 0) и f ’(x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’(x ) = (x 3)’ = 3x 2 ;
Подставляем в производную x 0 = 2: f ’(x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x ) = 2sin x + 5 в точке x 0 = π /2.

В этот раз не будем подробно расписывать каждое действие - укажем лишь ключевые шаги. Имеем:

f (x 0) = f (π /2) = 2sin (π /2) + 5 = 2 + 5 = 7;
f ’(x ) = (2sin x + 5)’ = 2cos x ;
f ’(x 0) = f ’(π /2) = 2cos (π /2) = 0;

Уравнение касательной:

y = 0 · (x − π /2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет - просто мы наткнулись на точку экстремума.

Последние материалы раздела:

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...