Тангенс угла 0.5 чему равен угол. Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.

\sin \alpha = \frac{a}{c}

Косинус острого угла прямоугольного треугольника

Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.

\cos \alpha = \frac{b}{c}

Тангенс острого угла прямоугольного треугольника

Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.

tg \alpha = \frac{a}{b}

Котангенс острого угла прямоугольного треугольника

Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.

ctg \alpha = \frac{b}{a}

Синус произвольного угла

Ордината точки на единичной окружности , которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha .

\sin \alpha=y

Косинус произвольного угла

Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha .

\cos \alpha=x

Тангенс произвольного угла

Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha .

tg \alpha = y_{A}

tg \alpha = \frac{\sin \alpha}{\cos \alpha}

Котангенс произвольного угла

Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha .

ctg \alpha =x_{A}

ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

Пример нахождения произвольного угла

Если \alpha — некоторый угол AOM , где M — точка единичной окружности, то

\sin \alpha=y_{M} , \cos \alpha=x_{M} , tg \alpha=\frac{y_{M}}{x_{M}} , ctg \alpha=\frac{x_{M}}{y_{M}} .

Например, если \angle AOM = -\frac{\pi}{4} , то: ордината точки M равна -\frac{\sqrt{2}}{2} , абсцисса равна \frac{\sqrt{2}}{2} и потому

\sin \left (-\frac{\pi}{4} \right)=-\frac{\sqrt{2}}{2} ;

\cos \left (\frac{\pi}{4} \right)=\frac{\sqrt{2}}{2} ;

tg ;

ctg \left (-\frac{\pi}{4} \right)=-1 .

Таблица значений синусов косинусов тангенсов котангенсов

Значения основных часто встречающихся углов приведены в таблице:

0^{\circ} (0) 30^{\circ}\left(\frac{\pi}{6}\right) 45^{\circ}\left(\frac{\pi}{4}\right) 60^{\circ}\left(\frac{\pi}{3}\right) 90^{\circ}\left(\frac{\pi}{2}\right) 180^{\circ}\left(\pi\right) 270^{\circ}\left(\frac{3\pi}{2}\right) 360^{\circ}\left(2\pi\right)
\sin\alpha 0 \frac12 \frac{\sqrt 2}{2} \frac{\sqrt 3}{2} 1 0 −1 0
\cos\alpha 1 \frac{\sqrt 3}{2} \frac{\sqrt 2}{2} \frac12 0 −1 0 1
tg \alpha 0 \frac{\sqrt 3}{3} 1 \sqrt3 0 0
ctg \alpha \sqrt3 1 \frac{\sqrt 3}{3} 0 0

В этой статье мы разберем такое понятие, как тангенс угла . Начнем с понятия прямого угла. Прямым углом называется угол равный 90 0 . Угол в котором меньше 90 градусов - называется острым. Угол в котором больше 90 градусов - называется тупым. В развернутом угле 180 градусов.

Изображаем треугольник с прямым углом С, при этом противолежащая сторона будет имеет такое же обозначение (с -будет гипотенузой), аналогично поступаем и с другими углами. Сторона находящаяся противоположно от острого угла - называется катетом.

Синус и косинус находятся с помощью катета и гипотенузы, а именно:
sinA = a/c
cosA = b/c

Формула тангенса

tg A = a/b

другими словами определение тангенса - это деление противоположного катета на прилежащий
Существует ещё одна равносильная формула тангенса

tg A = sinA/cosA

расшифровывается как деление sin на cos.

Котангенс находится практически аналогично, лишь значения поменяются местами.

ctg A = cosA/sinA

Внимание! В помощь родителям и учителям гдз по математики 5 класс (http://spisaly.ru/gdz/5_klass/math). Все предложенные на сайте книги можно скачать или изучить онлайн. Перейдите по ссылке и узнайте подробнее.

Данные тригонометрические функции, значительно облегчают вычисление углов. Благодаря синусу, косинусу и тангенсу стало возможным, определение всех неизвестных углов в треугольнике, с одним известным.

Обозначения для основных углов:
тангенс 30 - 0,577
тангенс 45 - 1,000
тангенс 60 - 1,732

Существуют специальная , значения которой можно получить при помощи деления значений таблиц синуса и косинуса, но так как это достаточно трудоемкий процесс и нужна данная таблица тангенсов.

Есть очень много задач в которых у треугольника углы равны 90, 30, 60 градусам. либо 90, 45, 45 градусам. Для таких фигур лучше заучить их соотношение, что бы потом было проще.

В первом случае катет противоположный 30 градусам равняется 1/2 от гипотенузы.
Во втором случае гипотенуза превышает катет в?2 раз.


В этой статье мы покажем, как даются определения синуса, косинуса, тангенса и котангенса угла и числа в тригонометрии . Здесь же мы поговорим об обозначениях, приведем примеры записей, дадим графические иллюстрации. В заключение проведем параллель между определениями синуса, косинуса, тангенса и котангенса в тригонометрии и геометрии.

Навигация по странице.

Определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.

Острого угла в прямоугольном треугольнике

Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.

Определение.

Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.

Определение.

Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.

Определение.

Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.

Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin , cos , tg и ctg соответственно.

Например, если АВС – прямоугольный треугольник с прямым углом С , то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB , то есть, sin∠A=BC/AB .

Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3 , а гипотенуза AB равна 7 , то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7 .

Угла поворота

В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота . Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞ .

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A 1 , в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности .

Определение.

Синус угла поворота α - это ордината точки A 1 , то есть, sinα=y .

Определение.

Косинусом угла поворота α называют абсциссу точки A 1 , то есть, cosα=x .

Определение.

Тангенс угла поворота α - это отношение ординаты точки A 1 к ее абсциссе, то есть, tgα=y/x .

Определение.

Котангенсом угла поворота α называют отношение абсциссы точки A 1 к ее ординате, то есть, ctgα=x/y .

Синус и косинус определены для любого угла α , так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α . А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α , при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1) , а это имеет место при углах 90°+180°·k , k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α , при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0) , а это имеет место для углов 180°·k , k∈Z (π·k рад).

Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k , k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k , k∈Z (π·k рад).

В определениях фигурируют уже известные нам обозначения sin , cos , tg и ctg , они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot , отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30° , записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α . Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π .

В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.

Также скажем, что определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике согласуются с только что данными определениями синуса, косинуса, тангенса и котангенса угла поворота величиной от 0 до 90 градусов. Это мы обоснуем .

Числа

Определение.

Синусом, косинусом, тангенсом и котангенсом числа t называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t радианов соответственно.

Например, косинус числа 8·π по определению есть число, равное косинусу угла в 8·π рад. А косинус угла в 8·π рад равен единице, поэтому, косинус числа 8·π равен 1 .

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Он состоит в том, что каждому действительному числу t ставится в соответствие точка единичной окружности с центром в начале прямоугольной системы координат, и синус, косинус, тангенс и котангенс определяются через координаты этой точки. Остановимся на этом подробнее.

Покажем, как устанавливается соответствие между действительными числами и точками окружности:

  • числу 0 ставится в соответствие начальная точка A(1, 0) ;
  • положительному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении против часовой стрелки и пройдем путь длиной t ;
  • отрицательному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении по часовой стрелке и пройдем путь длиной |t| .

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t . Допустим, что числу t соответствует точка окружности A 1 (x, y) (например, числу &pi/2; отвечает точка A 1 (0, 1) ).

Определение.

Синусом числа t называют ординату точки единичной окружности, соответствующей числу t , то есть, sint=y .

Определение.

Косинусом числа t называют абсциссу точки единичной окружности, отвечающей числу t , то есть, cost=x .

Определение.

Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t , то есть, tgt=y/x . В другой равносильной формулировке тангенс числа t – это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost .

Определение.

Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t , то есть, ctgt=x/y . Другая формулировка такова: тангенс числа t – это отношение косинуса числа t к синусу числа t : ctgt=cost/sint .

Здесь отметим, что только что данные определения согласуются с определением, данным в начале этого пункта. Действительно, точка единичной окружности, соответствующая числу t , совпадает с точкой, полученной в результате поворота начальной точки на угол в t радианов.

Еще стоит прояснить такой момент. Допустим, перед нами запись sin3 . Как понять, о синусе числа 3 или о синусе угла поворота в 3 радиана идет речь? Обычно это ясно из контекста, в противном случае это скорее всего не имеет принципиального значения.

Тригонометрические функции углового и числового аргумента

Согласно данным в предыдущем пункте определениям, каждому углу поворота α соответствуют вполне определенное значение sinα , как и значение cosα . Кроме того, всем углам поворота, отличным от 90°+180°·k , k∈Z (π/2+π·k рад) отвечают значения tgα , а отличным от 180°·k , k∈Z (π·k рад) – значения ctgα . Поэтому sinα , cosα , tgα и ctgα - это функции угла α . Другими словами – это функции углового аргумента.

Аналогично можно говорить и про функции синус, косинус, тангенс и котангенс числового аргумента. Действительно, каждому действительному числу t отвечает вполне определенное значение sint , как и cost . Кроме того, всем числам, отличным от π/2+π·k , k∈Z соответствуют значения tgt , а числам π·k , k∈Z - значения ctgt .

Функции синус, косинус, тангенс и котангенс называют основными тригонометрическими функциями .

Из контекста обычно понятно, с тригонометрическими функциями углового аргумента или числового аргумента мы имеем дело. В противном случае мы можем считать независимую переменную как мерой угла (угловым аргументом), так и числовым аргументом.

Однако, в школе в основном изучаются числовые функции, то есть, функции, аргументы которых, как и соответствующие им значения функции, являются числами. Поэтому, если речь идет именно о функциях, то целесообразно считать тригонометрические функции функциями числовых аргументов.

Связь определений из геометрии и тригонометрии

Если рассматривать угол поворота α величиной от 0 до 90 градусов, то данные в контексте тригонометрии определения синуса, косинуса, тангенса и котангенса угла поворота полностью согласуются с определениями синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике, которые даются в курсе геометрии. Обоснуем это.

Изобразим в прямоугольной декартовой системе координат Oxy единичную окружность. Отметим начальную точку A(1, 0) . Повернем ее на угол α величиной от 0 до 90 градусов, получим точку A 1 (x, y) . Опустим из точки А 1 на ось Ox перпендикуляр A 1 H .

Легко видеть, что в прямоугольном треугольнике угол A 1 OH равен углу поворота α , длина прилежащего к этому углу катета OH равна абсциссе точки A 1 , то есть, |OH|=x , длина противолежащего к углу катета A 1 H равна ординате точки A 1 , то есть, |A 1 H|=y , а длина гипотенузы OA 1 равна единице, так как она является радиусом единичной окружности. Тогда по определению из геометрии синус острого угла α в прямоугольном треугольнике A 1 OH равен отношению противолежащего катета к гипотенузе, то есть, sinα=|A 1 H|/|OA 1 |=y/1=y . А по определению из тригонометрии синус угла поворота α равен ординате точки A 1 , то есть, sinα=y . Отсюда видно, что определение синуса острого угла в прямоугольном треугольнике эквивалентно определению синуса угла поворота α при α от 0 до 90 градусов.

Аналогично можно показать, что и определения косинуса, тангенса и котангенса острого угла α согласуются с определениями косинуса, тангенса и котангенса угла поворота α .

Список литературы.

  1. Геометрия. 7-9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. - 20-е изд. М.: Просвещение, 2010. - 384 с.: ил. - ISBN 978-5-09-023915-8.
  2. Погорелов А. В. Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А. В. Погорелов. - 2-е изд - М.: Просвещение, 2001. - 224 с.: ил. - ISBN 5-09-010803-X.
  3. Алгебра и элементарные функции : Учебное пособие для учащихся 9 класса средней школы / Е. С. Кочетков, Е. С. Кочеткова; Под редакцией доктора физико-математических наук О. Н. Головина.- 4-е изд. М.: Просвещение, 1969.
  4. Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  5. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  6. Мордкович А. Г. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень)/ А. Г. Мордкович, П. В. Семенов. - 4-е изд., доп. - М.: Мнемозина, 2007. - 424 с.: ил. ISBN 978-5-346-00792-0.
  7. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни /[Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - И.: Просвещение, 2010.- 368 с.: ил.- ISBN 978-5-09-022771-1.
  8. Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  9. Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Тангенс - тригонометрическая функция, численно равная соотношению длин противолежащего и прилежащего катета. Тангенс широко используется во многих современных приложениях.

История вопроса

Тригонометрия берет свое начало в , когда ученые изучали свойства сторон прямоугольного треугольника. Именно тогда была сформулирована теорема, постулирующая соотношение катетов и гипотенузы, доказанная только через полторы тысячи лет самосским математиком Пифагором. Изначально использовался только синус, который рассчитывался как половина хорды окружности, описанной вокруг .

Тангенс появился гораздо позднее, когда перед учеными возникла задача определения длины тени, отбрасываемой объектами, стоящими перпендикулярно к поверхности земли. Тангенс был введен арабским математиком Абу-ль-Вафой в десятом веке. Восточный ученый составил специальные таблицы для определения тангенсов и котангенсов, однако это открытие так и не попало на европейский континент.

В Европе тангенсы были вновь открыты только в XIV веке: немецкий математик Иоганн Мюллер Региомонтан использовал функцию в астрономических расчетах. Термин «тангенс» произошел от латинского слова tanger, что означает «касание» и был введен в обиход в конце XVI века. Данный термин использовался для описания линии тангенсов, то есть касательной к единичной окружности. Региомонтан доказал теорему тангенсов, а также составил специальные таблицы значений функции, которые подошли как для плоской, так и для сферической геометрии.

Определение тангенса

Геометрически тангенс определяется как соотношение противолежавшего катета к прилежащему. Функция всегда рассчитывается для угла и не зависит от длин сторон. Пусть у нас есть треугольник со сторонами A, B и C, где C - гипотенуза. Тангенс угла AC будет рассчитываться как соотношение противолежащего катета B к прилежащему A или tgAC = B/A. Для угла BC тангенс рассчитывается как дробь, в числителе которой длина противолежащего углу катета A к прилежащему B, что математически записывается как tgBC = A/B. Угол AB образуется при двумя катетами, поэтому его невозможно посчитать. Катеты - стороны, образующие прямой угол, поэтому для угла в 90 градусов тангенс не существует.

Помимо геометрического определения, тангенс легко выразить через другие тригонометрические функции. Так, для угла A тангенс можно выразить при помощи отношения синуса и косинуса:

tgA = sinA / cosA.

Наша программа позволяет определить численное значение тангенса для любого значения угла. Для этого достаточно выбрать в меню соответствующую функцию и ввести в ячейку «Угол» величину угла в градусах или радианах. Если необходимо найти угол по известному значению тригонометрической функции, используйте функцию арктангенса. Для этого введите значение тангенса в соответствующую ячейку, после чего калькулятор вернет вам величину угла.

Рассмотрим пару примеров

Вычисление угла

Пусть в школьной задаче задан прямоугольный треугольник со сторонами A = 5 см, B = 12 см, C = 13 см. Требуется найти величины всех углов. Итак, очевидно, что угол AB, то есть угол, образуемый двумя катетами - прямой. Это известно из самого определения катетов. Теперь мы можем найти тангенс угла BC, который численно будет равен дроби, в числителе которой противолежащий катет A, а в знаменателе - прилежащий B. Следовательно, tgBC = A/B = 5/12 = 0,416. Зная тангенс, мы легко можем вычислить соответствующий угол при помощи онлайн-калькулятора. Для это выберем в меню функцию тангенса и введем значение 0,416 в ячейку tgα. Программа мгновенно отобразит величину угла, равную 22,58 градуса. Вычислить последний угол не составит труда, так согласно постулату о сумме углов треугольника, угол AC = 180 − 90 − 22,58 = 67,42 градуса.

Вычисление тангенса

В школьных задачах чаще всего используются стандартные углы, поэтому школьникам важно знать значения основных тригонометрических функций для этих углов буквально наизусть. Давайте при помощи калькулятора определим значения тангенсов для наиболее распространенных в задачах углов:

  • tg30 = 0,577;
  • tg45 = 1;
  • tg60 = 1,732;
  • tg90 - не рассчитывается;
  • tg120 = -1,732;
  • tg150 = -0,577;
  • tg180 = 0.

Выше мы выяснили, почему тангенс не рассчитывается для значений 90 градусов. Еще одно интересное значение - угол в 45 градусов. Почему тангенс равен 1? Ответ очевиден, ведь если в прямоугольном треугольнике один угол равен 45 градусам, то и второй имеет такую же величину. Следовательно, треугольник равнобедренный, его катеты имеют одинаковую длину, а их соотношение в любом случае будет равно 1.

Заключение

Тригонометрия - сложная наука, которая не находит практически никакого применения в повседневной жизни. Однако без тригонометрии не было бы современных технологий, поэтому специалистам прикладных наук без нее никуда. Используйте наши онлайн-калькуляторы для расчета значений тригонометрических функций.

Тангенс угла, как и другие тригонометрические функции, выражает зависимость между сторонами и углами прямоугольного треугольника. Применение тригонометрических функций позволяет заменить в расчетах величины в градусном измерении на линейные параметры.

Инструкция

При наличии транспортира заданный угол треугольника можно измерить и по таблице Брадиса найти значение тангенса. Если нет возможности определить градусную величину угла, определите его тангенс с помощью замеров линейных величин фигуры. Для этого сделайте вспомогательные построения: из произвольной точки на одной из сторон угла опустите перпендикуляр на другую сторону. Измерьте расстояние между концами перпендикуляра на сторонах угла, запишите результат измерения в числитель дроби. Теперь измерьте расстояние от вершины заданного угла до вершины прямого угла, т. е. до точки на стороне угла, в которую был опущен перпендикуляр. Полученное число запишите в знаменатель дроби. Составленная по результатам измерений дробь равна тангенсу угла.

Тангенс угла можно определить расчетным путем как отношение противолежащего ему катета к прилежащему. Также можно вычислить тангенс через прямые тригонометрические функции рассматриваемого угла - синус и косинус. Тангенс угла равен отношению синуса этого угла к его косинусу. В отличие от непрерывных функций синуса и косинуса, тангенс имеет разрыв и не определен при величине угла 90 градусов. При нулевом значении угла его тангенс равен нулю. Из соотношений прямоугольного треугольника очевидно, что угол 45 градусов имеет тангенс, равный единице, поскольку катеты такого прямоугольного треугольника равны.

Последние материалы раздела:

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...