Свойства длины вектора в евклидовом пространстве. Евклидовы пространства

Евклидовы пространства
Портабельные Windows-приложения на сайте Bodrenko.com

Глава 4
ЕВКЛИДОВЫ ПРОСТРАНСТВА

Из курса аналитической геометрии читатель знаком с понятием скалярного произведения двух свободных векторов и с четырьмя основными свойствами указанного скалярного произведения. В настоящей главе изучаются линейные пространства любой природы, для элементов которых каким-либо способом (причем безразлично каким) определено правило, ставящее в соответствие любым двум элементам число, называемое скалярным произведением этих элементов. При этом важно только, чтобы это правило обладало теми же четырьмя свойствами, что и правило составления скалярного произведения двух свободных векторов. Линейные пространства, в которых определено указанное правило, называются евклидовыми пространствами. В настоящей главе выясняются основные свойства произвольных евклидовых пространств.

§ 1. Вещественное евклидово пространство и его простейшие свойства

1. Определение вещественного евклидова пространства. Вещественное линейное пространство R называется вещественным евклидовым пространством (или просто евклидовым пространством ), если выполнены следующие два требования.
I. Имеется правило, посредством которого любым двум элементам этого пространства х и у ставится в соответствие вещественное число, называемое скалярным произведением этих элементов и обозначаемое символом (х, у).
П. Указанное правило подчинено следующим четырем аксиомам:
1°. (х, у) = (у, х) (переместительное свойство или симметрия);
2°. (x 1 + x 2, у) = (х 1 , у) + (х 2 , у) (распределительное свойство);
3°. (λ х, у) = λ (х, у) для любого вещественного λ ;
4°. (х, х) > 0, если х - ненулевой элемент; (х, х) = 0, если х - нулевой элемент.
Подчеркнем, что при введении понятия евклидова пространства мы абстрагируемся не только от природы изучаемых объектов, но и от конкретного вида правил образования суммы элементов, произведения элемента на число и скалярного произведения элементов (важно лишь, чтобы эти правила удовлетворяли восьми аксиомам линейного пространства и четырем аксиомам скалярного произведения).
Если же природа изучаемых объектов и вид перечисленных правил указаны, то евклидово пространство называется конкретным .
Приведем примеры конкретных евклидовых пространств.
Пример 1. Рассмотрим линейное пространство В 3 , всех свободных векторов. Скалярное произведение любых двух векторов определим так, как это было сделано в аналитической геометрии (т. е. как произведение длин этих векторов на косинус угла между ними). В курсе аналитической геометрии была доказана справедливость для так определенного скалярного произведения аксиом 1°- 4° (см. выпуск «Аналитическая геометрия», гл.2, §2, п.З). Стало быть, пространство В 3 с так определенным скалярным произведением является евклидовым пространством.
Пример 2. Рассмотрим бесконечномерное линейное пространство С [а, b ] всех функций x(t), определенных и непрерывных на сегменте а ≤ t ≤ b . Скалярное произведение двух таких функций x(t) и y(t) определим как интеграл (в пределах от а до b ) от произведения этих функций

Элементарно проверяется справедливость для так определенного скалярного произведения аксиом 1°-4°. В самом деле, справедливость аксиомы 1° очевидна; справедливость аксиом 2° и 3° вытекает из линейных свойств определенного интеграла; справедливость аксиомы 4° вытекает из того, что интеграл от непрерывной неотрицательной функции x 2 (t) неотрицателен и обращается в нуль лишь тогда, когда эта функция тождественно равна нулю на сегменте а ≤ t ≤ b (см. выпуск «Основы математического анализа», часть I, свойства 1° и 2° из п. 1 §6 гл. 10) (т.е. является нулевым элементом рассматриваемого пространства).
Таким образом, пространство С [а, b ] с так определенным скалярным произведением представляет собой бесконечномерное евклидово пространство .
Пример 3. Следующий пример евклидова пространства дает n-мерное линейное пространство А n упорядоченных совокупностей n вещественных чисел, скалярное произведение двух любых элементов х= (х 1 , x 2 ,...,х n) и у = (y 1 , y 2 ,...,y n) которого определяется равенством

(х, у) = x 1 y 1 + x 2 y 2 + ... + x n y n . (4.2)

Справедливость для так определенного скалярного произведения аксиомы 1° очевидна; справедливость аксиом 2° и 3° легко проверяется достаточно вспомнить определение операций сложения элементов и умножения их на числа:

(х 1 , x 2 ,...,х n) + (y 1 , y 2 ,...,y n) = (x 1 + y 1 , x 2 + y 2 ,...,x n + y n),

λ (х 1 , x 2 ,...,х n) = (λ х 1 , λ x 2 ,..., λ х n);

наконец, справедливость аксиомы 4° вытекает из того, что (х, х) = х 1 2 + x 2 2 + ...+ х n 2 всегда является неотрицательным числом и обращается в нуль лишь при условии х 1 = х 2 = ... = х n = 0.
Рассмотренное в этом примере евклидово пространство часто обозначают символом Е n .
Пример 4. В том же самом линейном пространстве А n введем скалярное произведение любых двух элементов х= (х 1 , x 2 ,...,х n) и у = (y 1 , y 2 ,...,y n) не соотношением (4.2), а другим, более общим, способом.
Для этого рассмотрим квадратную матрицу порядка n

Составим с помощью матрицы (4.3) однородный многочлен второго порядка относительно n переменных х 1 , x 2 ,...,х n

Забегая вперед, отметим, что такой многочлен называется квадратичной формой (порождаемой матрицей (4.3)) (квадратичные формы систематически изучаются в гл. 7 этой книги).
Квадратичная форма (4.4) называется положительно определенной , если она принимает строго положительные значения для всех значений переменных х 1 , x 2 ,...,х n , одновременно не равных нулю (в гл. 7 этой книги будет указано необходимое и достаточное условие положительной определенности квадратичной формы).
Так как при х 1 = х 2 = ... = х n = 0 квадратичная форма (4.4), очевидно, равна нулю, то можно сказать, что положительно определенная
квадратичная форма обращается в нуль лишь при условии х
1 = х 2 = ... = х n = 0.
Потребуем, чтобы матрица (4.3) удовлетворяла двум условиям.
1°. Порождала положительно определенную квадратичную форму (4.4).
2°. Была симметричной (относительно главной диагонали), т.е. удовлетворяла условию a ik = а ki для всех i = 1, 2,..., n и k = I, 2,..., n .
С помощью матрицы (4.3), удовлетворяющей условиям 1° и 2°, определим скалярное произведение двух любых элементов х= (х 1 , x 2 ,...,х n) и у = (y 1 , y 2 ,...,y n) пространства А n соотношением

Легко проверить справедливость для так определенного скалярного произведения всех аксиом 1°-4°. В самом деле, аксиомы 2° и 3°, очевидно, справедливы при совершенно произвольной матрице (4.3); справедливость аксиомы 1° вытекает из условия симметричности матрицы (4.3), а справедливость аксиомы 4° вытекает из того, что квадратичная форма (4.4), представляющая собой скалярное произведение (х, х), является положительно определенной.
Таким образом, пространство А n со скалярным произведением, определяемым равенством (4.5), при условии симметричности матрицы (4.3) и положительной определенности порождаемой ею квадратичной формы, является евклидовым пространством.
Если в качестве матрицы (4.3) взять единичную матрицу, то соотношение (4.4) перейдет в (4.2), и мы получим евклидово пространство Е n , рассмотренное в примере 3.
2. Простейшие свойства произвольного евклидова пространства. Устанавливаемые в этом пункте свойства справедливы для совершенно произвольного евклидова пространства как конечной, так и бесконечной размерности.
Теорема 4.1. Для любых двух элементов х и у произвольного евклидова пространства справедливо неравенство

(x, y ) 2 ≤ (x, x )(y, y ), (4.6)

называемое неравенством Коши-Буняковского.
Доказательство. Для любого вещественного числа λ , в силу аксиомы 4° скалярного произведения, справедливо неравенство (λ х - у, λ х - у) > 0. В силу аксиом 1°-3°, последнее неравенство можно переписать в виде

λ 2 (x, x) - 2 λ(x, y) + (y, y) ≤ 0

Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена является неположительность его дискриминанта, т. е. неравенство (в случае (х, х) = 0 квадратный трехчлен вырождается в линейную функцию, но в этом случае элемент х является нулевым, так что (х, у) = 0 и неравенство (4.7) также справедливо)

(x, y ) 2 - (x, x )(y, y ) ≤ 0. (4.7)

Из (4.7) сразу же вытекает неравенство (4.6). Теорема доказана.
Наша очередная задача - ввести в произвольном евклидовом пространстве понятие нормы (или длины ) каждого элемента. Для этого введем понятие линейного нормированного пространства.
Определение. Линейное пространство R называется нормированным , если выполнены следующие два требования.
I. Имеется правило, посредством которого каждому элементу х пространства R ставится в соответствие вещественное число, называемое нормой (или длиной ) указанного элемента и обозначаемое символом ||х||.
П. Указанное правило подчинено следующим трем аксиомам:
1°. ||х|| > 0, если х - ненулевой элемент; ||х|| = 0, если х - нулевой элемент;
2°. ||λ х|| = |λ | ||х|| для любого элемента х и любого вещественного числа λ ;
3°. для любых двух элементов х и у справедливо следующее неравенство

||х + y || ≤ ||х|| + ||y ||, (4.8)

называемое неравенством треугольника (или неравенством Минковского) .
Теорема 4.2. Всякое евклидово пространство является нормированным, если норму любого элемента х в нем определить равенством

Доказательство. Достаточно доказать, что для нормы, определенной соотношением (4.9), справедливы аксиомы 1°-3° из определения нормированного пространства.
Справедливость для нормы аксиомы 1° сразу вытекает из аксиомы 4° скалярного произведения. Справедливость для нормы аксиомы 2° почти непосредственно вытекает из аксиом 1° и 3° скалярного произведения.
Остается убедиться в справедливости для нормы аксиомы 3°, т. е. неравенства (4.8). Будем опираться на неравенство Коши-Буняковского (4.6), которое перепишем в виде

С помощью последнего неравенства, аксиом 1°-4° скалярного произведения и определения нормы получим

Теорема доказана.
Следствие. Во всяком евклидовом пространстве с нормой элементов, определяемой соотношением (4.9), для любых двух элементов х и у справедливо неравенство треугольника (4.8).

Заметим далее, что в любом вещественном евклидовом пространстве можно ввести понятие угла между двумя произвольными элементами х и у этого пространства. В полной аналогии с векторной алгеброй, мы назовем углом φ между элементами х и у тот (изменяющийся в пределах от 0 до π ) угол, косинус которого определяется соотношением

Данное нами определение угла корректно, ибо в силу неравенства Коши-Буняковского (4.7") дробь, стоящая в правой части последнего равенства, по модулю не превосходит единицы.
Далее договоримся называть два произвольных элемента х и у евклидова пространства Е ортогональными, если скалярное произведение этих элементов (х, у) равно нулю (в этом случае косинус угла (φ между элементами х и у будет равен нулю).
Снова апеллируя к векторной алгебре, назовем сумму х + у двух ортогональных элементов х и у гипотенузой прямоугольного треугольника, построенного на элементах х и у.
Заметим, что во всяком евклидовом пространстве справедлива теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. В самом деле, поскольку х и у ортогональны и (х, у) = 0, то в силу аксиом и определения нормы

||х + y || 2 = (x+y, x+y ) = (x, x ) + 2(x, y ) + (y, y) = (x,x) + (y, y) = ||х|| 2 + ||y || 2 .

Этот результат обобщается и на n попарно ортогональных элементов х 1 , x 2 ,...,х n: если z = х 1 + x 2 + ...+ х n , то

||х|| 2 = (х 1 + x 2 + ...+ х n ,х 1 + x 2 + ...+ х n) = (х 1 ,х 1) + (х 2 ,х 2) + .... + (х n ,х n ) = ||х 1 || 2 + ||х 1 || 2 +... +||х 1 || 2 .

В заключение запишем норму, неравенство Коши-Буняковского и неравенство треугольника в каждом из конкретных евклидовых пространств, рассмотренных в предыдущем пункте.
В евклидовом пространстве всех свободных векторов с обычным определением скалярного произведения норма вектора а совпадает с его длиной |а|, неравенство Коши-Буняковского приводится к виду ((a,b ) 2 ≤ |а| 2 |b | 2 , а неравенство треугольника - к виду |a + b| ≤ |а| + |b | (Если сложить векторы а и b по правилу треугольника, то это неравенство тривиально сводится к тому, что одна сторона треугольника не превосходит суммы двух других его сторон).
В евклидовом пространстве С [а, b ] всех непрерывных на сегменте а ≤ t ≤ b функций х = x(t) со скалярным произведением (4.1) норма элемента х = x(t) равна , а неравенства Коши-Буняковского и треугольника имеют вид

Оба эти неравенства играют важную роль в различных разделах математического анализа.
В евклидовом пространстве Е n упорядоченных совокупностей n вещественных чисел со скалярным произведением (4.2) норма любого элемента х = (х 1 , x 2 ,...,х n) равна


Наконец, в евклидовом пространстве упорядоченных совокупностей n вещественных чисел со скалярным произведением (4.5) норма любого элемента х = (х 1 , x 2 ,...,х n) равна 0 (напоминаем, что при этом матрица (4.3) симметрична и порождает положительно определенную квадратичную форму (4.4)).

а неравенства Коши-Буняковского и треугольника имеют вид

Определение евклидова пространства

Определение 1. Вещественное линейное пространство называется евклидовым , если в нём определена операция, ставящая в соответствие любым двум векторам x и y из этого пространства число, называемое скалярным произведением векторов x и y и обозначаемое (x,y) , для которого выполнены условия:

1. (x,y) = (y,x);

2. (x + y,z) = (x,z) + (y,z) , где z - любой вектор, принадлежащий данному линейному пространству;

3. (?x,y) = ? (x,y) , где ? - любое число;

4. (x,x) ? 0 , причём (x,x) = 0 x = 0.

Например, в линейном пространстве одностолбцовых матриц скалярное произведение векторов

можно определить формулой

Евклидово пространство размерности n обозначают En . Заметим, что существуют как конечномерные, так и бесконечномерные евклидовы пространства.

Определение 2 . Длиной (модулем) вектора x в евклидовом пространстве En называют (x,x) и обозначают её так: |x| = (x,x) . У всякого вектора евклидова пространства существует длина, причём у нулевого вектора она равна нулю.

Умножая ненулевой вектор x на число , мы получим вектор , длина которого равна единице. Эта операция называется нормированием вектора x .

Например, в пространстве одностолбцовых матриц длину вектора можно определить формулой:

Неравенство Коши-Буняковского

Пусть x? En и y ? En – любые два вектора. Докажем, что для них имеет место неравенство:

(Неравенство Коши-Буняковского)

Доказательство. Пусть? - любое вещественное число. Очевидно, что (?x ? y,?x ? y) ? 0. С другой стороны, в силу свойств скалярного произведения можем написать

Получили, что

Дискриминант этого квадратного трёхчлена не может быть положительным, т.е. , откуда вытекает:

Неравенство доказано.

Неравенство треугольника

Пусть x и y - произвольные векторы евклидова пространства En , т.е. x ? En и y ? En .

Докажем, что . (Неравенство треугольника).

Доказательство. Очевидно, что С другой стороны, . Принимая во внимание неравенство Коши-Буняковского, получим

Неравенство треугольника доказано.

Норма евклидова пространства

Определение 1 . Линейное пространство ? называется метрическим , если любым двум элементам этого пространства x и y поставлено в соответствие неотрицательное число? (x,y) , называемое расстоянием между x и y , (? (x,y) ? 0) , причём выполняются условия (аксиомы):

1) ? (x,y) = 0 x = y

2) ? (x,y) = ? (y,x) (симметрия);

3) для любых трёх векторов x , y и z этого пространства? (x,y) ? ? (x,z) + ? (z,y) .

Замечание. Элементы метрического пространства обычно называют точками.

Евклидово пространство En – метрическое, причём в качестве расстояния между векторами x? En и y? En можно взять x ? y .

Так, например, в пространстве одностолбцовых матриц, где

следовательно

Определение 2 . Линейное пространство ? называется нормированным , если каждому вектору x из этого пространства поставлено в соответствие неотрицательное число, называемое его нормой x . При этом выполняются аксиомы:

Нетрудно видеть, что нормированное пространство является метрическим пространством. В самом деле, в качестве расстояния между x и y можно взять . В евклидовом пространстве En в качестве нормы любого вектора x? En принимается его длина, т.е. .

Итак, евклидово пространство En является метрическим пространством и более того, евклидово пространство En является нормированным пространством.

Угол между векторами

Определение 1 . Углом между ненулевыми векторами a и b евклидова простран ства En называют число для которого

Определение 2 . Векторы x и y евклидова пространства En называются ортогона льными , если для них выполняется равенство (x,y) = 0.

Если x и y - ненулевые, то из определения следует, что угол между ними равен

Заметим, что нулевой вектор по определению считается ортогональным любому вектору.

Пример . В геометрическом (координатном) пространстве?3, которое является частным случаем евклидова пространства, орты i , j и k взаимно-ортогональны.

Ортонормированный базис

Определение 1 . Базис e1 ,e2 ,...,en евклидова пространства En называется ортогона льным , если векторы этого базиса попарно ортогональны, т.е. если

Определение 2 . Если все векторы ортогонального базиса e1 , e2 ,...,en единичны, т.е. ei = 1 (i = 1,2,...,n) , то базис называется ортонормированным , т.е. для ортонормированного базиса

Теорема. (о построении ортонормированного базиса)

Во всяком евклидовом пространстве E n существуют ортонормированные базисы.

Доказательство . Докажем теорему для случая n = 3.

Пусть E1 ,E2 ,E3 - некоторый произвольный базис евклидова пространства E3 Построим какой-нибудь ортонормированный базис в этом пространстве. Положим , где ? - некоторое вещественное число, которое выберем таким образом, чтобы было (e1 ,e2 ) = 0, тогда получим

причём очевидно, что? = 0 , если E1 и E2 ортогональны, т.е. в этом случае e2 = E2 , а , т.к. это базисный вектор.

Учитывая, что (e1 ,e2 ) = 0, получим

Очевидно, что , если e1 и e2 ортогональны с вектором E3 , т.е. в этом случае следует взять e3 = E3 . Вектор E3 ? 0 , т.к. E1 , E2 и E3 линейно независимы, следовательно e3 ? 0.

Кроме того, из приведённого рассуждения следует, что e3 нельзя представить в виде линейной комбинации векторов e1 и e2 , следовательно векторы e1 , e2 , e3 линейно незави симы и попарно ортогональны, следовательно, их можно взять в качестве базиса евклидова пространства E3 . Остаётся только пронормировать построенный базис, для чего достаточно каждый из построенных векторов разделить на его длину. Тогда получим

Итак, мы построили базис - ортонормированный базис. Теорема доказана.

Применённый способ построения ортонормированного базиса из произвольного базиса называется процессом ортогонализации . Заметим, что в процессе доказательства теоремы мы установили, что попарно ортогональные векторы линейно независимы. Кроме того, если - ортонормированный базис в En , тогда для любого вектора x? En имеет место единственное разложение

где x1 , x2 ,..., xn - координаты вектора x в этом ортонормированном базисе.

Так как

то умножив скалярно равенство (*) на , получим .

В дальнейшем мы будем рассматривать только ортонормированные базисы, а потому для простоты их записи нолики сверху у базисных векторов мы будем опускать.

Еще в школе все учащиеся знакомятся с понятием «евклидова геометрия», основные положения которой сфокусированы вокруг нескольких аксиом, опирающихся на такие геометрические элементы, как точка, плоскость, прямая, движения. Все они в совокупности формируют то, что уже давно известно под термином «евклидово пространство».

Евклидово которого базируется на положении о скалярном умножении векторов, является частным случаем линейного (аффинного) пространства, которое удовлетворяет целому ряду требований. Во-первых, скалярное произведение векторов абсолютно симметрично, то есть вектор с координатами (x;y) в количественном плане тождественен вектору с координатами (y;x), однако противоположен по направлению.

Во-вторых, в том случае, если производится скалярное произведение вектора с самим собой, то результат этого действия будет носить положительный характер. Единственным исключением станет случай, когда начальная и конечная координата этого вектора равна нулю: в этом случае и произведение его с самим собой то же будет равно нулю.

В-третьих, имеет место дистрибутивность скалярного произведения, то есть возможность разложения одной из его координат на сумму двух значений, что не повлечет за собой никаких изменений в итоговом результате скалярного умножения векторов. Наконец, в-четвертых, при умножении векторов на одно и то же их скалярное произведение также увеличится во столько же раз.

В том случае, если выполняются все эти четыре условия, мы можем с уверенностью сказать, что перед нами евклидово пространство.

Евклидово пространство с практической точки зрения можно охарактеризовать следующими конкретными примерами:

  1. Самый простой случай - это наличие множества векторов с определенным по основным законам геометрии скалярным произведением.
  2. Евклидово пространство получится и в том случае, если под векторами мы будем понимать некое конечное множество действительных чисел с заданной формулой, описывающей их скалярную сумму или произведение.
  3. Частным случаем евклидова пространства следует признать так называемое нулевое пространство, которое получается в том случае, если скалярная длина обоих векторов равна нулю.

Евклидово пространство обладает целым рядом специфических свойств. Во-первых, скалярный множитель можно выносить за скобки как от первого, так и от второго сомножителя скалярного произведения, результат от этого не претерпит никаких изменений. Во-вторых, наряду с дистрибутивностью первого элемента скалярного произведения, действует и дистрибутивность второго элемента. Кроме того, помимо скалярной суммы векторов, дистрибутивность имеет место и в случае вычитания векторов. Наконец, в-третьих, при скалярном умножении вектора на нуль, результат также будет равен нулю.

Таким образом, евклидово пространство - это важнейшее геометрическое понятие, используемое при решении задач с взаимным расположением векторов друг относительно друга, для характеристики которого используется такое понятие, как скалярное произведение.

§3. Размерность и базис векторного пространства

Линейная комбинация векторов

Тривиальная и нетривиальная линейная комбинация

Линейно зависимые и линейно независимые векторы

Свойства векторного пространства, связанные с линейной зависимостью векторов

п -мерное векторное пространство

Размерность векторного пространства

Разложение вектора по базису

§4. Переход к новому базису

Матрица перехода от старого базиса к новому

Координаты вектора в новом базисе

§5. Евклидово пространство

Скалярное произведение

Евклидово пространство

Длина (норма) вектора

Свойства длины вектора

Угол между векторами

Ортогональные векторы

Ортонормированный базис


§ 3. Размерность и базис векторного пространства

Рассмотрим некоторое векторное пространство (V, Å, ∘) над полем Р . Пусть – некоторые элементы множества V, т.е. векторы.

Линейной комбинацией векторов называется любой вектор, равный сумме произведений этих векторов на произвольные элементы поля Р (т.е. на скаляры) :

Если все скаляры равны нулю, то такая линейная комбинация называется тривиальной (простейшей), и .

Если хотя бы один скаляр отличен от нуля, линейная комбинация называется нетривиальной .

Векторы называются линейно независимыми , если только тривиальная линейная комбинация этих векторов равна :

Векторы называются линейно зависимыми , если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная .

Пример . Рассмотрим множество упорядоченных наборов четверок действительных чисел – это векторное пространство над полем действительных чисел. Задание: выяснить, являются ли векторы , и линейно зависимыми.

Решение .

Составим линейную комбинацию этих векторов: , где – неизвестные числа. Потребуем, чтобы эта линейная комбинация была равна нулевому вектору: .

В этом равенстве запишем векторы в виде столбцов чисел:

Если найдутся такие числа , при которых это равенство выполняется, и хотя бы одно из чисел не равно нулю, значит это нетривиальная линейная комбинация и векторы линейно зависимы.

Выполним действия:

Таким образом, задача сводится к решению системы линейных уравнений:

Решая ее, получим:

Ранги расширенной и основной матриц системы равны и меньше числа неизвестных , следовательно, система имеет бесконечное множество решений.

Пусть , тогда и .

Итак, для данных векторов существует нетривиальная линейная комбинация, например при , которая равна нулевому вектору, значит, эти векторы линейно зависимы.

Отметим некоторые свойства векторного пространства, связанные с линейной зависимостью векторов :

1. Если векторы линейно зависимы, то хотя бы один из них является линейной комбинацией остальных.

2. Если среди векторов имеется нулевой вектор , то эти векторы линейно зависимы.

3. Если часть векторов являются линейно зависимыми, то и все эти векторы – линейно зависимые.

Векторное пространство V называется п -мерным векторным пространством , если в нем найдется п линейно независимых векторов, и любой набор из (п + 1) векторов является линейно зависимым.

Число п называется размерностью векторного пространства , и обозначается dim(V) от английского «dimension» – размерность (измерение, размер, габарит, величина, протяженность и т.д.).

Совокупность п линейно независимых векторов п -мерного векторного пространства называется базисом .

(*)
Теорема (о разложении вектора по базису): Каждый вектор векторного пространства можно представить (и притом единственным образом) в виде линейной комбинации векторов базиса :

Формула (*) называется разложением вектора по базису , а числа координатами вектора в этом базисе.

В векторном пространстве может быть более одного или даже бесконечно много базисов. В каждом новом базисе один и тот же вектор будет иметь разные координаты.


§ 4. Переход к новому базису

В линейной алгебре часто встает задача нахождения координат вектора в новом базисе, если известны его координаты в старом базисе.

Рассмотрим некоторое п -мерное векторное пространство (V, +, ·) над полем Р . Пусть в этом пространстве есть два базиса: старый и новый .

Задача: найти координаты вектора в новом базисе.

Пусть векторы нового базиса в старом базисе имеют разложение:

,

Выпишем координаты векторов в матрицу не строками, как они записаны в системе, а столбцами:

Полученная матрица называется матрицей перехода от старого базиса к новому.

Матрица перехода связывает координаты любого вектора в старом и новом базисе следующим соотношением:

,

где - искомые координаты вектора в новом базисе.

Таким образом, задача нахождения координат вектора в новом базисе сводится к решению матричного уравнения: , где Х – матрица-столбец координат вектора в старом базисе, А – матрица перехода от старого базиса к новому, Х * – искомая матрица-столбец координат вектора в новом базисе. Из матричного уравнения получим:

Итак, координаты вектора в новом базисе находятся из равенства:

.

Пример. В некотором базисе даны разложения векторов:

Найти координаты вектора в базисе .

Решение .

1. Выпишем матрицу перехода к новому базису, т.е. координаты векторов в старом базисе запишем столбцами:

2. Найдем матрицу А –1:

3. Выполним умножение , где – координаты вектора :

Ответ : .


§ 5. Евклидово пространство

Рассмотрим некоторое п -мерное векторное пространство (V, +, ·) над полем действительных чисел R . Пусть – некоторый базис этого пространства.

Введем в этом векторном пространстве метрику , т.е. определим способ измерения длин и углов. Для этого определим понятие скалярного произведения.

Евклидово пространство

Евкли́дово простра́нство (также Эвкли́дово простра́нство ) - в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии . В этом случае предполагается, что пространство имеет размерность 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно -мерное евклидово пространство обозначается , хотя часто используется не вполне приемлемое обозначение .

,

в простейшем случае (евклидова норма ):

где (в евклидовом пространстве всегда можно выбрать базис , в котором верен именно этот простейший вариант).

2. Метрическое пространство , соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:

,

Связанные определения

  • Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика .
  • Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.
  • Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) - каковым, например, является риманово многообразие нулевой кривизны.

Примеры

Наглядными примерами евклидовых пространств могут служить пространства:

Более абстрактный пример:

Вариации и обобщения

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Евклидово пространство" в других словарях:

    Конечномерное векторное пространство с положительно определённым скалярным произведением. Является непосредств. обобщением обычного трёхмерного пространства. В Е. п. существуют декартовы координаты, в к рых скалярное произведение (ху)векторов х … Физическая энциклопедия

    Пространство, свойства которого изучаются в евклидовой геометрии. В более широком понимании евклидовым пространством называется n мерное векторное пространство, в котором определено скалярное произведение … Большой Энциклопедический словарь

    Евклидово пространство - пространство, свойства которого описываются аксиомами евклидовой геометрии. Упрощенно можно определить евклидово пространство, как пространство на плоскости или в трехмерном объеме, в которых заданы прямоугольные (декартовы) координаты, а… … Начала современного естествознания

    Евклидово пространство - см. Многомерное (n мерное) векторное пространство, Векторное (линейное) пространство … Экономико-математический словарь

    евклидово пространство - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN Cartesian space … Справочник технического переводчика

    Пространство, свойства которого изучаются в евклидовой геометрии. В более широком понимании евклидовым пространством называют n мерное векторное пространство, в котором определено скалярное произведение. * * * ЕВКЛИДОВО ПРОСТРАНСТВО ЕВКЛИДОВО… … Энциклопедический словарь

    Пространство, свойства к рого изучаются в евклидовой геометрии. В более широком понимании Е. п. наз. n мерное векторное пространство, в к ром определено скалярное произведение … Естествознание. Энциклопедический словарь

    Пространство, свойства к рого описываются аксиомами евклидовой геометрии. В более общем смысле Е. п. конечномерное действительное векторное пространствоRn со скалярным произведением(х, у), х, к рое в надлежащим образом выбранных координатах… … Математическая энциклопедия

    - (в математике) пространство, свойства которого описываются аксиомами евклидовой геометрии (См. Евклидова геометрия). В более общем смысле Е. п. называется n мepное Векторное пространство, в котором возможно ввести некоторые специальные… … Большая советская энциклопедия

    - [по имени др. греч. математика Евклида (Eukleides; 3 в. до н. э.)] пространство, в т. ч. многомерное, в к ром возможно ввести координаты х1,..., хп так, что расстояние р (М,М) между точками М (х1 ..., х n) и М (х 1 , .... xn) может быть… … Большой энциклопедический политехнический словарь

Последние материалы раздела:

Все, что нужно знать о бактериях
Все, что нужно знать о бактериях

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10...

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...