Структурно-функциональная характеристика нервных клеток. Морфофункциональная характеристика нервной ткани


Чрезвычайно разнообразные по строению и функции нервные клетки составляют основу центральной (головной и спинной мозг) и периферической нервной систем. Совместно с нейронами при описании нервной ткани рассматриваются второй ее важный компонент – глиальные клетки. Они подразделяются на клетки макроглии – астроциты, олигодендроциты, эпендимоциты и клетки микроглии.

Основные функции нервной системы, осуществляемые нейронами – возбуждение, его проведение и передача импульсов на эффекторные органы Нейроглиальные клетки способствуют выполнению нейронами этих функций. Деятельность нервной системы основана на принципе функционирования рефлекторной дуги, состоящей из нейронов, связанных друг с другом посредством специализированных контактов – синапсов различного вида.

Нейроны позвоночных и большинства беспозвоночных животных, как правило, клетки с многими длинными, сложно ветвящимися отростками, часть которых воспринимает возбуждение. Они называются дендритами, а один из отростков, отличающийся большой длиной и разветвлениями в терминальных отделах, именуется аксоном.

Основные функциональные свойства нейронов связаны с особенностью строения их плазматической мембраны, содержащей огромное число потенциал- и лигандзависимых рецепторных комплексов и ионных каналов, а также со способностью выделять в определенных участках (синапсах) нейромедиаторы и нейромодуляторы. Познание структурной организации нервной ткани во многом было обусловлено применением специальных методов окраски нейронов и глиальных клеток. Среди них особого внимания заслуживают методы импрегнации тканей солями серебра по Гольджи и Бильшовскому-Гроссу.

Основы классических представлений о клеточном устройстве нервной системы были заложены в трудах выдающегося испанского нейрогистолога, лауреата Нобелевской премии, Сантьяго Рамон-и-Кахала. Большой вклад в учение о нервной ткани внесли исследования гистологов Казанской и Петербургской-Ленинградской школ нейрогистологии – К. А. Арнштейна, А. С. Догеля, А. Е. Смирнова, Д. А. Тимофеева, А. Н. Миславского, Б. И. Лаврентьева, Н. Г. Колосова, А.А. Заварзина, П.Д.Дейнеки, Н.В. Немилова, Ю.И. Орлова, В.П. Бабминдры и др.

Структурная и функциональная полярность большинства нервных клеток обусловила традиционное выделение трех отделов нейрона: тела, дендритов и аксона . Уникальность строения нейронов проявляется в чрезвычайной разветвленности их отростков, нередко достигающих очень большой длины, и наличием в клетках разнообразных специфических белковых и небелковых молекул (нейромедиаторы, нейромодуляторы, нейропептиды и др.), обладающих высокой биологической активностью.

В основе классификации нервных клеток по их строению лежат:

1) форма тела – выделяют округло-овальные, пирамидные, корзинчатые, веретеновидные, грушевидные, звездчатые и некоторые другие виды клеток;

2) число отростков – униполярные, биполярные (как вариант – псевдоуниполярные), и мультиполярные;

3) характер ветвления дендритов и наличие шипиков (густо- и редковетвистые; шипиковые и бесшипиковые клетки);

4) характер ветвления аксона (ветвление только в терминальной части или наличие коллатералей по всей длине, короткоаксонные или длинноаксонные).

Нейроны также подразделяют по содержанию нейромедиаторов на: холинергические, адренергические, серотонинергические, ГАМК (гаммкергические), аминокислотные (глицинергические, глутаматэргические и др.). Наличие в одном нейроне нескольких нейромедиаторов, даже таких антагонистических по своим эффектам, как ацетилхолин и норадреналин, заставляет относиться к однозначному определению нейромедиаторного и нейропептидного фенотипа нейронов весьма осторожно.

Также существует классическое разделение нейронов (в зависимости от их положения в рефлекторной дуге) на: афферентные (чувствительные), вставочные (ассоциативные) и эфферентные (в том числе и двигательные). Чувствительные нейроны имеют наиболее вариабельную структурную организацию окончаний дендритов, принципиально отличающую их от дендритов остальных нервных клеток. Они часто представлены биполярными (чувствительные ганглии ряда органов чувств), псевдоуниполярными (спинномозговые ганглии) или высокоспециализированными нейросенсорными клетками (фоторецепторы сетчатки или обонятельные клетки). Найдены нейроны центральной нервной системы, не генерирующие потенциал действия (бесспайковые нейроны), и спонтанно-возбудимые осцилляторные клетки. Анализ особенностей их структурной организации и взаимосвязи с «традиционными» нейронами является перспективным направлением в познании деятельности нервной системы.

Тело (сома). Тела нервных клеток могут значительно различаться по форме и размерам. Моторные нейроны передних рогов спинного мозга и гигантские пирамиды коры больших полушарий – одни из самых крупных клеток в организме позвоночных – размер тела пирамид достигает 130 мкм, и наоборот, клетки-зерна мозжечка, имеющие диаметр в среднем 5–7 мкм, самые маленькие нервные клетки позвоночных. Разнообразны по форме и размерам и клетки вегетативной нервной системы.

Ядро. Нейроны имеют, как правило, одно ядро. Оно обычно крупное, округлое, содержит одно-два ядрышка, хроматин отличается низкой степенью конденсации, что свидетельствует о высокой активности ядра. Возможно, что некоторые нейроны являются полиплоидными клетками. Ядерная оболочка представлена двумя мембранами, разделенными перинуклеарным пространством и имеющие многочисленные поры. Количество пор достигает у нейронов позвоночных 4000 на ядро. Важной состовляющей ядра является т.н. «ядерный матрикс» - комплекс ядерных белков, обеспечивающих структурную организацию всех компонентов ядра и участствующих в регуляции процессов репликации, транскрипции и процессинге РНК и их выведении из ядра.

Цитоплазма (перикарион). Многие, особенно крупные пирамидные нейроны, отличаются богатым содержанием гранулярной эндоплазматической сети (ГЭС). Это находит яркое проявление при их окраске анилиновыми красителями в виде базофилии цитоплазмы и включенном в нее базофильным, или тигроидным, веществом (вещество Ниссля). Распределение базофильного вещества Ниссля в цитоплазме перикариона признается одним из критериев дифференцировки нейрона, а также показателем функционального состояния клетки. В нейронах находится также большое число свободных рибосом, обычно собранных в розетки – полисомы. В целом, нервные клетки содержат все основные органеллы, характерные для эукариотической животной клетки, хотя есть ряд особенностей.

Первая касается митохондрий. Интенсивная работа нейрона связана с большими энергетическими затратами, поэтому в них много митохондрий самого разного вида. В теле и отростках нейронов располагаются немногочисленные (3-4 шт) гигантские митохондрии «ретикулярного» и «нитчатого» типов. Расположение крист в них продольное, что также достаточно редко встречается среди митохондрий. Кроме того, в теле и отростках нейрона есть множество мелких митохондрий «традиционного» типа с поперечными кристами. Особенно много митохондрий скапливается в районах синапсов, узлов ветвления дендритов, в начальном участке аксона (аксоном холмике). Из-за интенсивности функционирования митохондрий в нейроне они имеют, как правило, короткий жизненный цикл (некоторые митохондрии живут около часа). Обновляются митохондрии путем традиционного деления или почкования митохондрий и поставляются в отростки клетки посредством аксонального или дендритного транспорта.

Еще одной из характерных черт строения цитоплазмы нейронов позвоночных и беспозвоночных животных является присутствие внутриклеточного пигмента – липофусцина. Липофусцин относится к группе внутриклеточных пигментов, главным составляющим которых являются каротиноид желтого или коричневого цвета. Он находится в мелких мембранозных гранулах, рассеянных по цитоплазме нейрона. Значение липофусцина активно обсуждается. Считается, что это пигмент «старения» нейрона и связан он с процессами неполного расщепления веществ в лисосомах.

В процессе жизненного цикла нервных клеток количество липофусциновых гранул достоверно увеличивается и по их распределению в цитоплазме можно косвенно судить о возрасте нейрона.

Выделяют четыре морфологические стадии «старения» нейрона. У молодых нейронов (1- я стадия - диффузная) - липофусцина мало и он рассеян по цитоплазме нейрона. У зрелых нервных клеток (2-я стадия, околоядерная) - количество пигмента увеличивается и он начинает скапливаться в зоне ядра. У стареющих нейронов (3-я стадия - полярная), липофусцина все больше и больше и скопления его гранул концентрируются около одного из полюсов нейрона. И наконец, у старых нейронов (4-я стадия, биполярная), липофусцин заполняет большой объем цитоплазмы и его скопления находятся на противоположных полюсах нейрона. В ряде случаев липофусцина в клетке становится так много, что его гранулы деформируют ядро. Накопление липофусцина в процессе старения нейронов и организма связывают также со свойством липофусцина, как каротиноида, связывать кислород. Полагают, что таким образом нервная система адаптируется к происходящему с возрастом ухудшению кислородного питания клеток.

Особой разновидностью эндоплазматической сети, характерной для перикариона нейронов, являются субповерхностные цистерны – одна-две уплощенные мембранные везикулы, расположенные около плазматической мембраны и нередко связанные с ней электронно-плотным неоформленным материалом. В перикарионе и в отростках (аксоне и дендритах) нередко обнаруживаются мультивезикулярные и мультиламеллярные мембранозные тельца, представленные скоплениями пузырьков или фибриллярного материала со средним диаметром 0,5 мкм. Они являются производными конечных стадий функционирования лизосом в процессах физиологической регенерации компонентов нейрона и участвуют в обратном (ретроградном) транспорте.



Нейроны (нейроциты, собственно нервные клетки) - клетки раз­личных размеров (которые варьируют от самых мелких в организме, у нейронов с диаметром тела 4-5 мкм - до наиболее крупных с диамет­ром тела около 140 мкм). К рождению нейроны утрачивают способность к делению, поэтому в течение постнатальной жизни их количество не увеличивается, а, напротив, в силу естественной убыли клеток, посте­пенно снижается. Нейрон состоит из клеточного тела (перикариона) и отростков, обеспечивающих проведение нервных импульсов - дендритов, прино­сящих импульсы к телу нейрона, и аксона (нейрита), несущего импуль­сы от тела нейрона.

Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков). Перика­рион содержит синтетический аппарат нейрона, а его плазмолемма осу­ществляет реценторные функции, так как на ней находятся многочис­ленные нервные окончания (синапсы), несущие возбуждающие и тор­мозные сигналы от других нейронов. Ядро нейрона - обычно одно, крупное, округлое, светлое, с мел­кодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками. Эти особенности отражают высокую актив­ность процессов транскрипции в ядре нейрона.

Цитоплазма нейрона богата органеллами и окружена плазмолеммой, которая обладает способностью к проведению нервного импульса вследствие локального тока Nа+ в цитоплазму и К+ из нее через потенциал-зависимые мембранные ион­ные каналы. Плазмолемма содержит Nа+-К+ насосы, которые поддержи­вают необходимые градиенты ионов.

Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендршпические синапсы), расположенные на них в области особых цитоплазматических выпячиваний - дендритных шипиков. Во мно­гих шипиках имеется особый шипиковый аппарат, состоящий из 3-4 уплощенных цистерн, разделенных участками плотного вещества. Шипики представляют собой лабильные структуры, которые разрушаются и образуются вновь; их число резко падает при старении, а также при снижении функциональной активности нейронов. В большинстве случаев дендриты многочисленны, имеют относи­тельно небольшую длину и сильно ветвятся вблизи тела нейрона. Круп­ные стволовые дендриты содержат все виды органелл, по мере сниже­ния их диаметра в них исчезают элементы комплекса Гольджи, а цис­терны грЭПС сохраняются. Нейротрубочки и нейрофиламеиты много­численны и располагаются параллельными пучками; они обеспечивают дендритный транспорт, который осуществляется из тела клетки вдоль дендритов со скоростью около 3 мм/ч.

Аксон (нейрит) - длинный (у человека от 1 мм до 1.5 м) отрос­ток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). В крупных нейронах аксон может содержать до 99% объема цитоплазмы. Аксон отходит от утол­щенного участка тела нейрона, не содержащего хроматофильной суб­станции, - аксонного холмика, в котором генерируются нервные им­пульсы; почти на всем протяжении он покрыт глиальной оболочкой. Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, ближе к перифе­рии располагаются пучки микротрубочек, цистерны ЭПС, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Тельца Ниссля в аксоне отсутствуют. В конечном участке аксон нередко распадается на тонкие веточки (телодендрии). Аксон заканчивается специализированными терминалами (нервными окончаниями) на других нейронах или клетках рабочих органов.

КЛАССИФИКАЦИЯ НЕЙРОНОВ

Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа: униполярные, биполярные и мультиполярные.

1. Униполярные нейроны имеют один отросток. По мнению боль­шинства исследователей, в нервной системе человека и других млеко­питающих они не встречаются. Некоторые авторы к таким клеткам все же относят омакринные нейроны сетчатки глаза и межклубочковые ней­роны обонятельной луковицы.

2. Биполярные нейроны имеют два отростка - аксон и дендрит. обычно отходящие от противоположных полюсов клетки. В нервной системе человека встречаются редко. К ним относят биполярные клет­ки сетчатки глаза, спирального и вестибулярного ганглиев.

Псевдоуниполярные нейроны - разновидность биполярных, в них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в ви­де единого выроста, который далее Т-образно делится. Эти клетки встречаются в спинальных и краниальных ганглиях.

3. Мультиполярные нейроны имеют три или большее число от­ростков: аксон и несколько дендритов. Они наиболее распространены в нервной системе человека. Описано до 80 вариантов этих клеток: ве­ретенообразные, звездчатые, грушевидные, пирамидные, корзинчатые и др. По длине аксона выделяют клетки Гольджи I типа (с длинным ак­соном) и клетки Гольджи II типа (с коротким аксоном).

Нервная ткань – совокупность связанных между собой нервных клеток (нейронов, нейроцитов) и вспомогательных элементов (нейроглии), которая регулирует деятельность всех органов и систем живых организмов. Это основной элемент нервной системы, которая делится на центральную (включает головной и спинной мозг) и периферическую (состоящую из нервных узлов, стволов, окончаний).

Основные функции нервной ткани

  1. Восприятие раздражения;
  2. формирование нервного импульса;
  3. быстрая доставка возбуждения к центральной нервной системе;
  4. хранение информации;
  5. выработка медиаторов (биологически активных веществ);
  6. адаптация организма к переменам внешней среды.

Свойства нервной ткани

  • Регенерация — происходит очень медленно и возможна только при наличии неповрежденного перикариона. Восстановление утраченных отростков идет путем прорастания.
  • Торможение — предотвращает возникновение возбуждения или ослабляет его
  • Раздражимость — ответ на влияние внешней среды благодаря наличию рецепторов.
  • Возбудимость — генерирование импульса при достижении порогового значения раздражения. Существует нижний порог возбудимости, при котором самое маленькое влияние на клетку вызывает возбуждение. Верхний порог – это величина внешнего воздействия, которая вызывает боль.

Строение и морфологическая характеристика нервных тканей

Основная структурная единица – это нейрон . Он имеет тело – перикарион (в котором находятся ядро, органеллы и цитоплазма) и несколько отростков. Именно отростки являются отличительной чертой клеток этой ткани и служат для переноса возбуждения. Длина их колеблется от микрометров до 1,5м. Тела нейронов также различных размеров: от 5 мкм в мозжечке, до 120 мкм в коре головного мозга.

До недавнего времени считалось, что нейроциты не способны к делению. Сейчас известно, что образование новых нейронов возможно, правда только в двух местах – это субвентрикулякная зона мозга и гиппокамп. Продолжительность жизни нейронов ровна длительности жизни отдельного индивидуума. Каждый человек при рождении имеет около триллиона нейроцитов и в процессе жизнедеятельности теряет каждый год 10млн клеток.

Отростки делятся на два типа – это дендриты и аксоны.

Строение аксона. Начинается он от тела нейрона аксонным холмиком, на всем протяжении не разветвляется и только в конце разделяется на ветки. Аксон – это длинный отросток нейроцита, который выполняет передачу возбуждения от перикариона.

Строение дендрита . У основания тела клетки он имеет конусообразное расширение, а дальше разделяется на множество веточек (этим обусловлено его название, «дендрон» с древнегреческого – дерево). Дендрит – это короткий отросток и необходим для трансляции импульса к соме.

По количеству отростков нейроциты делятся на:

  • униполярные (есть только один отросток, аксон);
  • биполярные (присутствует и аксон, и дендрит);
  • псевдоуниполярные (от некоторых клеток в начале отходит один отросток, но затем он делится на два и по сути является биполярным);
  • мультиполярные (имеют множество дендритов, и среди них будет лишь один аксон).

Мультиполярные нейроны превалируют в организме человека, биполярные встречаются только в сетчатке глаза, в спинномозговых узлах – псевдоуниполярные. Монополярные нейроны вовсе не встречаются в организме человека, они характерны только для малодифференцированной нервной ткани.

Нейроглия

Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.


Макроглия:

Эпендимоциты – образуются из глиобластов нервной трубки, выстилают канал спинного мозга.

Астроциты – звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.

Олигодендроциты – основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.

Нейролемоциты – клетки Шванна, их задача образование миелина, электрическая изоляция.

Микроглия – состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.

Нервные волокна — это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм. Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с.

Нейроны подразделяются за функциональными возможностями:

  • Афферентные – то есть чувствительные, принимают раздражение и способны генерировать импульс;
  • ассоциативные — выполняют функцию трансляции импульса между нейроцитами;
  • эфферентные — завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.

Вместе они формируют рефлекторную дугу , которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.

Синапс состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.

Химический состав нервной ткани

Вода содержится в значительном количестве в коре головного мозга, меньше ее в белом веществе и нервных волокнах.

Белковые вещества представлены глобулинами, альбуминами, нейроглобулинами. В белом веществе мозга и аксонных отростках встречается нейрокератин. Множество белков в нервной системе принадлежит медиаторам: амилаза, мальтаза, фосфатаза и др.

В химический состав нервной ткани входят также углеводы – это глюкоза, пентоза, гликоген.

Среди жиров обнаружены фосфолипиды, холестерол, цереброзиды (известно, что цереброзидов нет у новорожденных, их количество постепенно вырастает во время развития).

Микроэлементы во всех структурах нервной ткани распределены равномерно: Mg, K, Cu, Fe, Na. Их значение очень велико для нормального функционирования живого организма. Так магний участвует в регуляции работы нервной ткани, фосфор важен для продуктивной умственной деятельности, калий обеспечивает передачу нервных импульсов.

Нервные клети взаимодействуют между собой посредством специальных химических передатчиков, называемых нейротрансмиттерами. Лекарственные препараты, в том числе запрещенные, могут подавлять активность этих молекул. Нервные клетки не имеют непосредственного контакта между собой. Микроскопические пространства между участками клеточных мембран - синаптические щели - разделяют нервные клетки и способны как испускать сигналы (пресинаптический нейрон) так и воспринимать их (гюстсинаптический нейрон). Наличие синаптической щели обозначает невозможность прямой передачи электрического импульса от одной нервной клетки к другой. В момент, когда импульс достигает синаптического окончания, резкое изменение разности потенциалов приводит к открытию каналов, через которые ионы кальция устремляются внутрь пресинаптической клетки. Нервные клетки человека, описание, характеристика - наша тематика публикации.

1 65550

Фотогалерея: Нервные клетки человека, описание, характеристика

Выделение нейротрансмиттеров

Кальциевые ионы воздействуют на везикулы (маленькие, окруженные мембраной пузырьки содержащие химические передатчики - нейротрансмиттеры) нервного окончания которые приближаются к пресинаптической мембране и сливаются с ней, высвобождая щель Молекулы нейротрансмиттера диффундируют (проникают). После взаимодействия нейротрансмиттера со специфическим рецептором на постсинаптической мембране он быстро высвобождается и дальнейшая его судьба двояка. С одной стороны, возможно его полное разрушение под действием ферментов, находящихся в синаптической щели, с другой - обратный захват в пресинаптические окончания с формированием новых везикул. Этот механизм обеспечивает краткосрочность действия нейротрансмиттера на рецепторную молекулу. Некоторые запрещенные препараты, например кокаин, а также некоторые из применяемых в медицине веществ предотвращают обратный захват нейротрансмиттера (в случае с кокаином допамина). При этом удлиняется период воздействия последнего на рецепторы постсинаптической мембраны, что вызывает гораздо более мощный стимулирующий эффект.

Мышечная активность

Регуляция мышечной активности осуществляется нервными волокнами, которые отходят от спинного мозга и заканчиваются нервно-мышечным соединением. При поступлении нервного импульса происходит высвобождение из нервных окончаний нейротрансмиттера ацетилхолина. Он проникает через синаптическую щель и связывается с рецепторами мышечной ткани. Это запускает каскад реакций, приводящих к сокращению мышечных волокон. Таким образом центральная нервная система контролирует сокращения определенных мышц в любой момент времени. Этот механизм лежит в основе регуляции таких сложных движений, как, например, ходьба. Головной мозг представляет собой исключительно сложную структуру; каждый из его нейронов взаимодействует с тысячами других, разбросанных по всей нервной системе. Поскольку нервные импульсы не различаются между собой по силе, кодирование информации в головном мозге осуществляется на основе их частоты, то есть имеет значение количество потенциалов действия, генерируемое за одну секунду. В некотором роде этот код напоминает азбуку Морзе. Одна из самых сложных задач, которая стоит сегодня перед учеными-неврологами всего мира, - это попытка понять, как же в действительности работает эта относительно простая система кодирования; например как объяснить эмоции человека при смерти родственника или друга или способность бросать мяч с такой точностью, что он попадает в цель с расстояния 20 метров. В настоящее время становится очевидным, что информация не передается линейно от одной нервной клетки к другой. Напротив, один нейрон может одновременно воспринимать нервные сигналы от множества других (этот процесс называется конвергенцией) а также способен воздействовать на огромное количество нервных клеток, дивергенция.

Синапсы

Существует два основных вида синапсов: в одних происходит активация постсинаптического нейрона, в других - его угнетение (в значительной степени это зависит от типа выделяемого трансмиттера). Нейрон испускает нервный импульс, когда количество возбуждающих стимулов превышает число тормозящих.

Сила синапсов

Каждый нейрон получает огромное количество как возбуждающих, так и тормозящих стимулов. При этом каждый синапс имеет больший или меньший эффект на вероятность возникновения потенциала действия Синапсы обладающие наибольшим, влиянием обычно расположены вблизи зоны Армирования нервного импульса в теле нервной клетки.

В основе современного представления о структуре и функции ЦНС лежит нейронная теория.

Нервная система построена из двух типов клеток: нервных и глиальных, причем число последних в 8 - 9 раз превышает число нервных. Однако, именно нейроны обеспечивают все многообразие процессов, связанных с передачей и обработкой информации.

Нейрон, нервная клетка, является структурно-функциональной единицей ЦНС. Отдельные нейроны, в отличие от других клеток организма, действующих изолированно, «работают» как единое целое. Их функции состоит в передаче информации (в форме сигналов) от одного участка нервной системы к другому, в обмене информацией между нервной системой и различными участками тела. При этом передающие и принимающие нейроны объединены в нервные сети и цепи.

3
В нервных клетках происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.

Нейроны обладают рядом признаков, общих для всех клеток тела. Независимо от своего местонахождения и функций, любой нейрон, как всякая другая клетка, имеет плазматическую мембрану, определяющую границы индивидуальной клетки. Когда нейрон взаимодействует с другими нейронами, или улавливает изменения в локальной среде, он делает это с помощью мембраны и заключенных в ней молекулярных механизмов. Стоит отметить, что мембрана нейрона обладает значительно более высокой прочностью, чем другие клетки организма.

Все, что находится внутри плазматической мембраны (кроме ядра), называется цитоплазмой. Здесь содержатся цитоплазматические органеллы, необходимые для существования нейрона и выполнения им своей работы. Митохондрии обеспечивают клетку энергией, используя сахар и кислород для синтеза специальных высокоэнергетических молекул, расходуемых клеткой по мере надобности. Микротрубочки - тонкие опорные структуры - помогают нейрону сохранять определенную форму. Сеть внутренних мембранных канальцев, с помощью которых клетка распределяет химические вещества, необходимые для ее функционирования, называется эндоплазматическим ретикулумом.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...