Способ очистки возгонкой проводится для веществ. Методы очистки и определения чистоты веществ

Некоторые твердые вещества при нагревании способны активно испаряться до достижения температур их плавления. Обратный переход паров в твердое состояние происходит сразу, минуя жидкую фазу. Такой процесс называется возгонкой или сублимацией и применяется для очистки веществ.

Возгонка, даже однократная, как правило, приводит к получению вполне чистого продукта и нередко заменяет несколько перекристаллизации. Она может быть использована как для окончательной очистки продукта, так и для предварительного отделения летучего соединения от нелетучих примесей. От перекристаллизации возгонка выгодно отличается также более высоким выходом чистого продукта (98-99%).

С другой стороны, возгонка - весьма длительный процесс, поэтому его обычно используют для очистки небольших количеств веществ. Область применения этого метода ограничена также тем, что способность многих твердых соединении сублимироваться столь ничтожна, что не может быть использована для препаративных целей.

Поскольку скорость испарения пропорциональна общей площади поверхности испарения, подвергаемое возгонке вещество необходимо как можно тоньше измельчать. Не следует также допускать плавления вещества при возгонке, поскольку это ведет к падению скорости процесса вследствие резкого уменьшения поверхности вещества.

Применение разрежения, так же как и при перегонке, снижает температуру, при которой вещества начинают возгоняться, поэтому под вакуумом удается сублимировать многие трудполетучие соединения.

При выборе приборов для возгонки следует отдавать предпочтение конструкциям, в которых расстояние между возгоняемым веществом и поверхностью конденсации минимально. С уменьшением этого расстояния возрастает скорость возгонки.


Рис. 81. Приборы (а, б) для возгонки с конденсацией паров на охадаемых поверхностях.



Рис. 82. Простейший прибор для возгонки: 1 - фарфоровая чашка с веществом; 2 - стеклянная воронка; 3- кружок фильтровальной бумаги с отверстиям; 4 - песчаная баня; 5 - вата.

Для сублимации небольших количеств легко возгоняющихся веществ может быть использован про- стсйшпй прибор, состоящий кз фарфоровой чашки, часового стекла и обычной химической воронки (рис. 80). Возгоняемое вещество нагревают на песчаной бане; возгон собирается на холодных стенках воронки, откуда его следует периодически счищать. Чтобы кристаллы возгона не падали обратно в чашку, вещество накрывают кружком фильтровальной бумаги или асбеста, проколов в нем несколько отверстий.


Рис. 82. Прибор для возгонки небольших количеств веществ в вакууме.

Во многих случаях предпочтительнее проводить конденсацию на охлаждаемую поверхность. Из всех предложенных для этой цели приборов наиболее простыми и в то же время обеспечивающими минимальное расстояние до поверхности конденсации являются приспособления, изображенные на рис. 81.

Обычно применяемый прибор для возгонки небольших количеств веществ в вакууме приведен на рис. 82. К его недостаткам относится необходимость периодического отключения вакуума и разборки прибора для соскабливания возгона.

В вакуум-сублиматоре, изображенном на рис. 83, возгон собирается в горизонтально расположенном холодильнике с достаточно широкой внутренней трубкой. Во избежание преждевременной конденсации продукта колбу с возгоняемым веществом по самое горло погружают в нагретую до нужной температуры жидкостную баню. Небольшой ток воздуха или инертного газа, подаваемый в" колбу через капилляр, способствует эффективному отводу паров от поверхности испарения, что резко повышает производительность прибора.

Для предотвращения уноса мельчайших частиц вещества с током газа в отводное горло колбы целесообразно впаять пористую стеклянную перегородку, однако при небольшом расходе газа эта мера не обязательна.



В зависимости от свойств очищаемого вещества и его количества можно изменять конструкцию отдельных частей прибора, не меняя принципа его действия. Так, различными могут быть форма колбы и способ ее обогрева. В качестве конденсатора для сублимации больших количеств вещества очень удобна охлаждаемая снаружи двухгорлая колба.

Цель занятия: Ознакомления с основными методами очистки веществ, в частности, с фильтрованием под обычным давлением (простым и складчатым фильтром), горячим, под вакуумом.

План занятия:

1. Закрепить знания и навыки по основным методам очистки веществ.

2. По заданию преподавателя провести очитку загрязненной соли методом фильтрования.

Материалы и оборудование: стаканы, стеклянные палочки, плоскодонные и конические колбы, воронки, штатив, фильтровальная бумага, раствор поваренной соли, песок.

Лабораторный практикум

Для очистки веществ в зависимости от агрегатного состояния применяются различные методы. Очистка твердых веществ обычно осуществляется двумя методами: перекристаллизацией и возгонкой, жидкостей - фильтрованием и перегонкой, газов - поглощением примесей различными химическими реагентами.

Для отделения (очистки) жидкостей от нерастворимых твердых веществ применяется фильтрование. Фильтрование осуществляется путем пропускания жидкости через пористые материалы - фильтры.

В качестве фильтрующих материалов могут быть использованы кварцевый песок, асбест, стеклянная вата, фарфоровые пластинки (тигли Гуча), прессованное стекло (тигли Шотта), текстильные ткани, вата, бумажные фильтры (фильтровальная бумага различной платности).

Выбор фильтрующего материала зависит от свойств фильтруемой жидкости, размеров твердых частиц. В лаборатории чаще всего используют бумажные

фильтры - простые или складные. Простой фильтр применяется тогда, когда осадок необходим для дальнейшей работы. Простой фильтр готовят из квадратного листа бумаги, соответствующего по размерам ворони, складывают его пополам (рис. 33), как показано пунктирной линией и еще раз пополам

Внешние углы обрезают по дуге с таким расчетом, чтобы край фильтра был ниже края воронки на 0,5-1 см. Отворачивают одну четвертую часть сложенного фильтра и вставляют в

воронку, прижимают пальцами к стенкам воронки, смачивая дистиллированной водой. Необходимо, чтобы фильтр плотно прилегал к станкам воронки.

Складчатый фильтр. Внимательно ознакомьтесь с изготовлением складчатого фильтра. Проверьте правильность ваших умений по изготовлению складчатого фильтра у преподавателя.

Для легко фильтрующихся жидкостей применяется фильтрование под обычным давлением, трудно фильтруемых - фильтрование под вакуумом. Для вязких жидкостей и насыщенных растворов горячее фильтрование.

Для фильтрования под обычным давлением собирают прибор. Когда жидкости останется немного, осадок взбалтывают и переносят на фильтр. Жидкость, прошедшая через фильтр, называется фильтратом или маточным раствором. Остатки осадка смывают на фильтр дистиллированной водой из промывалки.

Промывание осадков производится водой или специальным растворителем, наливая его небольшими порциями, дают раствору полностью стечь и только после этого наливают следующую порцию. После 4-5 промывок проверяют качественно полноту отмывки от тех или иных примесей. Для этого в чистую пробирку отбирают несколько капель вытекающей жидкости и проводят реакцию на отмываемый ион (например, ион Сl – AgNO 3 ; ион SO 4 – ВаСl 2). Появление мути требует дальнейшего промывания осадка. Промывную жидкость собирают отдельно от основного фильтрата.

Для отделения и промывания труднорастворимых и медленно фильтрующихся осадков применяется метод декантации. До начата фильтрования образовавшемуся осадку дают осесть на дно сосуда. Осветленный раствор осторожно сливают с осадка на фильтр. К осадку вновь приливают растворитель, перемешивают, дают раствору отстояться. Жидкость снова сливают, а к осадку приливают растворитель и так повторяют несколько раз. Затем осадок переносят на фильтр для дальнейшей промывки.

Задание. Собрать прибор для фильтрования под обычным давлением. Ознакомиться со штативом и его сборкой. Отфильтровать по заданию преподавателя 50 мл

взвеси - песок вода, глина - вода. Освоить методик количественного перенесения осадка, пользуясь палочкой и промывалкой.

Для более быстрого отделения твердых веществ от жидкости применяют фильтрование под вакуумом. Фильтрование под уменьшенным давлением производится в приборе, который состоит из толстостенной колбы Бунзена (1) с боковым отростком и вставленной в нее, с помощью резиновой пробки, фарфоровой воронки Бюхнера (2) с решетчатым дном. На дно воронки помешают два фильтра один по диаметру дна воронки, а другой на 0,5 см больше первого. Обрезав по контуру воронки, фильтр окончательно подгоняют к воронке. Меньший фильтр кладется на дно воронки, смачивается водой и прижимается к дну воронки, а сверху кладется второй фильтр, края которого расправляются по стенкам воронки. Разряжение создается с помощью насоса. Прибор присоединяют к насосу для того, чтобы

фильтры плотно присосались к дну и стенкам воронки, затем прибор отключают. В воронку Бюхнера при помощи стеклянной палочки, наливают раствор с осадком, после чего прибор присоединяют к насосу через предохранительную склянку. Разряжение в колбе следует создавать постепенно по мере накопления осадка. Осадок на фильтре следует отжать.

После окончания фильтрования колбу следует отсоединить от предохранительной склянки и только после этого закрыть водопроводный кран.

Для извлечения осадка из воронки ее вынимают из колбы, переворачивают на лист фильтровальной бумаги и, ударяя рукой по воронке, удаляют осадок. Вместо воронки Бюхнера для этих же целей можно пользоваться тиглями Гуча или стеклянными воронками Шотта с различным диаметром пор.

Лапание По указанию преподавателя собрать прибор с воронкой Бюхнера и стеклянной воронкой Шотта. Ознакомиться с работой водоструйного или др. насоса.

Вопросы и задания

1. Для чего служит фильтрование?

2. Зачем используются простые и складчатые фильтры?

3. Назовите материалы из которых сделаны фильтры?

4. Методика фильтрования при обычном давлении.

5. Методика фильтрования под вакуумом.

6. Темы рефератов

7. Опыты, доказывающие сложность строения атома.

8. Попытки систематизации элементов. Открытие периодического закона.

Задачи и упражнения для СРС

Н.Л.Глинка Задачи и упражнения по общей химии. 140-164 задачи и вопросы. Стр.37-39.

Лабораторная работа №3

Тема:Основные приемы работы в химической лаборатории. Весы. Взвешивание

Цель занятия: освоить основные приемы работы в химической лаборатории и овладеть техникой взвешивания Познакомиться с различными видами весов.

План занятия:

1. Ознакомится с работой технических, технохимических, аналитических, электронных весов.

2. По заданию преподавателя провести взвешивание необходимого количества вещества.

Материалы и оборудование: технические весы, технохимические весы, аналитические весы, электронные весы, разновесы.

Лабораторный практикум

Взвешиванием на рычажных весах называют сравнение массы данного тела с массой гирь, масса которых известна и выражена в определенных единицах (мг, г, кг и др.). Весы являются важнейшим прибором в химической лаборатории, так как почта ни одна работа в ней не обходится без определения массы того или иного вещества или тары, в которую помешают взвешиваемое вещество.

Для взвешивания веществ с точностью до 0,01 г применяют техно-химические весы (рис.1)

Рис. 1. Техно-химические весы и разновес (1 - колонка, 2-аррегир, 3 - чашки весов, 4 - стрелка, 5 шкала, 6 отвес, 7 - винты для установки весов в горизонтальном положении, 8 - коромысло, 9 - винты для уравновешивания пустых чашек весов)

Принцип устройства техно-химических и аналитических весов один и тог же. На металлическом коромысле (равноплечий рычаг) имеются три призмы: два на концах и одна посередине его (рис. 2).Средняя призма покоится на пластинке, находящейся на центральной колонке весов и являющейся точкой опоры. В аналитических весах пластинка сделана из агата. На боковых призмах лежат пластинки, к которым подвешиваются чашки весов. Коромысло снабжено длинной стрелкой, которая показывают на шкале величину отклонения коромысла от горизонтального положения. При горизонтальном положении коромысла стрелка находится на нулевом делении шкалы.

Перед взвешиванием необходимо установить весы по отвесу. Переносить или сдвигать весы с места после установки не разрешается. Прежде чем приступить к взвешиванию, необходимо проверить весы. Для этого плавным поворотом винта, приподнимающего и опускающего коромысло (арретир), весы приводят в рабочее положение и наблюдают за качанием стрелки в ту и другую сторону от среднего деления шкалы, находящейся в нижней части весов. Если при этом стрелка отклоняется от средней линии шкалы на равное число делений в обе стороны, или же в одну сторону на 1-2 деления больше, чем в другую, то весы можно считать пригодными к работе. По окончании проверки весы необходимо арретировать, т.е, перевести в нерабочее положение обратным поворотом арретира.

При взвешивании необходимо соблюдать следующие правила:

Ставить предметы и разновесы на чашки весов, снимать их оттуда, касаться чем бы то ни было рабочей части весов можно только после того, как весы полностью арретированы.

Не ставить на чашку весов горячих, мокрых или грязных предметов. При работе с жидкостями ни в коем случае не допускать попадания жидкости на весы и разновесы.

Взвешиваемый предмет помещать на левую чашку весов, а разновесы на правую.

Не класть взвешиваемое вещество непосредственно на чашку весов. Твердые вещества взвешивать на часовых (вогнутых) стеклах, в бюксах, в тиглях или на листочках глянцевой бумаги.

Разновесы брать только пинцетом и при снятии с весов класть их в те гнезда, откуда они были взяты. Ни в коем случае разновесы не класть на стол,

Сначала надо взять разновес, приблизительно соответствующий весу предмета Если разновес оказался больше необходимого, то нужно взять следующий за ним и т.д., до тех пор, пока не будет достигнуто равновесие, т.е. приблизительно такое отклонение стрелки в обе стороны от середины шкалы, какое было перед взвешиванием.

Подсчитав общий вес разновесов, записать его в рабочую тетрадь. Не записывать величину навески на отдельных листах, клочках бумаги.

Не брать гири из другого набора разновесов.

При последовательных взвешиваниях одного или различных предметов, которые производятся в связи с одной работой, следует пользоваться одними и теми же весами и разновесами.

После взвешивания весы обязательно арретировать. Навесах ничего не оставлять.

Каждое взвешивание неизбежно сопровождается ошибкой. Поэтому в целях нахождения веса, возможно более приближающегося к истинному, необходимо произвести 4-5 взвешиваний. При последовательных взвешиваниях предмет с весов каждый раз не снимать. Одно взвешивание отделяется от другого только аррегированием весов.

Допускаемую при взвешивании ошибку можно выразить в виде средней квадратичной ошибки. Расчет средней квадратичной ошибки производится следующим образом. Допустим, что произведено 1,2,3... взвешиваний и получены следующие результаты:

а 1 , а 2 ,.. а п

находим среднее арифметическое из этих значений

Средняя квадратичная ошибка 6 определяется следующим выражением

Таким образом, вес предмета равен: А = а ± 6

Задание, Произвести взвешивание натехно-химических весах двух небольших предметов, взятых у лаборанта (весом от 1 до 100 г), с точностью до 0,01 г. Определить среднюю квадратичную ошибку взвешиваний.

Вопросы и задания

1. Общие правила работы в химической лаборатории.

2. Устройство весов. Точность весов. Методика взвешивания.

3. Ошибки при взвешивании. Среднеквадратичная ошибка взвешивания.

Задачи и упражнения для СРС

Н.Л.Глинка Задачи и упражнения по общей химии. Л» 99-114 задачи и вопросы. Стр.26-27.

Лабораторная работа № 4

Тема: Возгонка.

Цель занятия: Ознакомление с методами очитки веществ: возгонкой, перегонкой, перекристализацией.

Материалы и оборудование: круглодонные колбы, стаканы, воронки, штатив, горелка, ступка, фарфоровая чашка, йод.

Лабораторный практикум

При обычных условиях йод твердое вещество с молекулярной кристаллической решеткой. Когда молекулы улетучиваются с поверхности твердого вещества - это называется возгонкой. И при испарении, и при возгонке получаются пары. Фиолетовый дым - это пары йода, на наших глазах при легком нагревании происходит возгонка йода: переход из твердого состояния в газообразное, минуя жидкое. Пары йода поднимаются и оседают на более холодных стенках пробирки в верхней ее части. Здесь снова образуется твердый йод. Твердый йод становится жидким при 113°С, жидкий йод закипает при 184 ◦ С.

Задание: По указанию преподавателя к 6 массовым частям технического I 2 добавить 2 ч СаО и 1 ч KI, смесь растереть в ступке. На дно стакана помещают техническийиод, подлежащий отчистке. Стакан накрывают круглодонной колбой, заполненной холодной водой, ставят на песочную баню и включают нагрев.

Лабораторная работа №5

1. ЦЕЛЬ РАБОТЫ

Цель работы – ознакомление с основными приемами работы в лаборатории органической химии , лабораторными приборами и посудой, методами выделения и очистки органических веществ.

2. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

МЕТОДЫ ОЧИСТКИ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Фильтрование

Фильтрование проводят для отделения осадка от жидкой фазы при разделении веществ, их очистке, при промывании осадка и т. д.

Для отделения твердых частиц от жидкости в простейшем случае сливают жидкость с осадка (способ декантации), в других случаях используют фильтрование через воронку с фильтром. Эффективность фильтрования зависит от пористости фильтра, а также от перепада давления по обе стороны от фильтра. Фильтры изготавливаются чаще всего из различных сортов фильтровальной бумаги, стеклоткани, пористого стекла и фторопласта.

Для простого фильтрования используют воронку со складчатым фильтром.

Более эффективное фильтрование проводят под вакуумом , для чего обычно используют два типа фильтровальных воронок: "воронки Шотта" с пористой стеклянной пластинкой и воронки Бюхнера, снабженной хорошо подогнанным бумажным фильтром, соединенные с колбой Бунзена.

Бумажный фильтр предварительно смачивают на воронке растворителем, который затем отсасывают. После этого раствор с кристаллами переносят на бумажный фильтр. Отсасывание маточной жидкости обеспечивается водоструйным насосом, подключенным к колбе Бунзена через предохранительную склянку. Необходимая скорость фильтрования достигается регулировкой струи воды в водоструйном насосе, который создает пониженное давление в колбе Бунзена.


Для удаления остатков маточного раствора влажные кристаллы промывают несколькими порциями минимального количества растворителя при аккуратном перемешивании кристаллов. Иногда осадок на фильтре только пропитывают растворителем, и затем включают вакуум для его отсасывания.

Кристаллы на фильтре отжимают от растворителя плоской стороной стеклянной пробки, далее осадок направляют на высушивание.

Высушивание

Под высушиванием понимают процесс освобождения вещества в любом агрегатном состоянии от примесей какой-либо жидкости, чаще всего воды, как растворителя.

Высушивание жидкостей проводят, используя вещества, способные поглощать воду – осушители. При этом осушители не должны взаимодействовать с осушаемым веществом и растворителем, растворяться в них, а также вызывать окисление, полимеризацию или другие нежелательные процессы. Осушитель должен быть максимально эффективным, т. е. обеспечивать наиболее быстрое и полное удаление из системы жидких примесей.

Перечень веществ, используемых в качестве осушителей органических жидкостей, и их целевое назначение даны в таблице 1.1. Для проведения высушивания органический раствор встряхивают с небольшим количеством осушителя (до 3% от массы раствора), образующийся водный раствор осушителя сливают. Процесс повторяют до тех пор, пока кристаллы осушителя не перестанут расплываться в органическом растворе.

Высушивание твердых веществ от легколетучих примесей проводят на воздухе или при оптимальной температуре в сушильном шкафу. Для высушивания в вакууме используют вакуум-эксикаторы, обычно таким образом сушат гигроскопические соединения.

Таблица 1.1 − Вещества-осушители для органических жидкостей и растворов

Осушитель

Что можно сушить

Что нельзя сушить

Углеводороды, их галогенопроизводные, простые и сложные эфиры, альдегиды, кетоны, нитросоединения и растворы веществ, чувствительных к различным воздействиям

Углеводороды и их галогенопроизводные, простые эфиры, нитросоединения

Спирты, фенолы, альдегиды, кетоны, кислоты, амины, амиды, сложные эфиры

Амины, кетоны, спирты

Вещества с кислотными свойствами

Амины, простые эфиры, углеводороды

Альдегиды, кетоны, кислоты

Углеводороды, простые эфиры, третичные амины

Галогенопроизводные углеводородов, спирты, кислоты (Опасность взрыва!)

Н2SО4 (конц.)

Нейтральные и кислые вещества

Ненасыщенные углеводороды, спирты, кетоны, основания

Углеводороды и их галогенопроизводные, растворы кислот

Основания, спирты, простые эфиры

Молекулярные сита (алюмосиликаты Na, Ca)

Применяются для высушивания растворителей. Регенерируется нагреванием в вакууме при 150-300оС

Ненасыщенные углеводороды

Перекристаллизация

Прибор для перекристаллизации малых количеств вещества. 1 - стаканчик с кипящим растворителем; 2 - воронка; 3 - складчатый фильтр; 4 - пробирка для отсасывания; 5 - стеклянный «гвоздик»; 6 - фильтр.

Перекристаллизация является простейшим методом разделения и очистки твердых веществ.

Метод кристаллизации состоит из следующих стадий: растворение твердого вещества в минимальном объеме кипящего растворителя (приготовление насыщенного раствора); фильтрование горячего раствора для удаления нерастворимых примесей (если они присутствуют); охлаждение раствора с образованием кристаллов; фильтрование кристаллов от маточного раствора и их высушивание.


Для успешной кристаллизации чрезвычайно важным является правильный выбор растворителя. В растворителе очищаемое вещество должно легко растворяться при нагревании и практически не растворяться на холоду, а также в нем должны хорошо растворяться примеси. Общая закономерность растворимости – "подобное растворяется в подобном " , т. е. полярные соединения более растворимы в полярных растворителях, чем в неполярных, и наоборот.

После горячего фильтрования насыщенный раствор медленно охлаждают до комнатной температуры, а затем помещают в холодильник для образования кристаллов. Часто для ускорения процесса кристаллизации потирают стеклянной палочкой с острыми краями по внутренней стенке колбы на уровне жидкости, что приводит к образованию неровностей на стеклянной поверхности, которые служат центрами роста кристаллов. После охлаждения образовавшиеся кристаллы отделяют от маточного раствора фильтрованием, промывают и сушат.

Возгонка

Прибор для возгонки: 1 -часовое стекло; 2- стакан; 3 - термометр; 4- песочная баня.

Возгонка заключается в испарении вещества при нагревании ниже его температуры плавления с последующей конденсацией паров на охлажденной поверхности. Очистка твердого вещества возгонкой возможна только в том случае, если давление его паров выше, чем давление паров примесей. Когда давление паров твердого вещества соответствует приложенному давлению, получают наилучшие результаты. Например, стильбен возгоняют при температуре 100°С и давлении 20 мм рт. ст.

Возгонку проводят в вакууме в приборе сублиматоре или при атмосферном давлении в фарфоровой чашке, закрытой сверху фильтром с многочисленными проколотыми иголкой дырочками и стеклянной воронкой. Перед сублимацией из очищаемого вещества удаляют растворители и другие летучие продукты во избежание загрязнения сублимата.

Перегонка

летучие" растворители с температурой кипения до 100°С при температуре бани 50-60°С.

Простейшая перегонка является эффективной только в том случае, если компоненты разделяемой смеси отличаются по температурам кипения не менее чем на 60°С. Во всех других случаях вещества подвергают фракционированной перегонке с использованием разного типа перегонных колонн (ректификация). Простейшей колонкой может служить полая трубка или елочный дефлегматор Вигре.

При атмосферном давлении обычно перегоняют вещества с температурами кипения от 40°С до 180°С, жидкости с температурой кипения меньше 40°С перегоняются с большими потерями. При более высокой температуре кипения возникает опасность термического разложения вещества, и его перегоняют в вакууме, поскольку при снижении давления температура кипения понижается.

Экстракция

Прибор для экстракции: 1 - делительная воронка; 2 - жидкость с большей плотностью; 3 - жидкость с меньшей плотностью; 4- пробка, 5 - лапка, 6 и 7 - приемники.

Экстракция – это способ извлечения одного или нескольких компонентов смеси или их разделение путем перевода из одной фазы в другую.

Твердофазная экстракция (экстрагирование) заключается в извлечении органических соединений из твердых тел с помощью обработки органическим растворителем – экстрагентом, в жидкофазной экстракции одна фаза является, как правило, водным раствором, другая – органическим. Экстрагент должен иметь минимальную растворимость в воде и быть селективным в отношении экстрагируемого вещества.

Обычно экстракцию проводят из водной (нейтральной, кислой, основной) фазы растворителем, не смешивающимся с водой (например, дихлорметан, хлороформ, эфиры и др.). В случае полярных продуктов (например, спирты, карбоновые кислоты, амины) водную фазу перед экстракцией насыщают хлористым натрием (высаливание).

МЕТОДЫ ИДЕНТИФИКАЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Определение показателя преломления жидкости

Показатель преломления вещества относится к важнейшим физическим константам и используется для идентификации веществ и проверки их чистоты. Показатель преломления определяется природой вещества и длиной волны падающего света и является постоянной величиной для данного вещества. Чаще всего показатель преломления определяется при 20°С для D линии натрия (589 нм), что и отражается обозначением nD. Для жидких органических веществ показатель преломления уменьшается с ростом температуры и обычно колеблется от 1,3 до 1,8.

При падении луча света на границу раздела двух прозрачных однородных сред часть его отражается под углом, равным углу падения a, а часть - преломляется под углом b. Согласно закону преломления отношение синуса угла падения к синусу угла преломления есть постоянная величина, называемая относительным показателем (или коэффициентом) преломления второго вещества по отношению к первому:

Для определения показателя преломления используют рефрактометры.

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциально-термического анализа (ДТА) иди дифференциально-сканирующей калориметрии (ДСК).

Справочная литература" href="/text/category/spravochnaya_literatura/" rel="bookmark">справочной литературе данные о растворимости указанного вещества в данном растворителе при комнатной температуре и нагревании, проводят расчет объема растворителя, необходимого для перекристаллизации 2 г загрязненного образца. Оставляют 0,1 г образца для определения температуры плавления.

2. Помещают образец в стакан, добавляют рассчитанное количество растворителя и нагревают до полного растворения твердой фазы при перемешивании. Далее стакан снимают с плитки, охлаждают содержимое до комнатной температуры на рабочем столе, а по мере необходимости – в холодильнике.

3. Выпавший осадок отделяют фильтрованием через бумажный фильтр, затем фильтр с осадком подсушивают на воздухе.

4. Собирают с фильтра кристаллы на предварительно взвешенное часовое стекло, подсушивают их в сушильном шкафу и взвешивают.

Опыт 2. Очистка вещества методом возгонки.

1. Получают у преподавателя загрязненное вещество (нафталин, бензойную кислоту), взвешивают его. Оставляют 0.1 г исходного вещества для определения температуры плавления. Находят по справочнику температуру плавления чистого вещества.

2. Небольшую фарфоровую чашку покрывают листом фильтровальной бумаги с мелкими проколами (20-30 отверстий) и плотно прижимают фильтровальную бумагу опрокинутой стеклянной воронкой, отверстие которой закрыто ватой.

3. Фарфоровую чашку с образцом помещают на электроплитку и осторожно нагревают до температуры ниже его температуры плавления на 10-20°С. Нагревание проводят до образования кристаллов на поверхности стеклянной воронки.

4. Прекращают нагревание установки, осторожно охлаждают, собирают кристаллы и их взвешивают. Определяют температуры плавления образцов до и после перекристаллизации. Сравнивают полученные данные со справочными.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

1. В лабораторном журнале приводят теоретические сведения по данной теме.

2. Записывают ход выполнения опытов 1 и 2.

3. Выписывают справочные данные и делают необходимые вычисления.

4. Результаты помещают в таблицу 1.2.

Таблица 1.2 − Сводная таблица результатов экспериментов.

техники безопасности , которые следует выполнять при работе с органическими веществами.

2. Показатель преломления бензола, определенный экспериментально, оказался равным 1,521. Является ли вещество чистым? Каким способом его можно очистить?

3. Какие вещества-осушители вы знаете? Какие из этих веществ можно использовать для высушивания ксилола?

4. Приведите пример применения экстракции.

5. На основании справочных данных о температурах кипения гептана и октана объясните, почему смесь этих веществ нельзя разделить перегонкой.

Вещество, название, химическая формула

Константы

(справочные данные):

плотность, Тпл

Масса загрязненного вещества, г

Масса вещества после очистки, г

Объем раствори-теля, мл

Температура возгонки или плавления, °С

Очистка растворимых солей методом перекристаллизации . Метод перекристаллизации основан на различной зависимости растворимости веществ и загрязняющих его примесей от температуры. Очистку вещества методом перекристаллизации проводят по следующей схеме: при повышенной температуре готовят насыщенный раствор очищаемого вещества, затем для удаления нерастворимых примесей раствор фильтруют через воронку для горячего фильтрования и охлаждают до низкой температуры. При понижении температуры растворимость вещества понижается и основная часть очищаемого вещества выпадает в осадок, растворимые примеси остаются в растворе, поскольку относительно них раствор остается ненасыщенным. Выпавшие кристаллы отделяют от маточного раствора и высушивают.

В зависимости от свойств очищаемого вещества возможны различные методики проведения перекристаллизации.


Перекристаллизация без удаления растворителя . Метод применяется для солей, растворимость которых сильно зависит от температуры (например, нитрат натрия, алюмокалиевые квасцы, сульфат меди (II) и др.). Раствор после горячего фильтрования охлаждают на воздухе до низкой температуры, выпавшие кристаллы отфильтровывают. Возможно также провести перекристаллизацию без удаления растворителя для солей, растворимость которых мало зависит от температуры. В этом случае применяется метод высаливания. Для этого раствор после горячего фильтрования охлаждают до комнатной температуры и добавляют равный по объему раствор концентрированной соляной кислоты, при этом очищаемое вещество выпадает в осадок.


Перекристаллизация с удалением растворителя . Метод применяется для солей, растворимость которых мало зависит от температуры (например, хлорид натрия и др.). Раствор после горячего фильтрования переносят во взвешенную фарфоровую чашку и упаривают на водяной бане приблизительно до половины объема. Затем раствор охлаждают до комнатной температуры. Выпавшие кристаллы отфильтровывают.

Перекристаллизованное вещество (за исключением хлорида аммония и кристаллогидратов) сушат в сушильном шкафу до постоянной массы. Хлорид аммония и кристаллогидраты высушивают на воздухе. Сухие соли помещают в герметичные склянки.


Очистка летучих веществ методом сублимации (возгонки) . Метод применяется для очистки твердых веществ, способных при нагревании переходить непосредственно из твердой фазы в газообразную, минуя жидкую фазу. Образующийся газ конденсируется охлаждаемой частью прибора. Сублимацию обычно проводят при температуре, близкой к температуре плавления вещества. Метод применим для очистки от примесей, которые не способны возгоняться. Возгонкой можно очистить йод, серу, хлорид аммония.


Очистка жидкостей методом перегонки . Метод основан на том, что каждое вещество имеет определенную температуру кипения. Наиболее простой вариант перегонки - перегонка при обычном давлении, который заключается в нагревании жидкости до кипения и конденсации её паров. Перегонку проводят в приборе, состоящем из колбы Вюрца (или круглодонной колбы с газоотводной трубкой), прямого холодильника, колбы-приемника, аллонжа, термометра и нагревательного прибора. Загрязненную жидкость нагревают в перегонной колбе до температуры кипения, пары отводят в холодильник и собирают сконденсировавшуюся жидкость в приемник.

В лабораторной практике чаще всего применяются следующие методы очистки веществ: перекристаллизация, возгонка и поглощение. Для очистки твёрдых веществ применяется перекристаллизация и возгонка, для очистки газов – поглощение газов-примесей различными веществами.

Перекристаллизация

Очистка перекристаллизацией основывается на изменении растворимости вещества с изменением температуры. Под растворимостью понимают содержание (концентрацию) растворённого вещества в насыщенном растворе. Она обычно выражается или в процентах, или в граммах растворённого вещества на 100 г растворителя. Данные о растворимости некоторых соединений в воде при различной температуре приведены на рис. 2.1 и в приложении. Небольшие количества примесей, часто не поддающиеся определению обычными методами анализа, механически не могут увлекаться кристаллами осадка. При повторных перекристаллизациях можно получить практически чистое вещество. Насыщенный раствор соли, который остаётся после отфильтровывания выпавших кристаллов называется маточным. Чем меньше по размеру выпавшие кристаллы, тем более чистыми они получаются, так как в этом случае они меньше захватывают маточного раствора, содержащего примеси других веществ. Уменьшению этих примесей содействует промывание кристаллов растворителем после отделения их от маточного раствора.

Рис. 2.1. Кривые растворимости

Возгонка

Возгонкой или сублимацией называется непосредственное превращение твёрдого вещества в пар без образования жидкости. Достигнув температуры возгонки, твёрдое вещество без плавления переходит в пар, который конденсируется в кристаллы на поверхности охлаждённых предметов. Возгонка всегда происходит при температуре ниже температуры плавления вещества.

Используя способность ряда вещества (йода, нафталина, бензойной кислоты, нашатыря и др.) к возгонке, легко получить их в чистом виде (если примесь не возгоняется).

В технике и лабораториях возгонка проводится не только при атмосферном, но и при пониженном давлении (вакууме).

Перегонка

Перегонка или дистилляция основана на превращении жидкости в пар с последующей конденсацией пара в жидкость. Этим методом отделяют жидкость от растворённых в ней твёрдых веществ или менее летучих жидкостей. Так, например, с помощью перегонки очищают воду от солей, которые в ней содержатся. В результате получается дистиллированная вода.

Для перегонки небольших количеств жидкости в лабораторных условиях применяют прибор для перегонки (рис. 2.2).

Жидкость закипает тогда, когда давление её пара становится равным внешнему давлению (обычно атмосферному). Чистое вещество при постоянном давлении кипит при строго определённой температуре. Смеси кипят при различных температурах, зависящих от состава. Поэтому температура кипения является характеристикой чистоты вещества. Чем чище вещество, тем меньше разница между температурой кипения вещества и температурой перегонки, при которой оно перегоняется.


Рис. 2.2. Установка для перегонки:

1 – колба Вюрца, 2 – холодильник Либиха, 3 – аллонж, 4 – приёмник

Перегонка, когда дистиллят отбирается при различных интервалах температур и в различных приёмниках, называется дробной или фракционной перегонкой. Жидкости в приёмниках, отобранные в определённых интервалах температур, называются фракциями. Повторяя несколько раз дробную перегонку, можно почти полностью разделить смесь жидкостей и получить компоненты смеси в чистом виде.

Более полному и быстрому разделению смеси жидкостей путём фракционной перегонки благоприятствует применение дефлегматоров или ректификационных колонок. Перегонка с дефлегматором, а также другие приёмы перегонки, как-то: перегонка под уменьшенным давлением – рассматриваются в руководствах и практикумах по органической химии.

Очистка газов

Очистка газов от примесей достигается путём пропускания его через такие вещества, которые поглощают эти примеси. Например, для получения в приборе Киппа углекислого газа наряду с CO 2 выходят примеси: хлористый водород (от соляной кислоты) и пары воды. Если углекислый газ с примесями пропустить сначала через промывалку с водой (для поглощения хлористого водорода), а затем через серную кислоту (для поглощения паров воды), то он получится практически чистым.

Для определения степени чистоты вещества применяются физические и химические методы исследования. К первым относятся: для жидких веществ – определение плотности, температуры кипения, показателя преломления; для твёрдых веществ – определение температуры плавления и ряд других, к вторым методам относятся химические качественные и количественные анализы на содержание примесей.

Абсолютно чистых веществ нет. Применяемые в лабораторных практикумах вещества имеют различную степень чистоты. Максимально допустимое количество примесей в веществе устанавливается государственным стандартом (ГОСТ).

Для лабораторных работ по общей химии и качественному анализу пригодны вещества с маркировкой х.ч. и ч.д.а.

Последние материалы раздела:

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...