Скорость перемещение при движении по окружности. Движение тела по окружности с постоянной по модулю скоростью

На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

Рис. 6. Равномерное движение по окружности

То есть модуль мгновенной скорости не меняется:

Такую скорость называют линейной .

Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

Рис. 7. Векторы скорости

Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

Следовательно, любое криволинейное движение является ускоренным .

Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

Следовательно, оба угла при основании этого треугольника неограниченно близки к :

Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

Подставим полученное выражение для AB в формулу подобия треугольников:

Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

Формула для вычисления периода:

где - полное время вращения; - число оборотов.

2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

Формула для нахождения частоты:

где - полное время вращения; - число оборотов

Частота и период - обратно пропорциональные величины:

3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

Формула для нахождения угловой скорости:

где - изменение угла; - время, за которое произошел поворот на угол .

Важным частным случаем движения частицы по заданной траектории является движение по окружности. Положение частицы на окружности (рис. 46) можно задавать, указывая не расстояние от некоторой начальной точки А, а угол образуемый радиусом, проведенным из центра О окружности к частице, с радиусом, проведенным в начальную точку А.

Наряду со скоростью движения по траектории, которая определяется как

удобно ввести угловую скорость, характеризующую быстроту изменения угла

Скорость движения по траектории называют также линейной скоростью. Установим связь между линейной и угловой скоростями. Длина дуги I, стягивающей угол равна где - радиус окружности, а угол измерен в радианах. Поэтому и угловая скорость со связана с линейной скоростью соотношением

Рис. 46. Угол задает положение точки на окружности

Ускорение при движении по окружности, как и при произвольном криволинейном движении, имеет в общем случае две составляющие: тангенциальную, направленную по касательной к окружности и характеризующую быстроту изменения величины скорости и нормальную, направленную к центру окружности и характеризующую быстроту изменения направления скорости.

Значение нормальной составляющей ускорения, называемой в этом случае (движение по окружности) центростремительным ускорением, дается общей формулой (3) § 8, в которой теперь линейную скорость можно выразить через угловую скорость с помощью формулы (3):

Здесь радиус окружности, разумеется, одинаков для всех точек траектории.

При равномерном движении по окружности, когда значение постоянно, угловая скорость со, как видно из (3), тоже постоянна. В этом случае ее иногда называют циклической частотой.

Период и частота. Для характеристики равномерного движения по окружности наряду с со удобно использовать период обращения Т, определяемый как время, в течение которого совершается один полный оборот, и частоту - величину, обратную периоду Т, которая равна числу оборотов за единицу времени:

Из определения (2) угловой скорости следует связь между величинами

Это соотношение позволяет записать формулу (4) для центростремительного ускорения еще и в таком виде:

Отметим, что угловая скорость со измеряется в радианах в секунду, а частота - в оборотах в секунду. Размерности со и одинаковы так как эти величины различаются лишь числовым множителем

Задача

По кольцевой дороге. Рельсы игрушечной железной дороги образуют кольцо радиуса (рис. 47). Вагончик перемещается по ним, подталкиваемый стержнем который поворачивается с постоянной угловой скоростью вокруг точки лежащей внутри кольца почти у самых рельсов. Как изменяется скорость вагончика при его движении?

Рис. 47. К нахождению угловой скорости при движении по кольцевой дороге

Решение. Угол образуемый стержнем с некоторым направлением, изменяется со временем по линейному закону: . В качестве направления, от которого отсчитывается угол удобно взять диаметр окружности, проходящий через точку (рис. 47). Точка О - центр окружности. Очевидно, что центральный угол определяющий положение вагончика на окружности, в два раза больше вписанного угла опирающегося на ту же дугу: Поэтому угловая скорость со вагончика при движении по рельсам вдвое больше угловой скорости с которой поворачивается стержень:

Таким образом, угловая скорость со вагончика оказалась постоянной. Значит, вагончик движется по рельсам равномерно. Его линейная скорость неизменна и равна

Ускорение вагончика при таком равномерном движении по окружности всегда направлено к центру О, а его модуль дается выражением (4):

Посмотрите на формулу (4). Как ее следует понимать: ускорение все-таки пропорционально или обратно пропорционально ?

Объясните, почему при неравномерном движении по окружности угловая скорость со сохраняет свой смысл, а теряют смысл?

Угловая скорость как вектор. В некоторых случаях угловую скорость удобно рассматривать как вектор, модуль которого равен а неизменное направление перпендикулярно плоскости, в которой лежит окружность. С помощью такого вектора можно записать формулу, аналогичную (3), которая выражает вектор скорости частицы, движущейся по окружности.

Рис. 48. Вектор угловой скорости

Поместим начало отсчета в центр О окружности. Тогда при движении частицы ее радиус-вектор будет только поворачиваться с угловой скоростью со, а его модуль все время равен радиусу окружности (рис. 48). Видно, что вектор скорости направленный по касательной к окружности, можно представить как векторное произведение вектора угловой скорости со на радиус-вектор частицы:

Векторное произведение. По определению векторное произведение двух векторов представляет собой вектор, перпендикулярный плоскости, в которой лежат перемножаемые векторы. Выбор направления векторного произведения производится по следующему правилу. Первый сомножитель мысленно поворачивается в сторону второго, как если бы это была рукоятка гаечного ключа. Векторное произведение направлено в ту же сторону, куда при этом стал бы перемещаться винт с правой резьбой.

Если сомножители в векторном произведении поменять местами, то оно изменит направление на противоположное: Это значит, что векторное произведение некоммутативно.

Из рис. 48 видно, что формула (8) будет давать правильное направление для вектора если вектор со направлен именно так, как показано на этом рисунке. Поэтому можно сформулировать следующее правило: направление вектора угловой скорости совпадает с направлением движения винта с правой резьбой, головка которого поворачивается в ту же сторону, в которую движется частица по окружности.

По определению модуль векторного произведения равен произведению модулей перемножаемых векторов на синус угла а между ними:

В формуле (8) перемножаемые векторы со и перпендикулярны друг другу, поэтому как и должно быть в соответствии с формулой (3).

Что можно сказать о векторном произведении двух параллельных векторов?

Как направлен вектор угловой скорости стрелки часов? Чем различаются эти векторы для минутной и часовоой стрелок?


Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

a ЦС =v 2 / R

Где v – линейная скорость, R – радиус окружности

Рис. 1.22. Движение тела по окружности.

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

1 радиан= l / R

Так как длина окружности равна

l = 2πR

360 о = 2πR / R = 2π рад.

Следовательно

1 рад. = 57,2958 о = 57 о 18’

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Рис. 1.23. Радиан.

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

n = 1 / T

За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

T = 2π / ω

То есть угловая скорость равна

ω = 2π / T = 2πn

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

Угловая скорость

Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращенияT - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Движение по окружности - простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

∆ l = R ∆ φ

Если угол поворота мал, то ∆ l ≈ ∆ s .

Проиллюстрируем сказанное:

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории - предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости - радиан в секунду (р а д с).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → - v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → - v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

a n → = - ω 2 R → .

Здесь R → - радиус вектор точки на окружности с началом в ее центре.

В общем случае ускорение при движении по окружности состоит из двух компонентов - нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 - v 1 - изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Последние материалы раздела:

История происхождения бурят с глубокой древности Древние буряты
История происхождения бурят с глубокой древности Древние буряты

Портал today.mn опубликовал интересную статью о том, сколько всего в мире проживает монголов. По данным монгольских СМИ: Фото: choibalsan.mn В...

Где в промышленности используется никель Из чего состоит никель
Где в промышленности используется никель Из чего состоит никель

Данный металл серебристо-серого цвета относится к переходным - он обладает и щелочными, и кислотными свойствами. Основными достоинствами металла...

Если разделить произведение на один множитель, то получится другой множитель
Если разделить произведение на один множитель, то получится другой множитель

Умножение - это арифметическое действие, в котором первое число повторяется в качестве слагаемого столько раз, сколько показывает второе число....