Шпаргалка основы биологии. Подготовка к огэ по биологии

Биология - это комплекс наук о живой природе , который изучает строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой.

Классификация биологических наук

В настоящее время в состав биологии включают ботанику (растения), зоологию (животные), микробиологию (микроорганизмы), микологию (грибы), систематику, биохимию (химический состав живой материи и химические процессы в ней), цитологию (клетка), гистологию (ткани), анатомию (внутреннее строение), физиологию (процессы жизнедеятельности), эмбриологию (индивидуальное развитие), этологию (поведение), генетику (наследственность и изменчивость), селекцию (выведение организмов с нужными человеку свойствами), биотехнологию (использование живых организмов и биологических процессов в производстве), эволюционное учение (историческое развитие органического мира), палеонтологию (ископаемые останки), антропологию (историческое развитие человека как биологического вида), экологию (популяции, сообщества, биогеоценозы и биосфера).

На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.

Методы биологии

Основными методами биологии являются:

  • сравнительно-описательный,
  • моделирование (создание упрощенных имитаций объекта или явления),
  • мониторинг (систематическое наблюдение, оценка и прогноз изменений состояния объекта),
  • световая и электронная микроскопия,
  • дифференциальное центрифугирование, или фракционирование (разделение частиц под действием центробежной силы),
  • метод меченых атомов, или радиоавтография, и др.

Роль биологии в формировании современной естественнонаучной картины мира, в практической деятельности людей

Биология сыграла немаловажную роль в становлении современной естественнонаучной картины мира , так как она раскрывает механизмы возникновения органического мира из неживых компонентов и его эволюции, доказывает единство его происхождения на основе строения клеток, а также обобщает механизмы наследственности и изменчивости.

Биология вносит существенный вклад в понимание человеком научной картины мира, основанной на систематизации установленных в ходе научных исследований научных фактов и их обобщении до уровня теорий, правил и законов.

Роль биологии в практической деятельности людей . Применение адекватных современных методов научного исследования коренным образом преобразило биологию, расширило её познавательные возможности и открыло новые пути для использования биологических знаний во всех сферах человеческой деятельности. Благодаря достижениям биологии промышленным путём получают медицинские препараты, витамины, биологически активные вещества. Открытия, сделанные в генетике, анатомии, физиологии и биохимии, позволяют поставить больному человеку правильный диагноз и выработать эффективные пути лечения и профилактики различных болезней.

Используя знания законов наследственности и изменчивости, учёные-селекционеры получают новые высокопродуктивные породы домашних животных и сорта культурных растений. На основе изучения взаимоотношений между организмами созданы биологические методы борьбы с вредителями сельскохозяйственных культур. Изучение строения и принципов работы различных систем живых организмов помогло найти оригинальные решения в технике и строительстве.

Это конспект по теме «Состав, методы и роль биологии» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Билет 1 1.Биология как наука, ее достижения, связи с другими науками. Методы изучения живых объектов. Роль биологии в жизни и практической деятельности человека. 2.Царство растений, его отличия от других царств живой природы. Объясните, какая группа растений занимает в настоящее время господствующее положение на Земле. Среди живых растений или гербарных экземпляров найдите представителей этой группы. 3.Используя знания об обмене веществ и превращении энергии в организме человека, дайте научное объяснение влияния на обмен веществ гиподинамии, стрессов, вредных привычек, переедания.


1. Биология (от греч. bios жизнь, logos наука) наука о жизни. Она изучает живые организмы, их строение, развитие и происхождение, взаимоотношения со средой обитания и с другими живыми организмами. 2. Биология - совокупность наук о жизни, о живой природе (см. табл. «Система биологических наук»). I. Биология как наука, ее достижения в связи с другими науками. Методы изучения живых объектов. Роль биологии в жизни и практической деятельности человека.




3. Основные методы в биологии 1.наблюдение (позволяет описать биологические явления), 2.сравнение (дает возможность найти общие закономерности в строении, жизнедеятельности различных организмов), 3.эксперимент или опыт (помогает исследователю изучить свойства биологических объектов), 4.моделирование (имитируются процессы, недоступные для наблюдения или экспериментального воспроизведения), 5.исторический метод (на основе данных о современном орг. мире и его прошлом познаются процессы развития живой природы).


4. Достижения биологии: 1). Описание большого числа видов живых организмов, существующих на Земле; 2). Создание клеточной, эволюционной, хромосомной теории; 3). Раскрытие молекулярного строения структурных единиц наследственности (генов) послужило основой для создания генной инженерии. 4). Практическое применение достижений современной биологии в позволяет получать промышленным путем значительные количества биологически активных веществ.


6). Благодаря знанию законов наследственности и изменчивости достигнуты большие успехи в сельском хозяйстве при создании новых высокопродуктивных пород домашних животных и сортов культурных растений. 5). На основе изучения взаимоотношений между организмами созданы биологические методы борьбы с вредителями сельскохозяйственных культур.


7).Большое значение в биологии придается выяснению механизмов биосинтеза белка, тайн фотосинтеза, которые откроют путь получению органических пищевых веществ. Кроме того, использование в промышленности (в строительстве, при создании новых машин и механизмов) принципов организации живых существ (бионика) приносит в настоящее время и даст в будущем значительный экономический эффект. Конструкция пчелиных сот легла в основу для изготовления «сотовых панелей» для строительства




В такой ситуации основой увеличения пищевых ресурсов может быть лишь интенсификация сельского хозяйства. Важную роль в этом процессе будет играть выведение новых высокопродуктивных форм микроорганизмов, растений и животных, рациональное, научно обоснованное использование природных богатств.




1.Растения - автотрофы и способны к фотосинтезу; 2.Наличие в клетках пластид с пигментами; 3.Клетки окружены стенкой из целлюлозы; 4.Наличие в клетках вакуолей с клеточным соком; 5.Неограниченный рост; 6.Есть растительные гормоны-фитогормоны; 7.Осмотический тип питания (получение питательных веществ в виде водных растворов, поступающих через клеточную оболочку).


Покрытосеменные или цветковые растения – это крупнейший отдел современных высших растений, насчитывающий около 250 тыс. видов. Они растут во всех климатических зонах и входят в состав всех биогеоценозов земного шара. Это свидетельствует об их высокой приспособленности к современным условиям существования на Земле.


Приспособления у покрытосеменных (цветковых), позволившие им занять господствующее положение на Земле: I. Вегетативные органы цветковых растений достигают наибольшей сложности и разнообразия. II. Цветковые обладают более совершенной проводящей системой, что обеспечивает лучшее водоснабжение растения. III. У цветковых впервые появился новый орган – цветок. Семязачатки заключены в замкнутую полость завязи, образованную одним или несколькими сросшимися плодолистиками. Семена заключены в плод. Появилось двойное оплодотворение, что резко отличает их от всех остальных групп растительного мира. IV. Важнейшие преобразования произошли в проводящей системе. Основными проводящими элементами ксилемы взамен трахеид становятся сосуды, что значительно ускоряет движение восходящего тока. Таким образом, покрытосеменные получили дополнительные возможности в конкурентной борьбе и в конечном итоге стали, «победителями» в борьбе за существование.


III. Используя знания об обмене веществ и превращении энергии в организме человека, дайте научное объяснение влияния на обмен веществ гиподинамии, стрессов, вредных привычек, переедания. Организм получает извне многие вещества, перерабатывает их, получая энергию или те молекулы, которые необходимы организму для построения собственных тканей. Образующиеся при этом продукты обмена выводятся из организма. Совокупность всех реакций диссимиляции (распада веществ с выделением энергии) и ассимиляции (синтеза веществ необходимых организму) носит название обмена веществ. В здоровом организме ассимиляция и диссимиляция строго сбалансированы. Все реакции обмена веществ регулируются нервной и эндокринной системами. Нарушение обмена веществ лежит в основе многих заболеваний человека.


1.Гиподинамия – пониженная двигательная активность, отсутствие физических нагрузок – приводит к снижению работоспособности мышц, сердечно-сосудистой системы и, как следствие, нарушению обмена веществ и ухудшению состояния всего организма в целом. Неизрасходованные на физическую активность питательные вещества откладываются в запас, что зачастую приводит к ожирению. Этому также способствует переедание (2).


3. Стресс является защитной реакцией организма, позволяющей выжить в момент опасности. Стресс мобилизует возможности организма, сопровождается выбросом гормонов, повышает интенсивность сердечно-сосудистой деятельности и пр. Однако сильный и особенно длительный стресс может привести к истощению сил человека и нарушениям обмена веществ.


4. Очень сильное отрицательное воздействие на обмен веществ оказывает постоянный прием алкогольных напитков. У алкоголиков окисляющийся этиловый спирт дает организму некоторое количество энергии, однако при этом образуются очень ядовитые вещества, убивающие клетки печени и могза. Постепенно аппетит у алкоголиков снижается, и они перестают употреблять в пищу нормальные количества белков, жиров и углеводов, заменяя их спиртными напитками, что ведет к разрушению организма. У хронических алкоголиков всегда поражена печень, они худеют, происходит постепенное разрушение мышц.


5. Сильное отрицательное воздействие на обмен веществ оказывает также и курение, поскольку оно разрушает легкие и препятствует получению организмом необходимого количества кислорода. Кроме того, курение многократно увеличивает вероятность заболевания раком легких.


6. Наркотические вещества, участвуя в обмене веществ, вызывают привыкание, в дальнейшем прекращение поступления никотина, алкоголя и др. сопровождается ломкой – резким ухудшением самочувствия. Таким образом, возникает физиологическая и психологическая зависимость от наркотиков.

Направлений использования человеком знаний по биологии очень много, для примера приведем несколько (пойдем от большого к меньшему):

· Знаниезаконов экологии позволяет регулировать деятельность человека в пределах сохранения той экосистемы, в которой он живет и работает (рациональное природопользование);

· Ботаника и генетика позволяют повышать урожайность, бороться с вредителями и выводить новые, нужные и полезные сорта;

· Генетика на данный момент настолько плотно переплелась с медициной , что многие заболевания, которые раньше считались неизлечимыми, изучаются и предупреждаются уже на эмбриональных стадиях развития человека;

· С помощью микробиологии ученые всего мира разрабатывают сыворотки и вакцины против вирусов и самые различные противобактериальные препараты.

Отличия живых структур от неживых. Свойства живого

Биология – наука, изучающая свойства живых систем. Однако определить, что такое живая система, достаточно сложно. Грань между живым и неживым провести не так легко, как кажется. Попробуйте ответить на вопросы, являются ли живыми вирусы, когда они покоятся вне организма хозяина и в них не идет обмен веществ? Могут ли проявлять свойства живого искусственные объекты и машины? А компьютерные программы? Или языки?

Чтобы ответить на эти вопросы, можно попытаться вычленить минимальный набор свойств, характерный для живых систем. Именно поэтому ученые установили несколько критериев, по которым организм можно отнести к живым.

Важнейшими из характерных свойств (критериев)живого являются следующие:

1. Обмен веществом и энергией с окружающей средой. С точки зрения физики все живые системы – открытые , то есть постоянно обмениваются со средой и веществом, и энергией, в отличие от закрытых , полностью изолированных от окружающего мира, и полузакрытых , обменивающихся только энергией, но не веществом. Далее мы увидим, что этот обмен является обязательным условием существования жизни.

2. Живые системы способны к накоплению поступивших из среды веществ и, вследствие этого, росту .

3. Современная биология считает основополагающим свойством живых существ способность к идентичному (или почти идентичному) самовоспроизведению , то есть размножению с сохранением большинства свойств исходного организма.

4. Идентичное самовоспроизведение неразрывно связано с понятием наследственности , то есть передачи потомству признаков и свойств.

5. Однако наследственность не абсолютна – если бы все дочерние организмы в точности копировали родительские, то никакая эволюция была бы невозможна, так как живые организмы никогда бы не изменялись. Это привело бы к тому, что при любом резком изменении условий все они бы погибли. Но жизнь чрезвычайно гибка, и организмы приспосабливаются к широчайшему спектру условий. Это возможно благодаря изменчивости – тому факту, что самовоспроизведение организмов не полностью идентично, в ходе него возникают ошибки и вариации, которые могут быть материалом для отбора. Существует определенное равновесие между наследственностью и изменчивостью.

6. Изменчивость может быть наследственной и ненаследственной. Наследственная изменчивость, то есть появление новых вариаций признаков, которые наследуются и закрепляются в ряду поколений, служит материалом для естественного отбора . Естественный отбор возможен среди любых воспроизводящихся объектов, не обязательно живых, если между ними существует конкуренция за ограниченные ресурсы. Те объекты, которые вследствие изменчивости приобрели неподходящие в данной среде, неблагоприятные признаки, будут отбраковываться, поэтому признаки, которые дают конкурентное преимущество в борьбе, будут встречаться все чаще и чаще у новых объектов. Это и есть естественный отбор – творческий фактор эволюции, благодаря которому возникло все многообразие живых организмов на Земле.

7. Живые организмы активно реагируют на внешние сигналы, проявляя свойствораздражимости .

8. Благодаря своей способности реагировать на изменение внешних условий живые организмы способны к адаптации – приспособлению к новым условиям. Это свойство, в частности, позволяет организмам переживать различные катаклизмы и распространяться на новые территории.

9. Адаптация осуществляется путем саморегуляции , то есть способности к поддержанию постоянства определенных физических и химических параметров в живом организме, в том числе и в меняющихся условиях среды. Например, организм человека поддерживает постоянную температуру, концентрацию в крови глюкозы и многих других веществ.

10. Важным свойством земной жизни является дискретность , то есть прерывистость: она представлена отдельными особями, особи объединены в популяции, популяции – в виды, и т. д., то есть на всех уровнях организации живого существуют отдельные единицы. В фантастическом романе Станислава Лема «Солярис» описан огромный живой океан, покрывающий всю планету. Но на Земле таких форм жизни нет.

Химический состав живого

Живые организмы состоят из огромного числа химических веществ, органических и неорганических, полимерных и низкомолекулярных. В живых системах найдены многие химические элементы, присутствующие в окружающей среде, однако необходимы для жизни лишь около 20 из них. Эти элементы получили название биогенных .

В процессе эволюции от неорганических веществ к биоорганическим основой использования тех или иных химических элементов при создании биосистем является естественный отбор. В результате такого отбора основу всех живых систем составляют только шесть элементов: углерод, водород, кислород, азот, фосфор, сера, получивших название органогенов. Их содержание в организме достигает 97,4%.

Органогены - главные химические элементы, входящие в состав органических веществ: углерод, водород, кислород и азот.

С точки зрения химии естественный отбор элементов-органогенов можно объяснить их способностью образовывать химические связи: с одной стороны, достаточно прочные, то есть, энергоемкие, а с другой, достаточно лабильные, которые легко могли бы поддаваться гемолизу, гетеролизу, циклическому перераспределению.

Органогеном номер один, несомненно, является углерод. Его атомы образуют прочные ковалентные связи между собой или с атомами других элементов. Эти связи могут быть ординарными или кратными, благодаря таким 3 связям углерод способен образовывать сопряженные или кумулированные системы в виде открытых или закрытых цепей, циклов.

В отличие от углерода, элементы-органогены водород и кислород лабильные связи не образуют, но их наличие в органической, в том числе, в биоорганической молекуле определяет ее способность взаимодействовать с биорастворителем-водой. Кроме того, водород и кислород являются носителями окислительно-восстановительных свойств живых систем, они обеспечивают единство окислительно- восстановительных процессов.

Остальные три органогена – азот, фосфор и сера, а также некоторые другие элементы – железо, магний, составляющие активные центры ферментов, как и углерод, способны образовывать лабильные связи. Положительным свойством органогенов является также и то, что они, как правило, образуют легко растворимые в воде соединения и поэтому концентрируются в организме.

Существует несколько классификаций химических элементов, содержащихся в организме человека. Так, В.И.Вернадский в зависимости от среднего содержания в живых организмах разделил элементы на три группы:

1. Макроэлементы. Это элементы, содержание которых в организме выше 10 - ² % . К ним относятся углерод, водород, кислород, азот, фосфор, сера, кальций, магний, натрий и хлор, калий, железо. Эти так называемые универсальные биогенные элементы, присутствующие в клетках всех организмов.

2. Микроэлементы. Это элементы, содержание которых в организме находится в пределах от 10 - ² до 10 - ¹² %. К ним относятся йод, медь, мышьяк, фтор, бром, стронций, барий, кобальт. Хотя этих элементов содержится в организмах в крайне низких концентрациях (не выше тысячной доли процента), но они также необходимы для нормальной жизнедеятельности. Это биогенные микроэлементы . Их функции и роль весьма разнообразны. Многие микроэлементы входят в состав ряда ферментов, витаминов, дыхательных пигментов, некоторые влияют на рост, скорость развития, размножение и т. д.

3. Ультрамикроэлементы. Это элементы, содержание которых в организме ниже 10- ¹²%. К ним относятся ртуть, золото, уран, радий и др.

В.В.Ковальский, исходя из степени значимости химических элементов для жизнедеятельности человека, подразделил их на три группы:

1. Незаменимые элементы. Они постоянно находятся в организме человека, входят в состав его неорганических и органических соединений. Это H, O, Ca, N, K, P, Na, S, Mg, Cl, C, I, Mn, Cu, Co, Zn, Fe, Mo, V. Дефицит содержания этих элементов приводит к нарушению нормальной жизнедеятельности организма.

2. Примесные элементы. Эти элементы постоянно находятся в организме человека, но их биологическая роль еще не всегда выяснена или мало изучена. Это Ga, Sb, Sr, Br, F, B, Be, Li, Si, Sn, Cs, As, Ba, Ge, Rb, Pb, Ra, Bi, Cd, Cr, Ni, Ti, Ag, Th, Hg, Ce, Se.

3. Микропримесные элементы. Они найдены в организме человека, но ни о количественном содержании, ни о биологической роли их нет. Это Sc, Tl, In, La, Sm, Pr, W, Re, Tb и др. Химические элементы, необходимые для построения и жизнедеятельности клеток и организмов, называют биогенными.

Среди неорганических веществ и компонентов основное место занимает – вода .

Для поддержания ионной силы и рН-среды, при которых протекают процессы жизнедеятельности, необходимы определённые концентрации неорганических ионов. Для поддержания определённой ионной силы и соединения буферной среды необходимо участие однозарядных ионов: аммония(NH4+); натрия(Na+); калия (К+). Катионы не являются взаимозамещёнными, существуют специальные механизмы, поддерживающие необходимый баланс между ними.

Неорганические соединения:

Соли аммония;

Карбонаты;

Сульфаты;

Фосфаты.

Неметаллы :

1. Хлор (основной). В виде анионов участвует в создании солевой среды, иногда входит в состав некоторых органических веществ.

2. Йод и его соединения принимают участие в некоторых процессах жизнедеятельности органических соединений (живых организмов). Йод входит в состав гормонов щитовидной железы (тироксина).

3. Производные селена. Селеноцестеин, входит в состав некоторых ферментов.

4. Кремний – входит в состав хрящей и связок, в виде эфиров ортокремневой кислоты, принимает участие в шивке полисахаридных цепей.

Много соединений в живых организмах представляют собой комплексы : гем – это комплекс железа с плоской молекулой парафина; коболамин.

Магний и кальций – основные металлы , не считая железа, – повсеместно распространены в биосистемах. Концентрация ионов магния имеет важное значение для поддержания целостности и функционирования рибосом, то есть для синтеза белков.

Магний также входит в состав хлорофилла. Ионы кальция принимают участие в клеточных процессах в том числе мышечных сокращений. Нерастворённые соли – участвуют в формировании опорных структур:

Фосфат кальция (в костях);

Карбонат (в раковинах моллюсков).

Ионы металлов 4 периода входят в состав ряда жизненно важных соединений – ферментов . Некоторые белки содержат железо в виде железосерных кластеров. Ионы цинка содержатся в значительном числе ферментов. Марганец входит в состав небольшого числа ферментов, но играет важную роль в биосфере, при фотохимическом восстановлении воды, обеспечивает выделение в атмосферу кислорода и поступление электронов в цепь переноса при фотосинтезе.

Кобальт – входит в состав ферментов в виде – кобаламинов (витамин В 12).

Молибден – необходимый компонент фермента – нитродиназа (который катализует восстановление атмосферного азота до аммиака, в азотфиксирующих бактериях)

Большое число органических веществ входит в состав живых организмов: уксусная кислота; уксусный альдегид; этанол (является продуктами и субстратами биохимических превращений).

Основные группы низкомолекулярных соединений живых организмов:

Аминокислоты – являются составными частями белков

Нуклеамиды – составляющая часть нуклеиновых кислот

Моно и алигосахариды – составляющие структурных тканей

Липиды – составные части клеточных стенок.

Кроме предыдущих существуют:

Кофакторы ферментов – необходимые компоненты значительного числа ферментов, катализируют окислительно-восстановительные реакции.

Коферменты – органические соединения, функционирующие в определённых системах ферментных реакций. Например: никотиноамидоданин динуклеатид (NAD+). В окисленной форме – это окислитель спиртовых групп до карбонильных, при этом образуется восстановитель.

Кофакторы ферментом – сложные органические молекулы, синтезируются из сложных предшественников, которые должны присутствовать в качестве обязательных компонентов пищи.

Для высших животных характерно образование и функционирование веществ управляющих нервной и эндокринной системой – гормоны и нейромедитаторы. Например, гормон надпочечника запускает окислительную переработку гликогена в процессах стрессовой ситуации.

Во многих растениях синтезируется сложный амин обладающий сильным биологическим действием – алкалоиды.

Терпены – соединения растительного происхождения, компоненты эфирных масел и смол.

Антибиотики – вещества микробиологического происхождения, выделяемые специальными видами микроорганизмов, подавляющих рост других конкурирующих микроорганизмов. Механизм их действия разнообразен, например замедление роста белков в бактериях.

Термин «биология» образуется из двух греческих слов «bios» -жизнь и «logos» - знание, учение, наука. Отсюда и классическое определение биологии как науки, изучающей жизнь во всех ее проявлениях.

Биология исследует многообразие существующих и вымерших живых существ, их строение, функции, происхождение, эволюцию, распространение и индивидуальное развитие, связи друг с другом, между сообществами и с неживой природой.

Биология рассматривает общие и частные закономерности, присущие жизни во всех ее проявлениях и свойствах: обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, развитие, раздражимость, подвижность и т.д.

Методы исследований в биологии

  1. Наблюдение - самый простой и доступный метод. Например можно наблюдать сезонные изменения в природе, в жизни растений и животных, поведение животных и т.д.
  2. Описание биологических объектов (устная или письменная характеристика).
  3. Сравнение – нахождение сходств и различий между организмами, применяется в систематике.
  4. Экспериментальный метод (в лабораторных или естественных условиях) – биологические исследования с использованием различных приборов и методов физики, химии.
  5. Микроскопия – исследование строения клеток и клеточных структур с помощью световых и электронных микроскопов. Световые микроскопы позволяют увидеть формы и размеры клеток, отдельных органоидов. Электронные – мелкие структуры отдельных органоидов.
  6. Биохимический метод - исследование химического состава клеток и тканей живых организмов.
  7. Цитогенетический – метод изучения хромосом под микроскопом. Можно обнаружить геномные мутации (например, синдром Дауна), хромосомные мутации (изменения формы и размеров хромосом).
  8. Ультрацентрифугирование - выделение отдельных клеточных структур (органелл) и дальнейшее их изучение.
  9. Исторический метод – сопоставление полученных фактов с ранее полученными результатами.
  10. Моделирование – создание различных моделей процессов, структур, экосистем и т.д. с целью прогнозирования изменений.
  11. Гибридологический метод – метод скрещивания, главный метод изучения закономерностей наследственности.
  12. Генеалогический метод – метод составления родословных, применяется для определения типа наследования признака.
  13. Близнецовый метод – метод, позволяющий определять долю влияния факторов среды на развитие признаков. Применяется к однояйцевым близнецам.

Связь биологии с другими науками.

Многообразие живой природы столь велико, что современную биологию нужно представлять как комплекс наук. Биология лежит в основе таких наук, как медицина, экология, генетика, селекция, ботаника, зоология, анатомия, физиология, микробиология, эмбриология и др. Биология совместно с другими науками образовала такие науки, как биофизика, биохимия, бионика, геоботаника, зоогеография и др. В связи с бурным развитием науки и техники появляются новые направления изучения живых организмов, появляются новые науки, связанные с биологией. Это еще раз доказывает, что живой мир является многогранным и сложным и он тесно связан с неживой природой.

Основные биологические науки-объекты их изучения

  1. Анатомия – внешнее и внутреннее строение организмов.
  2. Физиология – процессы жизнедеятельности.
  3. Медицина - заболевания человека, их причины и методы их лечения.
  4. Экология – взаимосвязи организмов в природе, закономерности процессов в экосистемах.
  5. Генетика – законы наследственности и изменчивости.
  6. Цитология- наука о клетках (строении, жизнедеятельности и т.д.).
  7. Биохимия – биохимические процессы в живых организмах.
  8. Биофизика – физические явления в живых организмах.
  9. Селекция – создание новых и улучшение существующих сортов, пород, штаммов.
  10. Палеонтология – ископаемые останки древних организмов.
  11. Эмбриология- развитие зародышей.

Знания в области биологии человек может применить :

  • для профилактики и лечения заболеваний
  • при оказании первой помощи пострадавшим при несчастных случаях;
  • в растениеводстве, животноводстве
  • в природоохранных мероприятиях, способствующих решению глобальных экологических проблем (знания о взаимосвязях организмов в природе, о факторах, отрицательно влияющих на состояние окружающей среды и т д.).БИОЛОГИЯ КАК НАУКА

Признаки и свойства живого:

1. Клеточное строение. Клетка является единой структурно-функциональной единицей, а также единицей развития почти для всех живых организмов на Земле. Исключением являются вирусы, но и у них свойства живого проявляются, лишь когда они находятся в клетке. Вне клетки у них признаки живого не проявляются..

2. Единство химического состава. Живые существа образованы теми же химическими элементами, что и неживые объекты, но в живых существах 90% массы приходится на четыре элемента: С, О, N, Н, которые участвуют в образовании сложных органических молекул, таких, как белки, нуклеиновые кислоты, углеводы, липиды.

3. Обмен веществ и энергии – главное свойство живого. Он осуществляется в результате двух взаимосвязанных процессов: синтеза органических веществ в организме (за счет внешних источников энергии света и пищи) и процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.

4. Открытость. Все живые организмы представляют собой открытые системы, т. е. системы, устойчивые лишь при условии непрерывного поступления в них энергии и вещества из окружающей среды.

5. Самовоспроизведение (репродукция). Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В ее основе лежит информация о строении и функциях любого живого организма, заложенная в нуклеиновых кислотах и обеспе­чивающая специфичность структуры и жизнедеятельности живого.

6. Саморегуляция. Благодаря механизмам саморегуляции сохраняется относительное постоянство внутренней среды организма, т.е. поддерживается постоянство химического состава и интенсивность течения физиологических процессов - гомеостаз.

7. Развитие и рост. В процессе индивидуального развития (онто­генеза) постепенно и последовательно проявляются индивидуальные свойства организма (развитие) и осуществляется его рост (увеличение размеров). Кроме того, все живые системы эволюционируют - изменяются в ходе исторического разви­тия (филогенеза).

8. Раздражимость. Любой живой организм способен реагировать на внешние и внутренние воздействия.

9. Наследственность. Все живые организмы способны сохранять и передавать основные признаки потомству.

10. Изменчивость. Все живые организмы способны изменяться и приобретать новые признаки.

Основные уровни организации живой природы

Вся живая природа представляет собой совокупность биологических систем. Важными свойствами живых систем является многоуровневость и иерархическая организация. Части биологических систем сами являются системами, состоящими из взаимосвязанных частей. На любом уровне каждая биологическая система уникальна и отличается от других систем.

Ученые на основании особенностей проявления свойств живого выделили несколько уровней организации живой природы:

1. Молекулярный уровень - представлен молекулами органических веществ (белков, липидов, углеводов и др.), находящихся в клетках. На молекулярном уровне можно исследовать свойства и структуры биологических молекул, их роль в клетке, в жизнедеятельности организма и так далее. Например, удвоение молекулы ДНК, структуры белков и так далее.

2. Клеточный уровень представлен клетками. На уровне клеток начинают проявляться свойства и признаки живого. На клеточном уровне можно исследовать строение и функции клеток и клеточных структур, процессы, протекающие в них. Например, движение цитоплазмы, деление клетки, биосинтез белков в рибосомах и так далее.

3. Органо-тканевой уровень представлен тканями и органами многоклеточных организмов. На этом уровне можно исследовать строение и функции тканей и органов, процессы, идущие в них. Например, сокращение сердца, передвижение воды и солей по сосудам и так далее.

4. Организменный уровень представлен одноклеточными и многоклеточными организмами. На этом уровне изучается организм, как целое: его строение и жизнедеятельность, механизмы саморегуляции процессов, приспособление к условиям обитания и так далее.

5. Популяционно-видовой уровень – представлен популяциями, состоящими из особей одного вида, длительно обитающих совместно на какой-то территории. Жизнь одной особи генетически определена, а популяция при благоприятных условиях может существовать неограниченно долго. Так как на данном уровне начинают действовать движущие силы эволюции – борьба за существование, естественный отбор и др. На популяционно-видовом уровне изучают динамику численности особей, половозрастной состав популяции, эволюционные изменения в популяции и так далее.

6. Экосистемный уровень – представлен популяциями различных видов, совместно обитающими на определенной территории. На данном уровне изучаются взаимоотношения организмов и среды, условия, определяющие продуктивность и устойчивость экосистем, изменения в экосистемах и так далее.

7. Биосферный уровень – высшая форма организации живой материи, объединяющая все экосистемы планеты. На этом уровне изучаются процессы в масштабе всей планеты – круговороты веществ и энергии в природе, глобальные экологические проблемы, изменения климата Земли и т д. В настоящее время первостепенное значение имеет изучение влияния человека на состояние биосферы в целях предотвращения глобального экологического кризиса.

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

БИОЛОГИЯ КАК НАУКА. МЕТОДЫ БИОЛОГИИ

Биология - наука о жизни, ее закономерностях и формах проявления, о существовании и распространении ее во времени и пространстве. Она исследует происхождение жизни и ее сущность, развитие, взаимосвязи и многообразие. Биология относится к естественным наукам.

Впервые термин «биология» употребил немецкий профессор анатомии Т. Руз в 1779г. Однако общепринятым он стал в 1802 г., после того как его стал употреблять в своих работах французский натуралист Ж.-Б. Ламарк.

Современная биология представляет собой комплексную науку, состоящую из ряда самостоятельных научных дисциплин со своими объектами исследования.

БИОЛОГИЧЕСКИЕ ДИСЦИПЛИНЫ

Ботаника - наука о растениях,

Зоология - наука о животных,

Микология - о грибах,

Вирусология - о вирусах,

Микробиология - о бактериях.

Анатомия - наука, изучающая внутреннее строение организмов (отдельных органов, тканей). Анатомия растений изучает строение растений, анатомия животных - строение животных.

Морфология - наука, изучающая внешнее строение организмов

Физиология - наука, изучающая процессы жизнедеятельности организма, функции отдельных органов.

Гигиена - наука о сохранении и укреплении здоровья человека.

Цитология - наука о клетке.

Гистология - наука о тканях.

Систематика - наука, о классификации живых организмов. Классификация - разделение организмов на группы (виды, рода, семейства и т. д.) на основании особенностей строения, происхождения, развития и др.

Палеонтология - наука, изучающая ископаемые останки (отпечатки, окаменелости и др.) организмов.

Эмбриология - наука, изучающая индивидуальное (зародышевое) развитие организмов.

Экология - наука, изучающая взаимоотношения организмов друг с другом и с окружающей средой.

Этология - наука о поведении животных.

Генетика - наука о закономерностях наследственности и изменчивости.

Селекция - наука, о выведении новых и улучшением существующих пород домашних животных, сортов культурных растений и штаммов бактерий и грибов.

Эволюционное учение - изучает вопросы возникновения и законы исторического развития жизни на Земле.

Антропология - наука о возникновении и развитии человека.

Клеточная инженерия - направление науки, занимающееся получением гибридных клеток. Примером может служить гибридизация раковых клеток и лимфоцитов, слияние протопластов разных растительных клеток, а также клонирование.

Генная инженерия - направление науки, занимающееся получением гибридных молекул ДНК или РНК. Если клеточная инженерия работает на уровне клетки, то генная работает на молекулярном уровне. В данном случае специалисты «пересаживают» гены одного организма другому. Одним из результатов генной инженерии является получение генетически модифицированных организмов (ГМО).

Бионика - направление в науке, занимающееся поиском возможностей применения принципов организации, свойств и структур живой природы в технических устройствах.

Биотехнология - дисциплина, изучающая возможности использования организмов или биологических процессов для получения веществ, нужных человеку. Обычно в биотехнологических процессах используются бактерии и грибы.

ОБЩИЕ МЕТОДЫ БИОЛОГИИ

Метод - это способ познания действительности.

1. Наблюдение и описание.

2. Измерение

3. Сравнение

4. Эксперимент или опыт

5. Моделирование

6. Исторический.

ЭТАПЫ научного исследования

Проводится наблюдение над объектом или явлением

на основе полученных данных выдвигается гипотеза

проводится научный эксперимент (с контрольным опытом)

проверенная в ходе эксперимента гипотеза может быть названа
теорией или законом

СВОЙСТВА ЖИВОГО

Обмен веществ (метаболизм) и поток энергии - важнейшее свойство живого. Все живые организмы поглощают необходимые им вещества из внешней среды и выделяют в нее продукты жизнедеятельности.

Единство химического состава. Среди химических элементов в живых организмах преобладают углерод, кислород, водород и азот. Кроме того, важнейшим признаком живых организмов является на-личие органических веществ: жиров, углеводов, белков и нуклеиновых кислот.

Клеточное строение. Все организмы состоят из клеток. Неклеточ-ное строение имеют только вирусы, но и они проявляют признаки живого, только попав в клетку-хозяина.

Раздражимость - способность организма реагировать на внеш-ние или внутренние воздействия.

Самовоспроизведение. Все живые организмы способны к размножению, т. е. воспроизведению себе подобных. Воспроизведение организмов происходит в соответствии с генетической программой, записанной в молекулах ДНК.

Наследственность и изменчивость.

Наследственность - свойство организмов, передавать свои признаки потомкам. Наследственность обеспечивает преемственность жизни. Изменчивость - способность организмов приобретать новые признаки в процессе своего развития. Наследственная изменчивость является важным фактором эволюции.

Рост и развитие.

Рост - количественные изменения (например, увеличение массы).

Развитие - качественные изменения (например, формирование систем органов, цветение и плодоношение).

Саморегуляция - способность организмов поддерживать постоянство своего химического состава и процессов жизнедеятельности - гомеостаз.

Приспособленность (адаптация)

Ритмичность - периодические изменения интенсивности физиологических функций с различными периодами колебаний (суточные, сезонные ритмы). (Например, фотопериодизм - реакция организма на длину светового дня).

Уровни организации жизни

Номер
уровня

Название

Чем представлен

Биосферный

Совокупность всех экосистем
планеты

Экосистемный

(биогеоценотический)

Система популяций разных
видов в их взаимосвязи между собой и окружающей средой

Саванна, тундра

Популяционно-
видовой

Совокупность популяций,
образующих виды

Медведи белые,
киты синие

Организменный

Организм как целостная система

Бактерия, обезьяна

Клеточный

Клетка и её структурные компоненты

Эритроциты, митохондрии, хлоропласты

Молекулярный

Органические и неорганические

вещества

Белки, углеводы;

Вода, ионы солей

Тестовые задания в формате ОГЭ

Какая наука изучает сортовое разнообразие растений?

1)физиология 2)систематика 3)экология 4)селекция

2. Выяснить, необходим ли свет для образования крахмала в листьях, можно с помощью

1) описания органов растений 2) сравнения растений разных природных зон

3) наблюдения за ростом растения 4) эксперимента по фотосинтезу

3. В какой области биологии была разработана клеточная теория?

1)вирусологии 2) цитологии 3)анатомии 4) эмбриологии

4. Для разделения органоидов клетки по плотности Вы выберете метод

1) наблюдения 2) хроматографии 3) центрифугирования 4)выпаривания

5.На фотографии изображена модель фрагмента ДНК. Какой метод позволил учёным создать такое трехмерное изображение молекулы?

1) классификации 2) эксперимента 3) наблюдения 4) моделирования

6. На фотографии изображен шаростержневой фрагмент ДНК. Какой метод позволил ученым создать такое трехмерное изображение молекулы?

классификации 2) эксперимента 3) наблюдения 4) моделирования

7. Применение какого научного метода иллюстрирует сюжет картины голландского художника Я. Стена «Пульс», написанной в середине XVII в.?

1) моделирование 2) измерение 3) эксперимент 4) наблюдение

8. Изучите график, отражающий процесс роста и развития насекомого.

Определите длину насекомого на 30-й день его развития.

1) 3,4 2) 2,8 3) 2,5 4) 2,0

9. Кого из перечисленных ученых считают создателем эволюционного учения?

1) И.И. Мечникова 2) Л. Пастера 3) Ч. Дарвина 4) И.П. Павлова

10. Какая наука изучает сортовое разнообразие растений?

1) физиология 2) систематика 3) экология 4) селекция

11. Выберите пару животных, в экспериментах с которыми были сделаны основные открытия в области физиологии животных и человека.

1) лошадь и корова 2) пчела и бабочка 3) собака и лягушка 4) ящерица и голубь

12. В какой области биологии была разработана клеточная теория?

1) вирусологии 2) цитологии 3) анатомии 4) эмбриологии

13. Точно установить степень влияния удобрений на рост растений можно методом

1) эксперимента 2) моделирования 3) анализа 4) наблюдения

14. Примером применения экспериментального метода исследования является

1) описание строения нового растительного организма

2)сравнение двух микропрепаратов с различными тканями

3)подсчёт пульса у человека до и после нагрузки

4) формулирование положения на основе полученных фактов

15. Микробиолог хотел узнать, насколько быстро размножается один из видов бактерий в разных питательных средах. Он взял две колбы, заполнил их до половины разными питательными средами и поместил туда примерно одинаковое количество бактерий. Каждые 20 минут он извлекал пробы и подсчитывал в них количество бактерий. Данные его исследования отражены в таблице.

Изучите таблицу «Изменение скорости размножения бактерий за определённое время» и ответьте на вопросы.

Изменение скорости размножения бактерий за определённое время

Время после введения бактерий в культуру, мин.

Число бактерий в колбе 1

Число бактерий в колбе 2

1) Сколько бактерий поместил учёный в каждую колбу в самом начале эксперимента?

2) Как изменялась скорость размножения бактерий на протяжении эксперимента в каждой колбе?

3) Чем можно объяснить полученные результаты?

Литература

Каменский А.А., Криксунов Е.А., Пасечник В.В. Биология. Общая биология 9 класс: учеб. для общеобразовательных учреждение. М.: Дрофа, 2013.

Заяц Р.Г., Рачковская И.В., Бутиловский В.Э., Давыдов В.В. Биология для абитуриентов: вопросы, ответы, тесты, задачи.- Минск: Юнипресс, 2011.-768 с.

«Решу ОГЭ»: биология. Обучающая система Дмитрия Гущина [Электронный ресурс] - URL:http:// oge.sdamgia.ru

Последние материалы раздела:

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...