Школьная камера вильсона. Камера Вильсона (туманная камера)

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.


Юрий Романов

“Это самый оригинальный и замечательный инструмент в истории науки”
(Эрнест Резерфорд)

14 февраля 1869 года , 145 лет назад, на ферме близ Эдинбурга (Шотландия) родился Чарльз Томсон Риз Вильсон. Учился он в одной из частных школ Манчестера, затем в тамошнем университете и мечтал стать врачом. Завершать образование он отправился в Кембридж, и тут вектор его интересов резко изменил направление. Его заинтересовали естественные науки.

В конце лета 1894 года Вильсон приехал в Шотландию и совершил восхождение на Бен-Невис, самую высокую из местных гор. Это была не научная экспедиция, Вильсон был спортсмен, альпинист и решил прогуляться по родным местам. С этой прогулки, как мы теперь можем судить, и началась новая жизнь Вильсона-учёного. Там, на вершине, он был просто очарован великолепной игрой света в окружающих его облаках; он любовался цветными гало вокруг теней, отбрасываемых скалами. В общем, там, на вершине Бен-Невис, ему страшно захотелось все увиденные им явления воспроизвести в лаборатории. Физика атмосферы - вот как теперь называется его новое увлечение.

Нобелевская премия 1927 года. Частицы в тумане

В 1895 году Чарльз Вильсон, будучи аспирантом в Кембриджской лаборатории Дж. Дж. Томпсона, начинает цикл экспериментов, чтобы понять процессы образования облаков. Он придумывает аппарат в виде прозрачного цилиндра, дно у которого может перемещаться. Быстрое движение поршня вниз приводило к увеличению объёма камеры и падению давления и температуры в ней. При этом сквозь прозрачное окно цилиндра Вильсон наблюдал в камере сгущающийся туман. Явление это было уже хорошо известно: на мельчайших частичках пыли конденсировалась влага, ничего нового, всё как обычно… Почему Вильсон решил повторить этот опыт, наполнив свой аппарат максимально очищенным от пыли воздухом, - вот где загадка. Что-то подсказывала интуиция учёного? Или просто решил убедиться, что в «обеспыленном» воздухе конденсации не будет, да и закрыть этот вопрос?

Так или иначе, но опыт дал неожиданный результат: в чистом воздухе туман всё равно образуется. Почему? Что в этом случае может являться центрами конденсации? Много лет спустя Вильсон так описывал эмоциональное состояние, в котором находился в те дни: «Я был очень возбуждён, ведь почти сразу же я наткнулся на нечто, обещающее быть значительно более интересным, чем те оптические явления, ради которых я всё это начинал». Вильсон делает гениальное предположение, что влага конденсируется на ионах - заряженных частицах, каким-то образом возникающих в воздухе.

Чтобы проверить эту догадку, Вильсон берёт взаймы у профессора Томпсона одну из его драгоценных рентгеновских трубок (ему пришлось постоянно бороться со страхом повредить или ненароком разбить прибор). Изучением ионизирующих свойств рентгеновских лучей в это время как раз и занимался Томпсон, ставший поэтому заинтересованным участником опытов своего аспиранта. Вот как он описывал творческие муки молодого Вильсона: «Создание туманной камеры [так назывался этот прибор до момента присвоения ему имени изобретателя. - Ю. Р. ] оказалось чрезвычайно трудоёмким процессом. Для неё потребовалось несколько очень сложных стеклянных деталей, которые Вильсон изготовил сам, освоив профессию стеклодува. Пол лаборатории был устлан осколками, колбы лопались вновь и вновь. Вильсон не расстраивался, начинал всё сначала, только приговаривал, пристраивая к аппарату очередную колбу: “Милая, милая, ты же потерпишь немного?”»

Прибор, который нам знаком как «камера Вильсона» и который на 40 лет станет самым важным инструментом в арсенале физики элементарных частиц, был изготовлен в 1910 году. Через год ему удаётся сделать первые фотографии туманных треков (следов) заряженных частиц, пролетавших через камеру. В 1959-м, в возрасте 90 лет, он не забыл эти события и описал их такими словами: «Я до сих пор хорошо помню моё восхищение от полученных результатов. Эти следы были великолепны. Они напоминали волоски или огоньки, возникающие то тут, то там… Это было потрясающе».

В 1927 году ему присуждают Нобелевскую премию по физике «за метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара». Заниматься дальнейшими усовершенствованиями своей камеры он не стал: проблемы электрофизики атмосферы его интересовали значительно больше. В конце жизни он переселился с семьёй в деревушку Карлопс. Бывший депутат парламента Тэм Дэлиелл, проживавший с ним по соседству, так вспоминает первую встречу с Вильсоном: «Шёл дождь. В мою дверь постучали, я открыл. На пороге стоял сосед, и он спросил, не хочу ли я прийти к нему выпить чашечку чаю. Пока он занимался чайником, я заметил на стене фотографию, которая заставила меня замереть. На ней были 15 мужчин и одна женщина. Альберт Эйнштейн, Мария Кюри и все великие физики того времени. Среди них был мужчина, он был моложе на 40 лет, чем сейчас, но это был пригласивший меня на чай сосед. Я чуть не упал. Оказывается, он и есть тот самый великий Вильсон, который помог человечеству вступить в ядерный век».

Нобелевская премия 1948 года. Туман под контролем

Принципиально улучшить камеру Вильсона удалось Патрику Мейнарду Стюарту барону Блэкетту. Кадровый офицер ВМФ принимал участие в боях Первой мировой войны на Фолклендских островах и в Ютландии. После войны ушёл в отставку и занялся физикой под руководством Эрнеста Резерфорда в Кембридже.

Позднее он добьётся замечательных научных результатов и сделает несколько выдающихся открытий, но всё это - тема отдельного разговора. Сейчас важно другое. В 1932 году, работая с молодым итальянским физиком Джузеппе Очиалини (на фото ниже), он разработал изящную комбинацию камеры Вильсона и двух счётчиков Гейгера - Мюллера, один из которых помещался над камерой, а второй - под нею. Специальная электронная схема запускала камеру Вильсона в работу, только если оба счётчика срабатывали одновременно.

Благодаря изобретению Блэкетта камера Вильсона приобрела «диаграмму направленности»; её теперь можно было настраивать на фиксацию частиц, прилетающих с заданного направления. Более того, устанавливая порог срабатывания счётчиков Гейгера, оказалось возможным фильтровать наблюдаемые частицы по энергиям. Оба эти фактора привели к колоссальному прогрессу в области исследований космических лучей, астрофизики и физики элементарных частиц в целом. В 1948 году Блэкетт был удостоен Нобелевской премии по физике «за усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации».

Нобелевская премия 1960 года. Пузыри и туман

Если в камере Вильсона треки заряженных частиц образовывались за счёт конденсации переохлаждённого пара на ионах, то в приборе, который изобрёл в 1953 году и назвал «пузырьковой камерой» Дональд Артур Глейзер, следы частиц возникали в перегретой жидкости при понижении давления. В этом случае возникал как бы «туман наоборот»: по ходу движения частицы в жидкости образовывались цепочки пузырьков, наполненных паром.

Глейзер провёл множество экспериментов с различными жидкостями, включая даже пиво (сначала он утверждал, что сама идея пузырьковой камеры пришла ему в голову, когда он наблюдал «вскипание» пива при откупоривании бутылки; позже признался, что «пивного вдохновения» не было, но факт остаётся фактом: в первые модели пузырьковой камеры он заливал светлое пиво, и камера отлично работала!)

Пузырьковая камера Глейзера оказалась настолько удачным прибором, что с 60-х годов она полностью вытесняет камеры Вильсона. И Нобелевская премия по физике 1960 года досталась Дональду Глейзеру именно «за изобретение пузырьковой камеры». Эксперименты на ускорителях во всём мире начинают проводиться с использованием всё более крупных криогенных пузырьковых камер, которые превращаются в сложнейшие инженерные комплексы, нафаршированные электроникой.

Сейчас «эпоха тумана и пара» в экспериментальной физике частиц завершается, и на смену пузырьковым камерам приходят новые типы детекторов. Но это уже совсем другая история…

Этот прибор был сконструирован в 1911 г. английским физиком Ч.Вильсоном. Он основан на способности быстро летящих частиц ионизировать молекулы вещества, находящегося в парообразном состоянии.

Схема камеры Вильсона изображена на рис. 22.2.

Рабочий объем камеры 1 заполнен воздухом или другим газом и содержит в себе насыщенный пар воды или спирта. При быстром передвижении поршня 2 вниз пар или газ в объеме 1 адиабатно расширяется и охлаждается, при этом пар становится перенасыщенным. Когда через объем камеры пролетает заряженная частица, то на своем пути она создает ионы, на которых при расширении объема 1 образуются капельки сконденсировавшегося пара. Таким образом, частица оставляет за собой видимый след (трек) в виде узкой полоски тумана. Этот трек можно наблюдать или сфотографировать.

Альфа-частицы вызывают сильную ионизацию газа и поэтому оставляют в камере Вильсона жирные следы. Бета-частицы после себя оставляют очень тонкие треки (рис. 22.3).

Гамма-кванты могут быть обнаружены с помощью камеры Вильсона по фотоэлектронам, которые они выбивают из молекул газа, заполняющего рабочий объем камеры.

Камеру Вильсона часто помещают в сильное магнитное поле, что позволяет по искривлению треков частиц определять их энергию и знак заряда, а по толщине треков - заряд и массу частиц.

Газоразрядные счетчики

В исследованиях по ядерной физике часто используют счетчики заряженных частиц, которые служат для регистрации отдельных частиц. Рассмотрим принцип действия одного из видов счетчиков - пропорционального

(рис. 22.4).

Счетчик состоит из наполненного газом цилиндра 1, в который введены два электрода: анод 3 представляет собой тонкую металлическую нить, оба ее конца укреплены на изоляторах. Катод 2 выполнен в виде токопроводящего металлического слоя, нанесенного на внутреннюю поверхность цилиндра.

Между катодом и анодом прикладывается напряжение порядка нескольких сотен вольт, вследствие чего внутри счетчика создается электрическое поле. При попадании в счетчик частица ионизует молекулы газа и в электрическом поле между катодом и анодом возникает направленное движение ионов, т. е. происходит газовый разряд. Разрядный ток создает большое падение напряжения на сопротивлении R н , и напряжение между электродами сильно уменьшается, поэтому разряд прекращается. После прекращения тока между катодом и анодом вновь восстанавливается большое напряжение и счетчик готов к регистрации, следующей частицы. Импульс напряжения, возникающий на сопротивлении R н , усиливается и регистрируется специальным счетным устройством. Пропорциональными счетчики называют потому, что сила тока газового разряда, возникающего после прохождения ионизирующей частицы, пропорциональна числу образованных ею ионов.

Одна из разновидностей пропорциональных счетчиков была предложена Э. Резерфордом и Г.Гейгером в 1908 г. Впоследствии в 1928 г. счетчик был усовершенствован Э. Мюллером и получил название счетчика Гейгера-Мюллера.

Радиоактивность - это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров .

Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. Беккерель заметил, что соли урана, засвечивают завернутую во много слоев фотобумагу невидимым проникающим излучением.

ом в 1912. Действие В. к. основано на явлении конденсации пересыщенного пара, т. e. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль следа быстрой заряженной частицы. Капельки достигают видимых размеров и могут быть сфотографированы. Исследуемые частицы могут либо испускаться помещаемым внутри камеры источником, либо попадать в камеру извне через прозрачное для них окно. В. к. обычно помещают в магнитное поле. Природу и свойства исследуемых частиц можно установить по величине пробега и импульса частиц. Величина импульса измеряется по искривлению следов частиц под действием магнитного поля.

Для исследования частиц с малой энергией камеры заполняют газом при давлении меньше атмосферного; для исследования частиц высоких энергий камеру наполняют газом до давлений в десятки атм. Широко варьируются размеры и форма камер, материалы их стенок. На рис. 1 и 2 приведены снимки ядерных процессов, наблюдавшихся при помощи В. к.

В. к. сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий метод В. к. был практически единственным визуальным методом регистрации ядерных излучений. Однако в последние годы В. к. уступила место пузырьковым камерам (См. Пузырьковая камера) и искровым камерам (См. Искровая камера).

Лит.: Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963.

Е. М. Лейкин.

Рис. 1. Ядерная реакция 14 N (․α, р) 17 О, зарегистрированная в камере Вильсона. На снимке видны следы бомбардирующих ․α-частиц (линии, направленные снизу вверх), а также образующие вилку следы продуктов реакции - протона и ядра 17 О.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Вильсона камера" в других словарях:

    Прибор для наблюдения следов (треков) заряж. ч ц. Основан на конденсации пересыщенного пара на ионах, образующихся вдоль траектории заряж. ч цы. Ч цы могут либо испускаться источником, помещённым внутри камеры, либо попадать в неё извне. Треки… … Физическая энциклопедия

    Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие Вильсона камеры основано на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряженной частицы. В… … Большой Энциклопедический словарь

    Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие камеры Вильсона основано на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряженной частицы.… … Энциклопедический словарь

    Камера Вильсона один из первых в истории приборов для регистрации следов (треков) заряженных частиц. Изобретена шотландским физиком Чарлзом Вильсоном между 1910 и 1912 гг. Принцип действия камеры использует явление конденсации перенасыщенного… … Википедия

    Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие В. к. осн. на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряж. частицы. В дальнейшем… … Естествознание. Энциклопедический словарь

    - (туманная камера), прибор, служащий для идентификации заряженных частиц. Камера была изобретена в 1880 х гг. английским физиком Чарльзом Вильсоном с целью изучения атомной радиации и усовершенствовалась на протяжении нескольких десятилетий.… … Научно-технический энциклопедический словарь

    - (позднелат. camera комната, келья) какая либо закрывающаяся комната либо замкнутое пространство либо устройство, важной частью которого является замкнутая полость: Камера кессон, изолированный от окружающего водоема герметичными… … Википедия

    камера Вильсона - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Wilson chambercloud chamber … Справочник технического переводчика

Это удивительное и относительно простое устройство представляет собой один из самых ранних способов детектирования треков заряженных субатомных частиц и, соответственно, приборов для исследования радиации. Удивительна она тем, что объект микромира (альфа-частица, или даже электрон) способен оставить видимый невооружённым глазом след в макромире. Этакий мост между в норме плохо пересекающимися областями реальности.

Принцип действия туманной камеры достаточно несложен для понимания. Переохлаждённый пар летучего вещества, желательно с низкой температурой плавления (традиционно используется спирт, ацетон или нечто подобное), образующийся над охлаждённой до нужной температуры поверхностью, конденсируется на ионах, оставляемых высокоэнергетической заряженной частицей, которая в результате оставляет туманный след (трек). Камера Вильсона, в отличие от туманной, работает за счёт адиабатического расширения пара, без принудительного охлаждения рабочего тела.

Есть несколько способов сделать туманную камеру дома, без применения сложных криогенных установок, герметичных камер и тому подобного. В целом они сводятся к двум: с использованием холодных расходных материалов (сухой лёд или жидкий азот) или термоэлектрическим способом при помощи элементов Пельтье. Напомню, что элемент Пельтье это такая плоская квадратная штука, которая, при подаче на неё определённых тока и напряжения, начинает греться с одной стороны и охлаждаться с другой, достигая разницы температур в 50-70 градусов (разные Пельтье в зависимости от условий работы и качества изготовления работают по-разному).


Поскольку сухой лёд мне искать было лень, а жидкий азот потребовал бы довольно кропотливой дозировки для достижения нужного диапазона температур, выбраны были Пельтье. В свою очередь, с ними имеются два способа достижения нужных температур в -50 — -70*С. Самый простой — соединение двух элементов последовательно, когда один из элементов посажен на радиатор горячей стороной, а холодной стороной охлаждает горячую сторону второго. При использовании водяного охлаждения этот метод довольно успешно работает, но я бы не рекомендовал его кроме как для первичной пробы сил: слишком нестабильны эффекты туманной камеры. Другой способ — это качественное охлаждение радиатора, и использование одиночного элемента Пельтье. Если охладить его горячую сторону ниже нуля по Цельсию, например, при помощи фреонового холодильника, то на холодной стороне будут достигнуты искомые -60*. Собственно, такое решение и было применено.

Конструктивно сама туманная камера — это просто прозрачный корпус с подвешенным источником паров чистого спирта (чистота довольно критична) — смоченной в нём тряпочкой. Внизу корпуса расположен покрашенный чёрной краской элемент Пельтье на фреоново охлаждаемом радиаторе (конструкция фреонового холодильника — тема для другой записи). Около Пельтье или рядом с ним распологается источник альфа-частиц (в данном случае — Pu-239 из радиоизотопного детектора дыма). После охлаждения системы до рабочей температуры, при боковой подсветке поверхности Пельте становятся видны треки от альфа-частиц. Лучшая видимость достигается при подсветке лазером, разложенным в линию специальной насадкой, как и было сделано здесь: такая подсветка не освещает поверхность Пельтье, но освещает туманные треки, что делает их очень контрастными и хорошо заметными. Но обычный фонарик тоже вполне работает.

Для качественной работы камеры очень желательно поставить неподалёку от рабочей зоны источник статического электричества (или просто микромощный высоковольтный постоянный источник киловольт на 10-20). Он собирает избыточные ионы из камеры, позволяя образовываться новым частицам.

Каждый трек соответствует строго одной частице. Не все частицы их оставляют, но каждый оставленный — несомненный след пролёта.


Такая вот забавная игрушка, связь между миром элементарных частиц и макромиром.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....