Резонансная теория. Теория резонанса

Теория резонанса - теория электронного строения химических соединений, в соответствии с которой распределение электронов в молекулах (в том числе сложных ионах или радикалах), является комбинацией (резонансом) канонических структур с различной конфигурацией двухэлектронных ковалентных связей . Резонансная волновая функция , описывающая электронную структуру молекулы, является линейной комбинацией волновых функций канонических структур .

Иными словами, молекулярная структура описывается не одной возможной структурной формулой, а сочетанием (резонансом) всех альтернативных структур. Теория резонанса - это способ посредством химической терминологии и классических структурных формул визуализировать чисто математическую процедуру построения приближенной волновой функции сложной молекулы.

Следствием резонанса канонических структур является стабилизация основного состояния молекулы; мерой такой резонансной стабилизации является энергия резонанса - разность между наблюдаемой энергией основного состояния молекулы и расчетной энергией основного состояния канонической структуры с минимальной энергией . С позиций квантовой механики это означает, что более сложная волновая функция, представляющая собой линейную комбинацию волновых функций, каждая из которых соответствует одной из канонических структур, точнее описывает молекулу, чем волновая функция структуры с минимальной энергией.

Энциклопедичный YouTube

    1 / 3

    Теория Резонанса

    Резонансные структуры, часть I

    Мезомерный эффект (эффект сопряжения). Часть 1.

    Субтитры

    Нарисуем молекулу бензола. И подумаем, какие интересные для нас процессы происходят в этой молекуле. Итак, бензол. В цикле шесть атомов углерода. Первый, второй, третий, четвертый, пятый и шестой углероды в цикле. Что делает бензол таким особенным? Что отличает его от циклогексана? Конечно же, речь идет о трех двойных связях в цикле. Будем считать, что двойной связью соединены эти два углерода, между этими атомами также двойная связь, как и между этими углеродами. Водороды нарисуем только для того, чтобы помнить, что они вообще здесь есть. Нарисуем их едва заметными. Итак, сколько водородов будет присоединено к этому углероду? Один, два, три валентных электрона уже задействованы. А потому углерод связан только с один водородом. Здесь все тоже самое. Только один водород. Всего четыре валентных электрона. Здесь аналогично. Думаю, вы уже поняли систему. Всего у каждого углерода три связи с атомами углерода: две одинарные связи с двумя атомами углерода и еще одна двойная связь. Соответственно, четвертая связь образуется с водородом. Давайте я нарисую здесь все атомы водорода. Изобразим их темным цветом, чтобы они нас не отвлекали. Вот теперь мы нарисовали бензол. В будущем мы еще не раз с ним столкнемся. Но в этом видео мы рассмотрим или, по крайней мере, попытаемся рассмотреть любопытное свойство бензола, и это, конечно же, резонанс. Это свойство не конкретно бензола, это свойство многих органических молекул. Просто бензол из них, пожалуй, самый занятный. Итак, давайте поразмыслим, что такого может происходить с этой молекулой. Начнем с этого электрона. Выделим его другим цветом. Выберем для этого электрона синий. Итак, вот этот электрон. Что, если этот электрон сместится к этому углероду? У этого углерода связь не разрывается, он сохраняет электрон, который просто переместится сюда. Итак, этот электрон сместился сюда. Теперь у этого углерода появился ненужный пятый электрон. Следовательно, один электрон сместился сюда. Теперь у этого углерода пять электронов. А потому этот электрон вернется к первоначальному атому углерода, который потерял первый электрон. В итоге все атомы углерода остались при своем. Если это произойдет, то мы получим структуру, которая выглядит вот так. Нарисую двойную стрелку, так как процесс может протекать в обоих направлениях. Начнем с углеродной цепочки. Итак, первый углерод, второй, третий, четвертый, пятый и, наконец, шестой углерод. На рисунке слева двойная связь была здесь, значит теперь она сдвинулась сюда. Давайте нарисуем эту двойную связь синим цветом, чтобы подчеркнуть разницу. Теперь двойная связь здесь. Этот синий электрон сместился сюда. Этот синий электрон сместился наверх. Давайте изобразим их разными цветами, для большей наглядности. Скажем, этот электрон будет зеленым. Зеленый электрон мигрировал с этого атома углерода на этот атом углерода. Мы можем представить как это произошло. Теперь рассмотрим этот пурпурный электрон, который был у этого атома углерода, но теперь сместился и перешел к другому углероду сюда. Соответственно, двойная связь также сместилась, на что нам указывает эта стрелка. Осталось рассмотреть синий электрон. Этот синий электрон смещается к первому углероду. А двойная связь, в свою очередь, смещается сюда. Естественно, мы получили две очень и очень схожих молекулы. На самом деле это та же молекула, только перевернутая. Нас больше должно интересовать то, что эти двойные связи постепенно перемещаются то туда, то обратно, образуя то эту структуру, то эту. И они делают это все время. Двойные связи постоянно двигаются. И реальность бензола такова, что ни одна из этих структур не отображает то, что происходит в действительности. Бензол находится в неком переходном состоянии. Реальная структура бензола выглядит скорее вот так. Я сейчас не буду рисовать углероды и водороды. Давайте, разве что, нарисуем водороды вот здесь, раз уж я начал их изображать на первом рисунке. Итак, водороды рисуем здесь. Не забываем о них. Хотя наличие этих водородов всегда подразумевается. Закончили с водородами. Повторюсь, на примере этого кольца мы можем не рисовать углероды и водороды, поскольку они подразумеваются. Итак, реальная структура бензола находится между этой и этой. И в действительности, между каждым углеродом будет по половине двойной связи. То есть на самом деле, структура выглядит как-то так. Здесь будет половина двойной связи, здесь половина двойной связи, здесь половина двойной связи, здесь тоже самое и здесь половина двойной связи. Почти закончили. И вот тут половина двойной связи. В действительности, в молекуле бензола электроны постоянно перемещаются по всему кольцу. И я не имею ввиду переход от одной структуры к другой. Настоящая структура, энергия которой минимальна, представлена вот здесь. Итак, эти структуры Льюиса, хотя, правильнее было бы назвать их каноническими структурами, потому что я нарисовал не все электроны. Мы часто рисуем бензол подобным образом, когда, например, рассматриваем механизм. Но важно понимать, что в результате резонанса этих двух структур, мы получаем переходную структуру, которая и соответствует действительности. Подобное происходит не только с бензолом. Можно привести большое количество примеров. Но мы разберем еще один, чтобы набить руку. Возьмем карбонат-ион. Довольно яркий пример для демонстрации резонансных структур. Итак, карбонат-ион. Углерод соединен двойной связью с одним из атомов кислорода и двумя одинарными связями с другими атомами кислорода. И у этих двух кислородов есть дополнительные электроны. У этого атома кислорода будет один, два, три, четыре пять, шесть валентных… На самом деле, конечно же, семь валентных электронов. Давайте еще раз. Один, два, три, четыре, пять, шесть, семь валентных электронов. И один дополнительный электрон приводит к возникновению отрицательного заряда. Тоже самое справедливо для этого атома. У него один, два, три, четыре, пять, шесть, семь валентных электронов. Один лишний. Значит будет отрицательный заряд. Давайте присмотримся повнимательнее к этой резонансной структуре или же канонической структуре. Как мы уже заметили, этот кислород нейтральный. И у него шесть валентных электронов. Один, два, три, четыре, пять, шесть. Представим себе, что один из этих электронов перейдет к углероду, в результате чего углерод передаст свой электрон верхнему кислороду. Итак, мы можем вообразить ситуацию, в которой этот электрон сместится вот сюда к углероду. И когда углерод получит еще один электрон, то одновременно с этим, атом углерода передаст свой электрон верхнему кислороду, вот сюда. Как изменится структура, если произойдет такой процесс? Итак, если электроны переместятся подобным образом, то вот, что мы увидим. Начнем с углерода. Теперь у углерода здесь только одинарная связь. Здесь рисуем кислород. У кислорода шесть валентных электронов. Один, два, три, четыре, пять, шесть электронов. Но теперь у него появился еще один, вот этот синий. Итак, поскольку у кислорода теперь появился дополнительный седьмой электрон, мы рисуем у кислорода отрицательный заряд. Вот этот кислород, который отдал свой электрон углероду, образует с атомом углерода двойную связь. Нарисуем новую связь вот таким цветом. Итак, двойная связь углерода с этим кислородом внизу. Один электрон кислород отдал, так что у него теперь шесть валентных электронов. Один, два, три, четыре, пять, шесть. И теперь заряд у кислорода нейтральный. С этим кислородом слева ничего не произошло. Поэтому просто скопируем и вставим его. Сначала копируем, а теперь вставляем. Этот кислород остается здесь. Представим ситуацию, при которой вот этот кислород с дополнительным электроном, который, в свою очередь, мог прийти от другого кислорода сверху, будет отдавать свой дополнительный электрон атому углерода. И тогда углерод разорвет двойную связь с другим кислородом. В данном случае вот с этим. Давайте я нарисую это. Возможно ситуация, в которой этот электрон перейдет к углероду… Сформируется двойная связь. И затем углерод отдаст один из своих электронов. Вот этот электрон вернется обратно к кислороду. Что же получится? Если это произойдет, конечная структура будет выглядеть вот так. Начнем с углерода, связанного одинарной связью с кислородом, у которого один, два, три, четыре, пять, шесть, семь валентных электронов. Здесь все по-прежнему. Вы можете назвать это резонансной реакцией, а можете назвать иначе. Здесь по-прежнему отрицательный заряд. Перейдем к этому кислороду. Он вернул себе электрон. И теперь у него опять семь валентных электронов. Один, два, три, четыре, пять, шесть, семь валентных электронов снова. Давайте обозначим тот электрон, который вернулся к кислороду. Сделаем его фиолетовым. И теперь у кислорода отрицательный заряд. Этот кислород, в свою очередь, отдал электрон углероду. И он сформировал новую двойную связь. Вот двойная связь этого кислорода с углеродом. Один электрон кислород отдал, поэтому у него теперь один, два, три, четыре, пять, шесть валентных электронов и нейтральный заряд. Все эти структуры переходят друг в друга. Мы даже можем получить из этой эту структуру. Начав с одной из этих структур, мы можем получить любую другую. Именно это в карбонат-ионе и происходит. Давайте я запишу, что это карбонат-ион. Итак, реальная его структура представляет из себя нечто среднее между этими тремя. Структура карбонат-ион в действительности выглядит вот так. Здесь углерод, связанный с тремя кислородами. Между каждым из трех кислородов и углеродом рисуем связь. И затем еще каждая связь C-O будет иметь на одну треть характер двойной связи. Одна треть связи. Не совсем привычная запись, но максимально приближенная к реальности. Треть всего времени электрон будет находиться здесь. Оставшиеся две трети времени атомы кислорода поровну будут владеть этим электроном. Считается, что у каждого кислорода заряд −2/3. Обычно, конечно же, рисуют одну из этих структур, потому что целыми числами оперировать удобно. Но в действительности карбонат-ионы подвержены резонансу. Электроны, на самом деле, постоянно перемещаются от одной С-О связи к другой. Это и делает молекулу более стабильной. Энергия этой структуры меньше энергии любой из тех, что приведены выше. Тоже самое справедливо и для бензола. Энергия вот этой переходной структуры ниже энергии любой из этих, и потому такая форма бензола стабильнее тех, что нарисованы выше. Subtitles by the Amara.org community

История

Идея резонанса был введена в квантовую механику Вернером Гейзенбергом в 1926 году при обсуждении квантовых состояний атома гелия . Он сравнил структуру атома гелия с классической системой резонирующего гармонического осциллятора .

Модель Гейзенберга была применена Лайнусом Полингом (1928 год) к описанию электронной структуры молекулярных структур. В рамках метода валентных схем Полинг успешно объяснил геометрию и физико-химические свойства целого ряда молекул через механизм делокализации электронной плотности π-связей.

Сходные идеи для описания электронной структуры ароматических соединений были предложены Кристофером Ингольдом . В 1926-1934 годах Ингольд заложил основы физической органической химии, развив альтернативную теорию электронных смещений (теорию мезомерии), призванную объяснить структуру молекул сложных органических соединений, не укладывающуюся в обычные валентные представления. Предложенный Ингольдом для обозначения явления делокализации электронной плотности термин «мезомеризм » (1938), используется преиущественно в немецкой и французской литературе, а английской и русской преобладает «резонанс ». Представления Ингольда о мезомерном эффекте стали важной составной частью теории резонанса. Благодаря немецкому химику Фрицу Арндту были введены, ставшие общепринятыми обозначения мезомерных структур при помощи двунаправленных стрелок.

СССР 40-50 гг.

В послевоенном СССР теория резонанса стала объектом гонения в рамках идеологических кампаний и была объявлена «идеалистической», чуждой диалектическому материализму - и поэтому неприемлемой для использования в науке и образовании:

«Теория резонанса», будучи идеалистической и агностической, противостоит материалистической теории Бутлерова, как несовместимая и непримиримая с ней;… сторонники «теории резонанса» игнорировали её и извращали её существо. «Теория резонанса», будучи насквозь механистической. отрицает качественные, специфические особенности органического вещества и совершенно ложно пытается сводить закономерности органической химии к закономерностям квантовой механики…

…Мезомерийно-резонансная теория в органической химии представляет собою такое же проявление общей реакционной идеологии, как и вейсманизм-морганизм в биологии, как и современный «физический» идеализм, с которыми она тесно связана.

Хотя гонения на теорию резонанса иногда называют «лысенковщиной в химии», история этих гонений имеет ряд отличий от гонений на генетику в биологии . Как отмечает Лорен Грэхэм : «Химики сумели отразить эту серьёзную атаку. Модификации теории носили скорее терминологический характер». В 50-х гг. химики, не опровергая критики теории резонанса, развивали аналогичные теоретические (в том числе - квантовохимические) построения, используя термин «

Химический резонанс

Теория резонанса - теория электронного строения химических соединений, в соответствие с которой распределение электронов в молекулах (в т.ч. сложных ионах или радикалах), является комбинацией (резонансом) канонических структур с различной конфигурацией двухэлектронных ковалентных связей . Резонансная волновая функция , описывающая электронную структуру молекулы, является линейной комбинацией волновых функций канонических структур .

Иными словами, молекулярная структура описывается не одной возможной структурной формулой, а сочетанием (резонансом) всех альтернативных структур.

Следствием резонанса канонических структур является стабилизация основного состояния молекулы, мерой такой резонансной стабилизации является энергия резонанса - разность между наблюдаемой энергией основного состояния молекулы и расчетной энергии основного состояния канонической структуры с минимальной энергией .

Резонансные структуры циклопентадиенид-иона

История

Идея резонанса был введена в квантовую механику Вернером Гейзенбергом в 1926 году при обсуждении квантовых состояний атома гелия . Он сравнил структуру атома гелия с классической системой резонирующего гармонического осциллятора .

Модель Гейзенберга была применена Лайнусом Полингом (1928 год) к описанию электронной структуры молекулярных структур. В рамках метода валентных схем Полинг успешно объяснил геометрию и физико-химические свойства целого ряда молекул через механизм делокализации электронной плотности π-связей.

Сходные идеи для описания электронной структуры ароматических соединений были предложены Кристофером Ингольдом. В 1926-1934 годах Ингольд заложил основы физической органической химии, развив альтернативную теорию электронных смещений (теорию мезомерии), призванную объяснить структуру молекул сложных органических соединений, не укладывающуюся в обычные валентные представления. Предложенный Ингольдом для обозначения явления делокализации электронной плотности термин «мезомеризм » (1938), используется преиущественно в немецкой и французской литературе, а английской и русской преобладает «резонанс ». Представления Ингольда о мезомерном эффекте стали важной составной частью теории резонанса. Благодаря немецкому химику Фрицу Арндту были введены, ставшие общепринятыми обозначения мезомерных структур при помощи двунаправленных стрелок.

В послевоенном СССР теория резонанса стала объектом гонения в рамках идеологических кампаний и была объявлена «идеалистической», чуждой диалектическому материализму - и поэтому неприемлемой для использования в науке и образовани:

«Теория резонанса», будучи идеалистической и агностической, противостоит материалистической теории Бутлерова, как несовместимая и непримиримая с ней;… сторонники «теории резонанса» игнорировали ее и извращали ее существо.

«Теория резонанса», будучи насквозь механистической. отрицает качественные, специфические особенности органического вещества и совершенно ложно пытается сводить закономерности органической химии к закономерностям квантовой механики…

…Мезомерийно-резонансная теория в органической химии представляет собою такое же проявление общей реакционной идеологии, как и вейсманизм-морганизм в биологии, как и современный «физический» идеализм, с которыми она тесно связана.

Кедров Б.М. Против "физического" идеализма в химической науке. Цит. по

Гонения на теорию резонанса получили негативную оценку в мировой научной среде. В одном из журналов Американского химического общества в обзоре, посвящённом положению в советской химической науке, в частности, отмечалось :

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Химический резонанс" в других словарях:

    В ЯМР смещение сигнала ЯМР в зависимости от химического состава вещества, обусловленное экранированием внешнего магнитного поля электронами атомов. При появлении внешнего магнитного поля возникает диамагнитный момент атомов, обусловленный… … Википедия

    Изображение мозга человека на медицинском ЯМР томографе Ядерный магнитный резонанс (ЯМР) резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν… … Википедия

    - (ЯМР) резонансное поглощение электромагнитной энергии веществом, обусловленное переориентацией магнитных моментов атомных ядер. ЯМР один из методов радиоспектроскопии (См. Радиоспектроскопия). Наблюдается в сильном постоянном магнитном… …

    Содержание … Википедия

    Наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии (См. Электронные теории в органической химии)). Н. х. важнейшая… … Большая советская энциклопедия

    Большая советская энциклопедия

    I Химия I. Предмет и структура химии Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… … Большая советская энциклопедия

    Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… … Большая советская энциклопедия

    Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, довольно однородные кристаллические вещества с упорядоченной внутренней… … Энциклопедия Кольера

    Наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… … Энциклопедия Кольера электронная книга


Если с индуктивным эффектом обычно проблем не бывает, то второй тип электронных эффектов гораздо труднее поддается освоению. Это очень плохо. Теория резонанса (мезомерия) была и остается одним из важнейших инструментов обсуждения структуры и реакционной способности органических соединений и заменить ее нечем. А как же квантовая наука?! Да, правда, в нашем веке стали легкодоступными квантово-химические расчеты, и теперь каждый исследователь или даже студент, потратив весьма немного времени и сил, может бесплатно раскочегарить на своем компьютере расчеты, уровню которых еще 20 лет назад позавидовали бы все нобелевские лауреаты. Увы, результаты расчетов не так просто использовать – они плохо поддаются качественному анализу и зрительно не очень понятны. Сидеть и смотреть на бесконечные столбики цифр и рассматривать запутанные и перегруженные картинки орбиталей и электронной плотности можно долго, но пользу из этого извлекают немногие. Старая добрая теория резонанса в этом смысле гораздо эффективнее – она быстро и довольно надежно дает именно качественный результат, позволяет видеть, как распределена электронная плотность в молекуле, найти реакционные центры, оценить устойчивость важных частиц, участвующих в реакциях. Поэтому без умения нарисовать резонансные структуры, оценить их вклад, и понять, на что влияет делокализация, никакой разговор об органической химии невозможен.

Есть ли разница между понятиями мезомерии и резонанса? Была когда-то, но уже давно не имеет значения – сейчас это интересно только историкам химии. Будем считать, что эти понятия взаимозаменимы, можно использовать какое-то одно или оба в любых пропорциях. Один нюанс есть – когда говорят не о делокализации в общем, а об электронном эффекте заместителя, предпочитают термин мезомерный эффект (и обозначают соответственно буквой M). Кроме того, еще используют и слово “сопряжение” (точнее, π-сопряжение).

И когда возникает эта мезомерия? Это понятие применимо только к π-электронам и только в том случае, если в молекуле есть хотя бы два атома с такими электронами, расположенные рядом. Атомов таких может быть сколько угодно, хоть миллион, и расположены они могут быть не только линейно, но и с любыми разветвлениями. Необходимо только одно – чтобы они были рядом, образовывали неразрывную последовательность. Если последовательность линейна, она называется “цепью сопряжения”. Если разветвлена, это усложняет дело, так как возникает не одна цепь сопряжения, а несколько (это называется кросс-сопряжение), но на этом этапе про это можно не думать, мы не будем внимательно рассматривать такие системы. Важно, что любой атом без π-электронов прерывает такую последовательность (цепь сопряжения), или разрывает ее на несколько независимых.

На каких атомах есть π-электроны?

  • а) на атомах, участвующих в кратной (двойной, тройной) связи – на каждом таком атоме один π-электрон;
  • б) на атомах неметаллов 5-7 групп (азот, кислород, и т.п.) в большинстве случаев, кроме атомов азота аммониевого типа и похожих на них так называемых ониевых атомах, у которых просто нет свободных неподеленных пар);
  • в) на атомах углерода с отрицательным зарядом (в карбанионах).

Кроме этого в сопряжении участвуют пустые π-орбитали в атомах с 6-ю валентными электронами (секстетных атомах): бора, углерода с положительным зарядом (в карбениевых ионах), а также аналогичных частицах с атомами азота, кислорода (это пока отложим в сторону). Договоримся пока не трогать элементы третьего и т.д. периодов, даже серу и фосфор , потому что для них нужно учитывать участие d-оболочек и не работает правило октета Льюиса. Корректно рисовать граничные структуры для молекул с участием этих элементов не так просто, но нам это, скорее всего, и не понадобится. Если понадобится, рассмотрим отдельно.

Поищем сопряженные фрагменты в реальных молекулах. Все просто – находим кратные связи, атомы с парами и секстетные атомы, находящиеся рядом друг с другом в любых (пока) комбинациях. Важно, что наблюдатель, идущий по цепи сопряжения, не должен наступать на атомы, не принадлежащие к этим трем типам. Как только встречаем такой атом, цепь заканчивается.

Теперь посмотрим на то, как это изображать. Изображать будем двумя способами – стрелками смещения электронной плотности и резонансными (граничными) структурами.

Тип 1. Находим в сопряженной системе донорные и акцепторные центры...

Донорные центры – это атомы с неподеленной парой. Акцепторные фрагменты – это секстетные атомы. Делокализацию всегда показывают от донора, но к акцептору в полном соответствии с их ролями. Если донор и акцептор оказались рядом, все просто. Стрелкой покажите смещение от пары к соседней связи. Это будет означать образование π-связывания между соседними атомами, и таким образом секстетный атом получит возможность заполнить пустую орбиталь и перестать быть секстетным. Это очень хорошо. Изображение граничных структур также дело немудреное. Слева рисуем исходную, потом специальную резонансную стрелку, потом структуру, в которой пара на доноре полностью перешла на образование полноценной π-связи. Реальная структура такого катиона будет гораздо ближе к правой граничной структуре, потому что заполнение секстета очень выгодно, а кислород при этом почти ничего не теряет, сохраняя восемь валентных электронов (пара переходит в связь, которая обслуживатся тоже двумя электронами).

Тип 2. Кроме донора и акцептора еще и кратные связи...

Здесь может быть два варианта. Первый – когда кратные связи вставлены между донором и акцептором. Тогда они образуют своеобразный удлинитель для системы, разобранной в Типе 1.

Если двойных связей не одна, а несколько, выстроенных в цепочку, то ситация усложняется не сильно. Стрелками показываем смещение плотности от пары, и последовательное смещение каждой двойной связи вплоть до заполнения секстета потребует дополнительных стрелок. Граничных структур по-прежнему две, и вновь вторая намного выгоднее и близко отражает реальную структуру катиона.

Случай, когда вместо обычных двойных связей бензольное кольцо, вполне вписывается в эту схему. Важно только рисовать бензольное кольцо не гайкой, а нормальной структурой Кекуле. С гайкой сопряжение изобразить не получится. Тогда мы сразу поймем две важные вещи: во-первых, что бензольное кольцо в делокализации работает как сопряженная система двойных связей и ни о какой ароматичности думать не нужно; во-вторых, что пара- и орто-расположение донора/акцептора сильно отличается от мета-расположения, в котором сопряжение отсутствует. На рисунках розовеньким напылением показаны пути сопряжения, и видно, что в орто-случае работает одна двойная связь, в пара-случае – две, а в мета-случае, как его ни нарисуй, путь сопряжения разрывается, и сопряжения нет.

Если попадаются не двойные, а тройные связи, то ничего не меняется. Нужно просто представить тройную связь как две взаимно перпендикулярные π-связи, и одну из них использовать, а вторую оставить в покое. Не пугайтесь – получается немного страшновато от обилия двойных связей в граничной структуре. Обратите внимание, что двойные связи на одном атоме углерода обозначают на прямой (так как этот атом углерода имеет sp-гибридизацию), и, чтобы не запутаться, обозначают эти атомы жирными точками.

Тип 3. В цепи сопряжения либо донор, либо акцептор (но не оба сразу), и кратные связи С=С или С≡С

В этих случаях кратная связь (или цепочка кратных связей) принимает на себя роль отсутствующего: если есть донор, то она (они) становятся акцептором, и наоборот. Это естественное следствие того довольно очевидного обстоятельства, что электронная плотность при сопряжении смещается в определенном направлении от донора к акцептору и никак иначе. Если связь одна, то все совсем просто. Особенно важным является случаи, когда донором является карбанион, а также когда акцептором является карбокатион. Обратите внимание, что в этих случаях граничные структуры одинаковы, из чего следует что реальная структура таких частиц (аллильного катиона и аниона ) находится ровно посредине между граничными структурами. Иными словами, в реальных аллильных катионах и анионах обе связи углерод-углерод совершенно одинаковы, а их порядок где-то посредине между одинарной и двойной. Заряд (что положительный, что отрицательный) поровну распределен на первом и третьем атомах углерода. Не рекомендую использовать довольно распространенную манеру изображать делокализацию пунктирной скобкой или полуторными пунктирными связями, потому что этот способ дает ложное представление от равномерной делокализации заряда по всем атомам углерода.

Если кратных связей больше, действуем по аналогии, добавляем стрелки, вовлекая каждую кратную связь в делокализацию. А вот граничных структур нужно рисовать не две, а столько, сколько есть кратных связей в цепи плюс исходную. Видим, что заряд делокализуется по нечетным атомам. Реальная структура будет где-то посредине.

Обобщим на донор – атом без заряда, но с парой. Стрелки будут такие же, как в случае аллильного карбаниона. Граничные структуры формально тоже, но они в этом случае неравноценны. Структуры с зарядами гораздо менее выгодны чем нейтральные. Реальная структура молекулы ближе с исходной, но картина делокализации позволяет понять, почему на дальнем атоме углерода возникает избыточная электронная плотность.

Делокализация в бензольном кольце опять требует представления с двойными связями, и рисуется вполне аналогично. так как связи три и все они участвуют, то граничных структур будет, помимо исходной, еще три, а заряд (плотность) размажется по орто и пара положениям.

Тип 4. В цепи сопряжения донор и кратные связи, некоторые из которых содержат гетероатом (С=O, C=N, N=O и т.п.)

Кратные связи с участием гетероатомов (напомню, что мы условились пока ограничиться элементами второго периода, то есть речь идет только о кислороде и азоте) похожи на кратные углерод-углеродные связи тем, что π-связь легко смещается от доного атома к другому, но отличаются тем, что смещение происходит только в одном направлении, что делает такие связи в подавляющем большинстве случаев только акцепторами. Двойные связи с азотом и кислородом встречаются в множестве важнейших функциональных групп (C=O в альдегидах, кетонах, кислотах, амидах, и т.п.; N=O в нитро-соединениях, и т.п.). Данный тип делокализации поэтому чрезвычайно важен, и мы будем часто с ним встречаться.

Итак, если есть донор и такая связь, то смещение плотности показать очень легко. Из двух граничных структур будет преобладать та, у которой заряд находится на более электроотрицательном атоме, впрочем, и роль второй структуры также всегда весьма существенна. Естественно, если случай симметричный, как тот, что показан на второй строчке, то обе структуры одинаковы и представлены поровну – реальная структура будет посредине точно так же, как в ранее рассмотренном случае аллильного аниона.

Если в молекуле или ионе есть еще и сопряженные углерод-углеродные связи, они будут скромно участвовать в общем смещении плотности. Такова же и роль бензольного кольца с орто- или пара-расположением донора и акцептора. Обратите внимание, что граничных структур всегда только две – они показывают два крайних положения для смещения плотности. Промежуточных структур (там, где плотность уже сместилась от донора на кратную связь, но дальше не прошла) рисовать не нужно. Вообще-то они есть и вполне законны, но их роль в делокализации пренебрежимо мала. Третий пример на представленной схеме показывает, как рисовать нитро-группу. Она поначалу пугает обилием зарядов, но если посмотреть на нее просто нак на двойную связь азот-кислород, то смещение рисуется точно так же, как и для любых других кратных связей с гетероатомами, а те заряды, которые там уже есть, нужно просто оставить в покое и не трогать.

И еще один распространенный вариант – донор один, а акцепторных кратных связей несколько (две, три). Строго говоря, в этом случае не одна цепь сопряжения, а две, три. Это увеличивает число граничных структур, и также может быть показано стрелками, хотя этот способ не вполне корректен, так как от одной донорной пары будет несколько стрелок. На этом примере хорошо видно, что граничные структуры – более универсальный способ, хотя и более громоздкий.

А что еще нужно знать про возможность сопряжения? Еще нужно представлять себе, как устроена молекула (частица). Для сопряжения необходимо, чтобы орбитали π-электронов были параллельны (коллинеарны, лежали бы в одной плоскоси), или составляли бы угол, сильно отличный от прямого. Это звучит совсем тухло – как это собственно узнать?! Не все так страшно, с действительно сложными случаями мы пока не встретимся. Но одна вещь вполне очевидна: если на одном атоме не одна, а две π-орбитали, то они взаимно строго перпендикулярны и не могут одновременно участвовать в одной цепи сопряжения. Поэтому не сопряжены двойные связи в 1,2-диенах (алленах), диоксиде углерода и похожих молекулах (кумуленах и гетерокумуленах); не сопряжены π-связи кольца и неподеленая пара в фенильном анионе, и т.п.

РЕЗОНАНСА ТЕОРИЯ , теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой, а сочетанием (резонансом) всех альтернативных структур. Идея такого способа описания электронного строения принадлежит Л. Полингу (1928). Р. т. является развитием классич. теории хим. строения для молекул, ионов, радикалов, строение к-рых можно представить в виде неск. разл. структурных ф-л, отличающихся способом распределения электронных пар между атомными ядрами. Согласно Р. т., строение таких соед. является промежуточным между отдельными возможными классич. структурами, причем вклад каждой отдельной структуры можно учесть при помощи разл. модификаций квантовомех. метода валентных связей (см. Валентных связей метод).

Для соед. с сопряженными связями из всех возможных структур с разложением типами спаривания электронов кратных связей достаточно рассмотреть лишь структуры с неперекрещивающимися связями (канонич. структуры). Электронное строение бензола описывается резонансом пяти канонич. структур:

Волновая ф-ция молекулы бензола по Полингу представляет линейную комбинацию:

Y = 0,624(Y I + Y II) + 0,271(Y III + Y IV + Y V).

Откуда следует, что осн. вклад (примерно 80%) в волновую ф-цию вносят кекулевские структуры I и II. Их эквивалентность и эквивалентность структур III-V объясняют вырав-ненность всех углерод-углеродных связей в молекуле бензола и их промежуточный (примерно полуторный) характер между простой и двойной связями углерод-углерод. Это предсказание находится в полном соответствии с экспериментально найденными длиной связи С-С в бензоле (0,1397 нм) и св-вами симметрии его молекулы (группа симметрии D 6h).

Р. т. с успехом применяют для описания строения и св-в ионов и радикалов. Так, строение карбонат-иона представляют как резонанс (обозначается двусторонней стрелкой) трех структур, каждая из к-рых вносит одинаковый вклад в волновую ф-цию:

Поэтому ион обладает тригональной симметрией (группа симметрии V 3h ), и каждая связь С-О имеет на 1 / 3 характер двойной связи.

Строение аллильного радикала не соответствует ни одной из классич. структур VI и VII и должно описываться их резонансом:


Спектр ЭПР аллильного радикала свидетельствует о том, что неспаренный электрон не локализован ни на одной из концевых метиленовых групп, а распределен между ними так, что радикал имеет группу симметрии С 2h , причем энергетич. барьер вращения концевых метиленовых групп (63 кДж/моль) имеет промежуточный значение между величинами, характерными для барьеров вращения вокруг простой и двойной связи С-С.

В соед., включающих связи между атомами с существенно разл. электроотрицательностями, значит. вклад в волновую ф-цию вносят резонансные структуры ионного типа. Строение СО 2 в рамках Р. т. описывается резонансом трех структур:

Длина связи между атомами С и О в этой молекуле меньше, чем длина двойной связи С=О.

Поляризация связей в молекуле формамида, приводящая к потере мн. св-в, характерных для карбонильной группы, объясняется резонансом:

Резонанс структур ведет к стабилизации осн. состояния молекулы, иона или радикала. Мерой этой стабилизации служит энергия резонанса, к-рая тем больше, чем больше число возможных резонансных структур и чем больше число резонирующих низкоэнергетич. эквивалентных структур. Энергию резонанса можно рассчитать при помощи метода валентных связей или метода мол. орбиталей (см. Молекулярных орбиталей методы )как разность энергий осн. состояния молекулы и ее изолир. связей или осн. состояния молекулы и структуры, моделирующей одну из устойчивых резонансных форм.

По своей осн. идее Р. т. очень близка к теории мезомерии (см. Мезомерия ), однако носит более количеств. характер, ее символика вытекает непосредственно из классич. структурной теории, а квантовомех. метод валентных связей служит прямым продолжением Р. т. В силу этого Р. т. продолжает сохранять определенное значение как удобная и наглядная система структурных представлений.

Лит.: Паулинг Л., Природа химической связи, пер. с англ., М.-Л., 1947; Уэланд Дж., Теория резонанса и ее применение в органической химии, пер. с англ., М., 1948; Полинг Л., "Ж. Весе. Хим. об-ва им. Д. И. Менделеева", 1962 т. 7, № 4, с. 462-67. В. И. Минкин.

Полезные интернет ресурсы:

Удобным способом изображения делокализации в сопряженных системах является изображение с помощью резонансных структур .

При написании резонансных структур следует соблюдать следующие правила:

1. Атомы и молекулы не меняют своего положения; изменяется положение НЭП и π-электронов кратных связей.

2. Каждая резонансная структура, приписываемая данному соединению, должна иметь одну и ту же сумму π-электронов, включая π-связи и НЭП.

3. Между резонансными структурами ставят резонансную стрелку «↔».

4. В резонансных структурах не принято обозначение электронных эффектов при помощи прямых и изогнутых стрелок.

5. Набор резонансных структур молекулы, иона или радикала следует заключать в квадратные скобки.

Например:

При оценке резонансной стабилизации молекул и частиц, а также при сравнении относительных энергий различных резонансных структур необходимо руководствоваться следующими правилами:

1. Энергия реальной молекулы меньше. Чем энергия любой из резонансных структур.

2. чем больше резонансных структур можно написать для данной молекулы или частицы, тем она стабильнее.

3. При прочих равных условиях более стабильными являются резонансные структуры с отрицательным зарядом на наиболее электроотрицательном атоме и с положительным зарядом на наиболее электроположительном атоме.

4. Резонансные структуры, в которых все атомы имеют октет электронов, более стабильны.

5. максимальную стабильность имеют частицы, для которых резонансные структуры являются эквивалентными, а соответственно имеют одинаковую энергию.

5.2. ТЕОРИЯ КИСЛОТ И ОСНОВАНИЙ В ОРГАНИЧЕСКОЙ ХИМИИ

В органической химии действуют две основные теории кислот и оснований. Это теории Бренстеда и Льюиса.

Определение: Согласно теории Бренстеда кислотой является любое вещество, способное диссоциировать с отщеплением протона. Т.е. кислота – это донор протонов. Основанием является любое вещество, способное присоединять протон. Т.е. основание – это акцептор протонов.

Согласно теории Льюиса кислотой является любая молекула или частица, способная принимать электроны на вакантную орбиталь. Т.е. кислота – это акцептор электронов. Основанием является любая молекула или частица, способная быть донором электронов. Т.е. основание – это донор электронов.

Определение: Частица, образующаяся из кислоты после диссоциации и несущая отрицательный заряд - называется сопряженным основанием. Частица, образующаяся из основания после присоединения протона и несущая положительный заряд - называется сопряженной кислотой.

5.2.1. Кислоты Бренстеда

Характеристикой силы кислот, по отношению к воде, является константа диссоциации, являющаяся константой равновесия следующей реакции:

Наиболее известные примеры кислот в органической химии это карбоновые кислоты алифатические, например уксусная кислота:

и бензойная:

Карбоновые кислоты являются кислотами средней силы. В этом можно убедиться сравнивая значения рК карбоновых кислот и некоторых других приведенных ниже:

Отщеплять протон могут органические соединения, относящиеся к разным классам органических соединений. Среди органических соединений различают ОН-, SH-, NH- и СН-кислоты. К ОН-кислотам относятся карбоновые кислоты, спирты и фенолы. К NH-кислотам относятся амины и амиды. К СН-кислотам относятся нитроалканы, карбонильные соединения, сложные эфиры, терминальные алкины. В очень слабым СН-кислотам относятся алкены, ароматические углеводороды и алканы.

Сила кислоты тесно связана с устойчивостью сопряженного основания. Чем устойчивее сопряженное основание, тем более кислотно-основное равновесие смещено в строну сопряженных основания и кислоты. Стабилизация сопряженной кислоты может быть обусловлена следующими факторами:

Чем выше электроотрицательность атома, тем сильнее он удерживает он электроны в сопряженном основании. Например, рК фтористого водорода 3.17; рК воды 15.7; рК аммиака 33 и рК метана 48.

2. Стабилизация аниона по мезомерному механизму. Например, в карбоксилат-анионе:

В алкоксид-ионе, например:

такая стабилизация невозможна. Соответственно для уксусной кислоты рК=4.76, рК метилового спирта 15.5.

Другим примером стабилизации сопряженного основания является фенолят-ион, образующийся в результате диссоциации фенола:

Для образовавшегося феноксид (или фенолят)-иона можно построить резонансные структуры, отражающие делокализацию отрицательного заряда по ароматическому кольцу:

Соответственно рК фенола равно 9.98, а метанола, для которого невозможно построить резонансные структуры имеет рК равное 15.5.

3. Введение электронодонорных заместителей дестабилизирует сопряженное основание и соответственно снижает силу кислоты:

4. Введение электроноакцепторных заместителей стабилизирует сопряженное основание и повышает силу кислот:

5. Удаление по цепи электроноакцепторного заместителя от протонодонорной группы ведет к снижению силы кислоты:

Приведенные данные иллюстрируют быстрое затухание индуктивного эффекта с увеличением углеводородной цепи.

Особое внимание следует уделить СН-кислотам , поскольку, образующиеся при их диссоциации сопряженные основания, в качестве которых выступают карбанионы. Эти нуклеофильные частицы являются промежуточными во многих органических реакциях.

СН-кислоты наиболее слабые из кислот всех типов. Продуктом кислотной диссоциации является карбанион – частица, в которой основой является атом углерода, несущий отрицательный заряд. Такая частица имеет тетраэдрическое строение. НЭП занимает sp 3 -гибридную орбиталь. Сила СН-кислоты определяется теми же факторами, чито и сила ОН-кислоты. Ряд стабилизирующего влияния заместителей совпадает с рядом увеличения их электроноакцепторных свойств:

Среди СН-кислот особый интерес представляют аллил-анион и бензил-анион. Эти анионы можно представить в форме резонансных структур:

Эффект делокализации отрицательного заряда в бензил-анионе столь велик, что его геометрия приближается к плоской. При этом углеродный атом карбанионного центра меняет гибридизацию с sp 3 на sp 2 .

Последние материалы раздела:

Презентация на тему
Презентация на тему "квадратный корень из произведения" Разложение на простые множители

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без...

Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г
Буденный Семён Михайлович (), советский военачальник, маршал Советского Союза (1935 г

история создания песни "Марш Буденного", презентация,фонограмма и текст песни. Скачать:Предварительный просмотр:Конкурс «Военная песня» «Марш...

Бактерии- древние организмы
Бактерии- древние организмы

Археология и история – это две науки, тесно переплетенные между собой. Археологические исследования дают возможность узнать о прошлом планеты,...