Решение уравнений с модулем. Решение показательных уравнений

Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа , и как правильно раскрывать выражения, содержащие знак модуля , то наличие в уравнении выражения, стоящего под знаком модуля , перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак "+" и абсолютное значение 5.

Число -5 имеет знак "-" и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x), если f(x) ≥ 0, и

|f(x)|= - f(x), если f(x) < 0

Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение, содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля .

Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x 2 +4x-3

1. Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка: х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При х≥3 |x-3|=x-3, и наше уранение имеет вид:

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

и решим это уравнение.

Это уравнение имеет корни:

х 1 =0, х 2 =3

Внимание! поскольку уравнение x-3=-x 2 +4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 2 =3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

х 1 =2, х 2 =3

Внимание! поскольку уравнение 3-х=-x 2 +4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 1 =2.

Итак: из первого промежутка мы берем только корень х=3, из второго - корень х=2.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

Квадратные уравнения.

Квадратное уравнение - алгебраическое уравнение общего вида

где x - свободная переменная,

a, b, c, - коэффициенты, причём

Выражение называют квадратным трёхчленом.

Способы решения квадратных уравнений.

1. СПОСОБ : Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х - 24 = 0 . Разложим левую часть на множители:

х 2 + 10х - 24 = х 2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2 , а также при х = - 12 . Это означает, что число 2 и - 12 являются корнями уравнения х 2 + 10х - 24 = 0 .

2. СПОСОБ : Метод выделения полного квадрата.

Решим уравнение х 2 + 6х - 7 = 0 . Выделим в левой части полный квадрат.

Для этого запишем выражение х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2 х 3.

В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2 х 3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

х 2 + 6х - 7 = 0 ,

прибавляя к ней и вычитая 3 2 . Имеем:

х 2 + 6х - 7 = х 2 + 2 х 3 + 3 2 - 3 2 - 7 = (х + 3) 2 - 9 - 7 = (х + 3) 2 - 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 - 16 =0, (х + 3) 2 = 16.

Следовательно, х + 3 - 4 = 0, х 1 = 1, или х + 3 = -4, х 2 = -7.

3. СПОСОБ : Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах 2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а 2 х 2 + 4аbх + 4ас = 0,

((2ах) 2 + 2ах b + b 2) - b 2 + 4ac = 0,

(2ax + b) 2 = b 2 - 4ac,

2ax + b = ± √ b 2 - 4ac,

2ax = - b ± √ b 2 - 4ac,

Примеры .

а) Решим уравнение: 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 - 4ac = 7 2 - 4 4 3 = 49 - 48 = 1,

D > 0, два разных корня;

Таким образом, в случае положительного дискриминанта, т.е. при

b 2 - 4ac >0 , уравнение ах 2 + bх + с = 0 имеет два различных корня.

б) Решим уравнение: 4х 2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b 2 - 4ac = (-4) 2 - 4 4 1= 16 - 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b 2 - 4ac = 0 , то уравнение

ах 2 + bх + с = 0 имеет единственный корень,

в) Решим уравнение: 2х 2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b 2 - 4ac = 3 2 - 4 2 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.


Итак, если дискриминант отрицателен, т.е. b 2 - 4ac < 0 , уравнение

ах 2 + bх + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах 2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

х 2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x 1 x 2 = q,

x 1 + x 2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0 ), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p . Если р < 0 , то оба корня отрицательны, если р < 0 , то оба корня положительны.

Например,

x 2 – 3x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = - 3 < 0;

x 2 + 8x + 7 = 0; x 1 = - 7 и x 2 = - 1, так как q = 7 > 0 и p= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0 ), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Например,

x 2 + 4x – 5 = 0; x 1 = - 5 и x 2 = 1, так как q= - 5 < 0 и p = 4 > 0;

x 2 – 8x – 9 = 0; x 1 = 9 и x 2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.

Примеры.

1) Решим уравнение 345х 2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х 1 = 1, х 2 = c/a = -208/345.

Ответ: 1; -208/345.

2)Решим уравнение 132х 2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

х 1 = 1, х 2 = c/a = 115/132.

Ответ: 1; 115/132.

Б. Если второй коэффициент b = 2k четное число, то формулу корней

Пример.

Решим уравнение 3х2 - 14х + 16 = 0 .

Решение . Имеем: а = 3, b = - 14, с = 16, k = - 7 ;

D = k 2 – ac = (- 7) 2 – 3 16 = 49 – 48 = 1, D > 0, два различных корня;

Ответ: 2; 8/3

В. Приведенное уравнение

х 2 + рх + q= 0

совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней

Принимает вид:

Формулу (3) особенно удобно использовать, когда р - четное число.

Пример. Решим уравнение х 2 – 14х – 15 = 0.

Решение. Имеем: х 1,2 =7±

Ответ: х 1 = 15; х 2 = -1.

5. СПОСОБ: Решение уравнений графически.

Пример. Решить уравнение х2 - 2х - 3 = 0.

Построим график функции у = х2 - 2х - 3

1) Имеем: а = 1, b = -2, х0 = = 1, у0 = f(1)= 12 - 2 - 3= -4. Значит, вершиной параболы служит точка (1; -4), а осью параболы - прямая х = 1.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = -1 и х = 3.

Имеем f(-1) = f(3) = 0. Построим на координатной плоскости точки (-1; 0) и (3; 0).

3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис. 68).

Корнями уравнения х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения таковы: х1 = - 1, х2 - 3.

    Решите уравнение х 2 +(1-х) 2

    Докажите, что нет целых чисел, которые от перестановки начальной цифры в конец, увеличиваются в 5 раз.

    В некотором царстве каждые двое – либо друзья, либо враги. Каждый человек может в некоторый момент поссориться со всеми друзьями и помириться со всеми врагами. Оказалось, что каждые три человека могут таким образом стать друзьями. Докажите, что тогда и все люди в этом царстве могут стать друзьями.

    В треугольнике одна из медиан перпендикулярна одной из биссектрис. Докажите, что одна из сторон этого треугольника вдвое больше другой.

Задания для проведения районной (городской) олимпиады школьников по математике.

    По стрельбе из мишени спортсмен выбивал только по 8,9 и 10 очков. Всего он, сделав более 11 выстрелов, выбил ровно 100 очков. Сколько выстрелов сделал спортсмен, и какие были попадания?

    Докажите истинность неравенства:

3. Решите уравнение:

    Найдите трехзначное число, которое уменьшается в 7 раз после зачеркивания в нем средней цифры.

    В треугольнике АВС проведены биссектрисы из вершин А и В. Затем из вершины С проведены прямые, параллельные этим биссектрисам. Точки Д и Е пересечения этих прямых с биссектрисами соединены. Оказалось, что прямые ДЕ и АВ параллельны. Докажите, что треугольник АВС – равнобедренный.

Задания для проведения районной (городской) олимпиады школьников по математике.

    Решите систему уравнений:

    На сторонах АВ и АД параллелограмма АВСД взяты соответственно точки Е и К так, что отрезок ЕК параллелен диагонали ВД. Докажите, что площади треугольников ВСЕ и СДК равны.

    Группу туристов решили рассадить по автобусам так, чтобы в каждом автобусе было одинаковое число пассажиров. Сначала в каждый автобус сажали по 22 человека, однако оказалось, что при этом не удается посадить одного туриста. Когда же один автобус уехал пустым, то в оставшиеся автобусы все туристы сели поровну. Сколько первоначально было автобусов и сколько туристов в группе, если известно, что в каждый автобус помещается не более 32 человек?

Задания для проведения районной (городской) олимпиады школьников по математике.

    Решите систему уравнений:

    Докажите, что четыре расстояния от точки окружности до вершины вписанного в нее квадрата не могут одновременно быть рациональными числами.

Возможные решения задач

1. Ответ: х=1, х=0,5

От перестановки начальной цифры в конец значность числа не изменится. При этом, по условию задачи, должны получить число, в 5 раз большее первого числа. Следовательно, первая цифра искомого числа должна равняться 1 и только 1. (т.к. если первая цифра будет 2 или больше, то изменится значность, 2*5=10). При перестановке 1 в конец, полученное число оканчивается на 1, следовательно на 5 не делится.

Из условия следует, что если А и В – друзья, то С либо их общий враг, либо общий друг (иначе им троим не примириться). Возьмем всех друзей человека А. Из сказанного следует, что все они дружны между собой и враждуют с остальными. Пусть теперь А и его друзья по очереди ссорятся с друзьями и мирятся с врагами. После этого все окажутся друзьями.

Действительно, пусть А первым поссорился со своими друзьями и помирился со своими врагами, но тогда каждый их его бывших друзей будет с ним мириться, а бывшие враги останутся друзьями. Итак, все люди оказываются друзьями А, а следовательно, и друзьями между собой.

Число 111 делится на 37, поэтому на 37 делится и названная сумма.

По условию, число делится на 37, поэтому и сумма

Делится на 37.

Заметим, что указанные медиана и биссектриса не могут выходить из одной вершины, так как в противном случае угол при этой вершине был бы больше 180 0 . Пусть теперь в треугольнике АВС биссектриса АD и медиана СЕ пересекаются в точке F. Тогда AF – биссектриса и высота в треугольнике АСЕ, значит этот треугольник равнобедренный (АС=АЕ), а так как СЕ – медиана, то АВ = 2АЕ и, следовательно, АВ =2АС.

Возможные решения задач

1. Ответ: 9 выстрелов по 8 очков,

2 выстрела по 9 очков,

1 выстрел по 10 очков.

Пусть x выстрелов сделал спортсмен, выбивая по 8 очков, y выстрелов по 9 очков, z выстрелов по 10 очков. Тогда можно составить систему:

Используя первое уравнение системы, запишем:

Из этой системы следует, что x + y + z =12

Умножим второе уравнение на (-8) и сложим с первым. Получим, что y +2 z =4 , откуда y =4-2 z , y =2(2- z ) . Следовательно, у – четное число, т.е. y=2t , где .

Следовательно,

3. Ответ: х = -1/2, х = -4

После приведения дробей к одному знаменателю получаем

4. Ответ: 105

Обозначим через x , y , z соответственно первую, вторую и третью цифру искомого трехзначного числа. Тогда его можно записать в виде . После вычеркивания средней цифры получится двузначное число . По условию задачи , т.е. неизвестные цифры x , y , z удовлетворяют уравнению

7(10 x + z )=100 x +10 y + x , которое после приведения подобных членов и сокращений принимает вид 3 z =15 x +5 y .

Из этого уравнения следует, что z должно делиться на 5 и должно быть положительным, так как по условию . Поэтому z =5, а цифры х, у удовлетворяют уравнению 3=3х + у, которое в силу условия имеет единственное решение х =1, у = 0. Следовательно, условию задачи удовлетворяет единственное число 105.

Обозначим буквой F точку, в которой пересекаются прямые АВ и СЕ. Так как прямые DB и CF параллельны, то . Ввиду того, что BD – биссектриса угла АВС, заключаем, что . Отсюда следует, что , т.е. треугольник BCF равнобедренный и BC=BF. Но из условия следует, что четырехугольник BDEF – параллелограмм. Поэтому BF = DE, и, значит ВС = DE. Аналогично доказывается, что АС = DE. Это приводит к требуемому равенству.

Возможные решения задач

1.

Отсюда (х + у) 2 = 1 , т.е. х + у = 1 или х + у = -1 .

Рассмотрим два случая.

а) х + у = 1 . Подставив х = 1 – у

б) х + у = -1 . После подстановки х = -1-у

Итак, решениями системы могут быть лишь следующие четыре пары чисел: (0;1), (2;-1), (-1;0), (1;-2). Подстановкой в уравнения исходной системы убеждаемся, что каждая из этих четырех пар является решением системы.

Треугольники CDF и BDF имеют общее основание FD и равные высоты, так как прямые ВС и AD параллельны. Следовательно, их площади равны. Аналогично, равны площади треугольников BDF и BDE, так как прямая BD параллельна прямой EF. И равны площади треугольников BDE и BCE, так как АВ параллельна CD. Отсюда и следует требуемое равенство площадей треугольников CDF и BCE.

Учитывая область определения функции, построим график.

Используя формулу выполним дальнейшие преобразования

Применяя формулы сложения и выполняя дальнейшие преобразования, получим

5. Ответ: 24 автобуса, 529 туристов.

Обозначим через k первоначальное число автобусов. Из условия задачи следует, чтои что число всех туристов равно 22 k +1 . После отъезда одного автобуса всех туристов удалось рассадить в оставшиеся (k-1) автобусов. Следовательно, число 22 k +1 должно делиться на k-1 . Таким образом, задача свелась к определению всех целых , для которых число

Является целым и удовлетворяет неравенству (число n равно числу туристов, посаженных в каждый автобус, а по условию задачи автобус вмещает не более 32 пассажиров).

Число будет целым только тогда, когда число будет целым. Последнее возможно только при k =2 и при k =24 .

Если k =2 , то n=45.

А если k =24 , то n=23.

Отсюда и из условия получаем, что только k =24 удовлетворяет всем условиям задачи.

Следовательно, первоначально было 24 автобуса, а число всех туристов равно n(k-1)=23*23=529

Возможные решения задач

1. Ответ:

Тогда уравнение примет вид:

Получили квадратное уравнение относительно р .

2. Ответ: (0;1), (2;-1), (-1;0), (1;-2)

Сложив уравнения системы, получим , или

Отсюда (х + у) 2 = 1 , т.е. х + у = 1 или х + у = -1 .

Рассмотрим два случая.

а) х + у = 1 . Подставив х = 1 – у в первое уравнение системы, получим

б) х + у = -1 . После подстановки х = -1-у в первое уравнение системы, получим или

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока : комбинированный.

Оборудование: графопроектор.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + ... + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 - 2 х 3 - 23х 2 - 12 х + 36 = 0 (это уравнение решает потом 2 группа на доске)

Решение . Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 - х 3 - 7х 2 + х + 6 = 0 (это уравнение решает потом на доске 4 группа)

Решение. Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 - 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 + 4х 3 – 5х 2 – 36х -36 = 0 (это уравнение решает потом 5 группа на доске)

Решение. Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4 + 10х 3 + 35х 2 + 50х + 24 = 0 (это уравнение решает потом 6группа на доске)

Решение . Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 - 7х 3 - 13х 2 + 43 x - 24 = 0 (это уравнение решает потом 1 группа на доске)

Решение . Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x - 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх - 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х - 15 = 0; -1+3+13-15=0

По условию х 1 = - 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3. (Ь Н Ы)

2. Найти все корни многочлена х 3 - 3х 2 + ах - 2а + 6, если остатки от его деления на двучлены х-1 и х +2 равны.

Решение: R=Р 3 (1) = Р 3 (-2)

Р 3 (1) = 1-3 + а- 2а + 6 = 4-а

Р 3 (-2) = -8-12-2а-2а + 6 = -14-4а

x 3 -Зх 2 -6х + 12 + 6 = х 3 -Зх 2 -6х + 18

x 2 (x-3)-6(x-3) = 0

(х-3)(х 2 -6) = 0

3) а=0, х 2 -0*х 2 +0 = 0; х 2 =0; х 4 =0

а=0; х=0; х=1

а>0; х=1; х=а ± √а

2. Составить уравнение

1 группа . Корни: -4; -2; 1; 7;

2 группа . Корни: -3; -2; 1; 2;

3 группа . Корни: -1; 2; 6; 10;

4 группа . Корни: -3; 2; 2; 5;

5 группа . Корни: -5; -2; 2; 4;

6 группа . Корни: -8; -2; 6; 7.

Последние материалы раздела:

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...

Другое название индейцев сиу сканворд
Другое название индейцев сиу сканворд

Равнинные сиу являлись самой западной частью племен группы сиу и, соответственно, принадлежали к сиуязычной семье. Их ранняя история ничем не...