Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019)

Директор по визуальным концепциям компании McKinsey Джин Желязны знает о своей работе все. Это неудивительно: за 55 лет жизни, которые он посвятил изучению диаграмм и других способов визуализации, он накопил достаточный опыт, которым поделился в книге «Говори на языке диаграмм».

Нашим читателям - месяц на Bookmate бесплатно: введите промокод RUSBASE по ссылке http://bookmate.com/code .


Шаг 3. От сравнения к диаграмме – выберете тип диаграммы

Каждому типу сравнения соответствует определенный вид диаграмм. Подбирайте тип визуализации, исходя из типа сравнения.

Формулируем идею

Построение диаграмм начинается с формулирования основной мысли, которую вы хотите донести до аудитории с ее помощью. Основная идея - ответ на вопрос, что именно показывают нам данные и как они связаны между собой.

Самый простой способ сформулировать главную мысль - вынести ее в заголовок диаграммы.

Заголовок должен быть конкретным и нести в себе ответ на вопрос, который вы ставите перед аудиторией. При подборе слов используйте количественные и качественные характеристики и старайтесь избегать общих фраз и выражений.

Примеры конкретных и общих заголовков

Не забывайте главное правило: одна диаграмма - одна идея. Не старайтесь на одном графике показать все найденные вами связи и мысли. Такие диаграммы будут перегруженными и сложными для восприятия.

Определяем тип сравнения

Любую мысль и идею можно выразить при помощи одного из пяти типов сравнения. Ваша задача - правильно выбрать тип сравнения и подобрать к нему соответствующую диаграмму.

Небольшая подсказка:

    Покомпонентное сравнение – ваши данные показывают определенную долю по отношению к целому.

    Позиционное сравнение – вы хотите показать, как данные соотносятся друг с другом.

    Временное сравнение – вы показываете, как данные изменяются во времени.

    Частотное сравнение – вы хотите показать, какое количество объектов попадает в определенные диапазон.

    Корреляционное сравнение – вы показываете, как данные зависят друг от друга.

Выбираем идеальную диаграмму

Каждому из типов сравнения соответствует свой вид диаграмм. Именно от его правильного выбора зависит понятность восприятия визуализированных данных.

Всего существует пять типов диаграмм и некоторые их вариации и комбинации:

1. Круговая диаграмма

Знакомый всем «пирог» – самый используемый тип диаграмм. По мнению Джина, это неоправданно, поскольку этот тип наименее практичен и должен составлять немногим более 5% всех диаграмм в презентациях.

2. Линейчатая диаграмма

Отдельные значения в этой диаграмме представлены полосами различной длины, расположенными горизонтально вдоль оси Х. По мнению автора, это самая недооцененная диаграмма, наиболее гибкий и универсальный тип, который должен был бы составлять 25% всех используемых диаграмм.

3. Гистограмма

Количественные соотношения некоторого показателя представлены в виде прямоугольников, площади которых пропорциональны. Чаще всего для удобства восприятия ширину прямоугольников берут одинаковую, при этом их высота определяет соотношения отображаемого параметра.

4. График

Знакомые всем со школы линейные графики состоят из точек на координатной сетке, соединенных линиями. Используются для характеристики вариации, динамики и взаимосвязи. Вместе с гистограммой должны составлять половину используемых диаграмм.

5. Точечная диаграмма

Она же диаграмма рассеивания, служит для размещения точек данных на горизонтальной и вертикальной оси с целью показать степень влияния одной переменной на другую. По мнению Желязны, ее должны использоваться в 10% случаев.

Не забывайте! Главная цель любой диаграммы - четко показать связи или зависимости между данными. Если иллюстрация не способна отразить взаимосвязи, лучше использовать таблицы.

Двойное сравнение

В некоторых случаях возникает необходимость показать на одном графике несколько типов сравниваемых данных и зависимость между ними.

В таких случаях необходимо определить основной тип сравнения и подбирать диаграмму на основании него. Например, если вы хотите показать вклад отдельных подразделений в общий доход компании в зависимости от месяцев, лучше использовать типы диаграмм для временного сравнения: график или гистограмму. А если вас больше интересует не изменение во времени, а конкретные достижения, используйте линейчатые диаграммы.

Помните: если на одной диаграмме не получается просто и понятно донести основную мысль, комбинируя данные, лучше использовать два отдельных виджета.

Шкалы, легенды и другие надписи

Идеальная диаграмма понятна для восприятия без дополнительной информации на ней. Однако это не означает, что вы не можете использовать шкалу или легенду, чтобы лучше донести основную мысль.

Главные правила при добавлении дополнительной информации:

    Они не перегружают диаграмму.

    Они не отвлекают от основной картинки.

    Они дополняют диаграмму.

Конкретные примеры для каждого из типов сравнения и диаграмм вы можете найти в книге или использовать их электронную версию на сайте издательства.

1. По двум известным параметрам состояния влажного воздуха найти остальные.

Например, при известных t и φ найти i , d , ν , Р п , t R , t М при известных t и i найти φ , i , d , ν , Р п , t R , t М , где t R - температура, соответствующая точке росы °С; t М - температура мокрого термометра, °С.

На практических работах исходные данные t и φ и t и i задаются преподавателем. Отчетные данные представляются в виде таблицы 2.

Рисунок 2. Процесс изменения состояния воздуха

Рисунок 3. Процесс смешение воздуха

2. По известным начальным и конечным параметрам состояния воздуха (например, t 1 , φ 1 и t 2) найти изменение теплосодержания (энтальпий) Δi = i 2 – i 1 кДж/кг; влагосодержаний Δd = d 2 – d 1 и др.

При изменении параметров состояния воздуха возможны два случая: когда процесс 1-2 полностью протекает в области перегретого пара (рис.2), т.е. выше кривой φ = 100%, и когда процесс 1-2 частично заходит в область влажного пара, т.е. ниже кривой φ = 100% (рис.3).

В процессе 1-2 (рис.3) происходит охлаждение и осушение воздуха, т.е. снижается температура и уменьшается влагосодержание воздуха от d 1 до d 2 . При этом одна часть влаги в количестве (d 1 d 4 ) выпадает в виде росы, а вторая - (d 5 d 4 ) в виде тумана.

Начальные и конечные параметры состояния воздуха задаются преподавателем в соответствии с приложением 1. При заданном количестве обрабатываемого воздуха определяются тепловая нагрузка на калорифер (воздухоохладитель), влажностная нагрузка на увлажняющее (осушающее) устройство.

Отчетные данные представляются в виде табл.3. Дается объяснение качественного изменения состояния воздуха и его параметров.

Полные расходы тепла Q (кВт) и влаги G (кг/с) на изменение параметров состояния воздуха определяются по формулам

Q = L ∙ Δi ,

G w = L Δd ,

где L - расход обрабатываемого сухого воздуха, кг/с.

Параметры состояния воздуха, определяемые по диаграмме i - d , относятся к 1 кг сухого воздуха, поэтому расход сухого воздуха L при известном объемном его расходе V , м 3 /с определяется по формуле:

L =

где ρ - плотность воздуха при данном его состоянии, кг/м 3 .

Величины Q к G w , используются при расчете подогревающих (охлаждающих) и увлажняющих (осушающих) устройств.

3 . При известных параметрах состояния двух объемов воздуха, входящих в смесь, найти параметры состояния смеси. Исходные данные задаются преподавателем: t 1 , φ 1 , V 1 и t 2 , φ 2 и V 2 , где V 1 и V 2 - объемы (м 3 /ч) воздуха, входящего в смесь.

Таблица 2. Отчетная таблица

Исходные

Параметры,

определяемые по диаграмме

t 1

i 1

φ 1

d 1

Р п

t р1

t м1

v 1

ρ 1

Р н

V 1

Таблица 3. Отчетная таблица

Исходные

Параметры

определяемые по диаграмме и расчетам

Процессы изменения состояния от т.1 до т.2

t 2

φ 2

i 2

d 2

ρ 2

Р п2

V 2

Параметры состоянии смеси t см могут определяться аналитическим или графическим (по диаграмме i – d влажного воздуха) методами.

При аналитическом методе составляются уравнения теплового и влажностного балансов процесса смешения

L 1 ∙ i 1 + L 2 ∙ i 2 = (L 1 + L 2 ) i см ;

L 1 d 1 + L 2 d 2 = (L 1 + L 2 ) d см ,

где L 1 =
- масса сухого воздуха, соответствующая объемному количеству V 1 , кг;

L 2 =
- масса сухого воздуха, соответствующая

объемному количеству V 2 , кг.

Величины d см и i см будут определять параметры состояния воздуха после смешения объемов V 1 и V 2 . Из формул можно сделать вывод, что на параметры состояния смеси оказывают влияние массы воздуха, входящие в смесь. Чем больше масса воздуха (одной части), входящего в смесь, тем ближе к параметрам состояния этой части воздуха будут приближаться параметры состояния смеси. Аналогично могут быть определены параметры смеси, в которую входят три или более объемов с различными параметрами состояния.

При графическом методе в диаграмме i - d , (рис.4), отмечаются точки, соответствующие параметрам состояния частей воздуха, входящие в смесь, точки 1 и 2.

Рисунок 4. Процесс смешения воздуха

Для нахождения параметров смеси, точка 3, расстояние 1-2 должно быть разделено на части, соответствующие

и
.

Исходные данные и результаты расчетов представляется в виде табл.4.

4. При известных теплопоступлениях (теплопотерях) ΣQ , кВт и влагопоступлениях (влагопотерях) Σ g w от всех источников,кг/с определить направление изменения параметров состояния воздуха в помещении, а также параметры состояния воздуха, устанавливающиеся в помещении под воздействием ΣQ и Σ g w .

Направление изменения параметров состояния воздуха в помещении под воздействием тепло- и влагопоступлений (тепло- и влагопотерь) определяется тепловлажностным коэффициентом (угловым коэффициентом) ε , кДж/кг:

ε =

где Δ i = - удельные теплопоступления на 1 кг сухого

воздуха помещения, кДх/кг;

Δd = - удельные влагопоступления на 1 кг сухого

воздуха помещения, кг/кг;

L = L сух n – масса сухого воздуха, циркулирующего в

помещении, кг/с;

L сух - масса сухого воздуха в объеме помещения, кг;

n - кратность циркуляции воздуха в помещении, 1/с.

Рисунок 5. Пример использования коэффициента 

Изолинии тепловлажностного коэффициента занесены на диаграмме d - i в виде веера прямых, расходящихся из точки на оси ординат, соответствующей температуре О°С (рис. 5). Пример использования тепловлажностного (углового) коэффициента для нахождения конечных параметров состояния воздуха приведен на рис.5. В примере значения ε = = 3500 - начальное состояние воздуха (точка 1). Линия изменения параметров состояния воздуха наносится параллельно изолинии ε = 3500. Конечное состояние воздуха (точка 2) определяется отложением от точки 1 Δi или Δd и проведении изолиний i 2 = со nst или d 2 = со nst .

Для решения задачи студенту задаются величины: ΣQ , Σ g w ; V - объем помещения, м 3 ; n - кратность циркуляции; t 1 и i 1 -начальные параметры состояния воздуха помещения.

Определяются:

L сух - масса сухого воздуха помещения, кг;

Δi и Δd – изменения тепло- и влагосодержания воздуха

помещения;

t 2 и i 2 – конечные параметры состояния воздуха помещения.

Заданные и определяемые величины представляются студентами в виде табл.5.

Таблица 4. Отчетная

Исходные

Определяемые величины

t 1

V 1

t 2

V 2

d 1

d 2

L 1

L 2

ρ 3

t 3

i 3

d 3

φ 3

Таблица 5. Отчетная

Исходные

Определяемые величины

d 1

d 2

t 1

t 2

L 1

L 2

>> Урок 11. Столбчатые и линейные диаграммы

Соотношение между величинами можно наглядно представлять столбиками или отрезками.

В таблице приведено время, которое тратят ребята на дорогу от дома до школы.

По диаграмме легко выводятся разные особенности отношений между величинами. Например, по нашей диаграмме сразу видно, что дольше всех добирается до школы Игорь, а быстрее всех - Таня, что Оля и Миша тратят на дорогу до школы одинаковое время - 15 мин, а дорога до школы у Саши и у Игоря отнимает больше 15 мин и т. д.

1 . Волшебная страна состоит из пяти частей: Розовой страны. Желтой, Голубой. Фиолетовой и Изумрудного города.

а) На столбчатой диаграмме показано количество осадков, выпавших за год в Голубой стране. Используя диаграмму, ответь на вопросы:

1) Сколько осадков выпало в сентябре?
2) Когда выпало самое меньшее количество осадков, а когда - самое большее?
3) В какие месяцы выпало одинаковое количество осадков?
4) Когда выпало 90 мм осадков, а когда - больше 90 мм?
5) Когда выпало меньше 60 мм осадков?
б) На сколько меньше осадков выпало в августе, чем в октябре?
7) Сколько осадков выпало за каждое время года? Сколько осадков выпало за весь год?

б) По данным таблицы построй столбчатую диаграмму выпадения осадков Изумрудном городе за год. Проанализируй ее.


в) На линейной диаграмме представлена информация о рождаемости детей в Розовой стране за год. Используя диаграмму, ответь на вопросы:

1) Сколько детей родилось в июле?
2) В каком месяце родилось больше всего детей, а в каком - меньше всего?
3) Сколько детей родилось летом? Сколько детей родилось за год?
4) На сколько больше детей родилось в мае, чем в апреле?
5) В какие месяцы родилось по 500 детей?
6) В какие месяцы родилось больше 600 детей?

Проведи ломаную линию, последовательно соединяющую верхние концы отрезков диаграммы, и определи, в какие месяцы рождаемость детей увеличивалась, в какие месяцы - уменьшалась, а когда не изменялась.

г) По данным таблицы построй линейную диаграмму рождаемости детей в Фиолетовой стране. Проанализируй ее.




2. Определи координаты точек А, В, С, D, Е и F л найди длину отрезков АВ, CD, EF.

3. Реши уравнения:

4. "Блиц-турнир".

а) Ворона Кагги-Карр пролетела за 4 часа а км. Какое расстояние она пролетит за 7 часов, если будет лететь с той же скоростью?

б) Элли прошла по долине b км, а по горной дороге - лишь 24 % этого пути. С какой скоростью шла Элли по горной дороге, если прошла ее за 3 часа?

в) В армии Урфина Джюса было c капралов, что составило 15 % числа солдат его армии. На сколько больше солдат, чем капралов, было в армии Урфина Джюса?

г) Урфин Джюс решил сделать для своей армии x деревянных солдат. За день он делает у солдат. Сколько солдат ему останется сделать после 9 дней работы ?

д) Моряку Чарли 5 лет назад исполнилось с лет. Сколько лет исполнится ему через 4 года?

5. В Розовой стране 540 000 жителей, что составляет жителей Голубой страны. В Желтой стране живет 40 % от общего числа жителей Розовой и Голубой стран, а в Фиолетовой стране - на 78 000 жителей больше, чем в Желтой стране. Сколько жителей в Изумрудном городе, если всего в Волшебной стране насчитывается 3 000 000 жителей?

6. Запиши множество натуральных решений неравенства:

7*. Нарисуй схему Волшебной страны, если известно, что Голубая, Фиолетовая и Розовая страны имеют общую границу с остальными четырьмя частями. Желтая страна и Изумрудный город не имеют между собой общей границы, причем Желтая страна окружена со всех сторон Великой пустыней, отделяющей Волшебную страну от остального мира.

Петерсон Людмила Георгиевна. Математика. 4 класс. Часть 3. - М.: Издательство "Ювента", 2005, - 64 с.: ил.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Цель : закрепить навыки чтения диаграмм, построения диаграмм в тетради и на компьютере.

Задачи :

Общеобразовательные:

  • повторить типы диаграмм;
  • закрепить навыки чтения диаграмм (интерпретирования количественной информации, представленной в форме диаграмм);
  • закрепить навыки построения диаграмм.

Воспитательные:

  • обучать эстетическому оформлению работ;
  • воспитывать стремление к здоровому образу жизни;
  • воспитывать чувство коллективизма.

Развивающие:

  • развивать внимание;
  • совершенствовать навыки работы с компьютерной техникой и повышать интерес к современным компьютерным технологиям;
  • развивать познавательный интерес к математике;
  • развивать межпредметные связи;
  • учить сравнивать данные, анализировать их, обобщать и делать выводы.

Тип урока: закрепление и обобщение знаний по данной теме

ХОД УРОКА

1. Оргмомент

(Приветствие; проверка готовности к уроку, объявление целей и задач урока)

2. Актуализация знаний

Фронтальный опрос, чтение диаграмм:

1 . Что означает слово «диаграмма» и что такое диаграмма? (Приложение 1 . Слайд 2)

(Ответ: Диаграмма (от греческого diagramma , что значит «рисунок, чертёж») – графическое изображение, наглядно показывающее соотношение между различными величинами; один из способов представления информации. Диаграмма – это еще один вид математической модели)

2 . В каких случаях используются диаграммы? (Приложение 1. Слайд 3)

(Ответ: Диаграммы удобно использовать в тех случаях, когда нужно сравнить полученные данные (например, результаты опроса общественного мнения), показать, как меняется со временем интересующее нас явление, и т.д.

3. Отвечаем на вопросы по диаграмме «Самые известные проливы Планеты» (Приложение 1. Слайд 4)

Вопросы:

  • Каков тип диаграммы?
  • Каково название диаграммы?
  • Какой пролив имеет наименьшую длину?
  • Какой пролив имеет наибольшую длину?
  • На сколько километров длина пролива Ла-Манш больше длины пролива Лаперуза?

4. Отвечаем на вопросы по диаграмме «Самые высокие действующие вулканы мира»

(Приложение 1. Слайд 5)

Вопросы:

  • Каков тип диаграммы?
  • Каково название диаграммы?
  • Какой вулкан имеет наименьшую высоту?
  • Какой вулкан имеет наибольшую высоту?

5. Отвечаем на вопросы по диаграмме «Любимый жанр телепередач» (Приложение 1. Слайд 6)

К какому жанру телепередач отдают предпочтение опрошенные учащиеся?

6. Ответить на вопрос: «Вспомните, какое событие называется невозможным, достоверным, случайным?»

7. Отвечаем на вопросы по диаграмме «Существует ли «Лохнесское чудовище»?» (Приложение 1. Слайд 7)

Вопросы:

  • Каков тип диаграммы?
  • Как французы называют такую диаграмму?
  • Сколько процентов учащихся считают существование «Лохнесского чудовища» достоверным, невозможным, возможным?

3. Закрепление (самостоятельная работа с проверкой в классе)

I вариант (Приложение1. Слайд 8) : За контрольную работу по математике школьники получили 6 оценок «отлично» , 10 оценок «хорошо» , 5 оценок «удовлетворительно» и 3 оценки «неудовлетворительно» . Постройте круговую диаграмму по этим данным.

II вариант (Приложение1. Слайд 9) : Персонаж сказки «Чиполлино» кум Тыква с детства мечтал построить свой дом и покупал каждый год несколько кирпичей. В таблице приведены данные о его покупках за пять лет.

Постройте столбчатую диаграмму, показывающую число кирпичей, купленных за каждый год.

В это время двое учащихся работают по карточкам, решают задачи на процентное сравнение.

Задача №1 (Приложение 1. Слайд 10)

На сколько процентов 5 меньше 8?

Решение:

8 – 100%
5 – ? %

  1. 8: 100 = 0,08 – 1%
  2. 5: 0,08 = 500: 8 = 62,5 (%)
  3. 100 – 62,5 = 37,5 (%) на столько % 5 меньше, чем 8.

Ответ : на 37,5%

Задача №2 (Приложение 1. Слайд 11)

На сколько процентов 8 больше 5?

Решение:

5 – 100%
8 – ? %

  1. 5: 100 = 0,05 – 1%
  2. 8: 0,05 = 800: 5 = 160 (%)
  3. 160 – 100 = 60 (%) на столько % 8 больше, чем 5.

Ответ : на 60%

На какой вопрос к диаграмме II-го варианта вы ответили?

4. Физкультминутка

5. Построение диаграмм на компьютере

1. Построить круговую диаграмму «Площади крупнейших стран Азии» по следующим данным:

2. На станции обслуживания ведут учет неисправностей всех поступающих автомобилей. Данные о поломках за последние три месяца свели в таблицу. Постройте столбчатую диаграмму по данным таблицы.

Объект поломки Месяц
Октябрь Ноябрь Декабрь
Двигатель 9 9 18
Подвеска 25 26 15
Кузов 24 50 35
Тормозная система 12 15 22
Всего

Дополнительное задание № 1 (для тех, кто быстро сделает):

Подсчитайте общее число неисправностей поступивших автомобилей в каждом из трёх месяцев и впишите результаты в таблицу.

Какая из диаграмм соответствует последней строке? (третья)

Дополнительное задание № 2 (для тех учащихся, которые справились с доп. заданием № 1)

Постройте круговую объёмную диаграмму распределения людей по группам крови, если людей с группой крови О(I) в мире около 46%, с группой крови А(II) около 34%, группой крови В(III)≈17%, а людей с самой редкой группой крови АВ(IV) ≈ 3%.

6. Подведение итогов

  1. Работу ученика, построившего диаграммы первым, показать на большом экране
  2. Ответить на вопрос: «Какие виды диаграмм мы знаем и умеем строить?»

7. Выставление оценок

8. Домашнее задание

Создать презентацию из различных типов диаграмм.

Литература:

  1. «Работа в электронных таблицах», А.В. Васильев, О.Б. Богомолова, издательство Бином, 2007
  2. «Теория вероятностей и статистика», Ю.Н. Тюрин, издательство МЦНМО «Московский учебник», Москва, 2004
  3. «Математика. 6 класс», И.И. Зубарева, А.Г. Мордкович, издательство «Мнемозина», Москва, 2007
  4. http://www.1september.ru

Начальный уровень

Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019)

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно намного легче и быстрее решить, в этом нам поможет использование графиков функций. Ты скажешь «как так?» чертить что-то, да и что чертить? Поверь мне, иногда это удобнее и проще. Приступим? Начнем с уравнений!

Графическое решение уравнений

Графическое решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем - все неизвестные переносим в одну сторону уравнения, все, что нам известно - в другую и вуаля! Мы нашли корень. Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение:

Как его решить?
Вариант 1 , и самый распространенный - перенести неизвестные в одну сторону, а известные в другую, получаем:

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата точки пересечения графиков:

Наш ответ -

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число!

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так как они сейчас есть:

Построил? Смотрим!

Что является решением на этот раз? Все верно. Тоже самое - координата точки пересечения графиков:

И, снова наш ответ - .

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее... Например, графическое решение квадратных уравнений.

Графическое решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при переумножении или в возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет… Поэтому, давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Способ 1. Напрямую

Просто строим параболу по данному уравнению:

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

Ты скажешь «Стоп! Формула для очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни. Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец! И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, .

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе. Для нашего случая точка. Нам необходимо еще две точки, соответственно, можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней? Мне удобней работать с положительными, поэтому я рассчитаю при и.

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения? Правильно, точки, в которых, то есть и. Потому что.

И если мы говорим, что, то значит, что тоже должен быть равен, или.

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем - посчитаешь корни через теорему Виета или Дискриминант. Что у тебя получилось? То же самое? Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Способ 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: , но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

  1. - графиком является простая парабола, которую ты с легкостью построишь даже без определения вершины с помощью формул и составления таблицы для определения прочих точек.
  2. - графиком является прямая, которую ты так же легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Построил? Сравним с тем, что вышло у меня:

Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по, которые получились при пересечении двух графиков и, то есть:

Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий и даже легче, чем искать корни через дискриминант! А если так, попробуй данным способом решить следующее уравнение:

Что у тебя получилось? Сравним наши графики:

По графикам видно, что ответами являются:

Справился? Молодец! Теперь посмотрим уравнения чууууть-чуть посложнее, а именно, решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Графическое решение смешанных уравнений

Теперь попробуем решить следующее:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы опять же, попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

  1. - графиком является гипербола
  2. - графиком является прямая, которую ты легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Осознал? Теперь займись построением.

Вот что вышло у меня:

Глядя на этот рисунок, скажи, что является корнями нашего уравнения?

Правильно, и. Вот и подтверждение:

Попробуй подставить наши корни в уравнение. Получилось?

Все верно! Согласись, графически решать подобные уравнения одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

Соответственно:

  1. - кубическая парабола.
  2. - обыкновенная прямая.

Ну и строим:

Как ты уже давно у себя записал, корнем данного уравнения является - .

Прорешав такое большое количество примеров, уверена, ты осознал как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Графическое решение систем

Графическое решение систем по сути ничем не отличается от графического решения уравнений. Мы так же будем строить два графика,и их точки пересечения и будут являться корнями данной системы. Один график - одно уравнение, второй график - другое уравнение. Все предельно просто!

Начнем с самого простого - решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с, а справа - что связано с. Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему? Намекну: мы имеем дело с системой: в системе есть и, и … Намек понял?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только, как при решении уравнений! Еще один важный момент - правильно их записать и не перепутать, где у нас значение, а где значение! Записал? Теперь давай все сравним по порядку:

И ответы: и. Сделай проверку - подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым - построил быстренько и вот тебе решение! Строим:

Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее:

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:

Так же? Теперь аккуратно запиши все решения нашей системы:

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут? Согласись, математика - это все-таки просто, особенно, когда глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Графическое решение неравенств

Графическое решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни - по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно с графического решения линейного неравенства. Например, вот этого:

Для начала проведем простейшие преобразования - раскроем скобки полных квадратов и приведем подобные слагаемые:

Неравенство нестрогое, поэтому - не включается в промежуток, и решением будут являться все точки, которые находятся правее, так как больше, больше и так далее:

Ответ:

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Нарисуем в системе координат функцию.

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой. А если было бы больше? Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.

Все решения данного неравенства «затушеваны» оранжевым цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты и любой точки из закрашенной области - и есть решения.

Графическое решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции.

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:

Теперь, когда мы освежили в памяти весь материал, перейдем к делу - решим графически неравенство.

Сразу тебе скажу, что есть два варианта его решения.

Вариант 1

Записываем нашу параболу как функцию:

По формулам определяем координаты вершины параболы (точно так же, как и при решении квадратных уравнений):

Посчитал? Что у тебя получилось?

Теперь возьмем еще две различных точки и посчитаем для них:

Начинаем строить одну ветвь параболы:

Симметрично отражаем наши точки на другую ветвь параболы:

А теперь возвращаемся к нашему неравенству.

Нам необходимо, чтобы было меньше нуля, соответственно:

Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем - «выкалываем».

Ответ:

Долгий способ, правда? Сейчас я покажу тебе более простой вариант графического решения на примере того же неравенства:

Вариант 2

Возвращаемся к нашему неравенству и отмечаем нужные нам промежутки:

Согласись, это намного быстрее.

Запишем теперь ответ:

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Умножим левую и правую части на:

Попробуй самостоятельно решить следующее квадратное неравенство любым понравившимся тебе способом: .

Справился?

Смотри, как график получился у меня:

Ответ: .

Графическое решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, это с построения двух графиков:

Я не буду расписывать для каждого таблицу - уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично! Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть. Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси у нас находится выше, чем? Верно, . Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

КОРОТКО О ГЛАВНОМ

Алгоритм решения уравнений с использованием графиков функций:

  1. Выразим через
  2. Определим тип функции
  3. Построим графики получившихся функций
  4. Найдем точки пересечения графиков
  5. Корректно запишем ответ (с учетом ОДЗ и знаков неравенств)
  6. Проверим ответ (подставим корни в уравнение или систему)

Более подробно о построении графиков функций, смотри в теме « ».

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...