Разложение на множители. Примеры

Очень часто числитель и знаменатель дроби представляют собой алгебраические выражения, которые сначала нужно разложить на множители, а потом, обнаружив среди них одинаковые, разделить на них и числитель, и знаменатель, то есть сократить дробь. Заданиям разложить многочлен на множители посвящена целая глава учебника по алгебре в 7-м классе. Разложение на множители можно осуществить 3 способами , а также комбинацией этих способов.

1. Применение формул сокращенного умножения

Как известно, чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить. Есть, как минимум, 7 (семь) часто встречающихся случаев умножения многочленов, которые вошли в понятие . Например,

Таблица 1. Разложение на множители 1-м способом

2. Вынесение общего множителя за скобку

Этот способ основан на применении распределительного закона умножения. Например,

Каждое слагаемое исходного выражения мы делим на множитель, который выносим, и получаем при этом выражение в скобках (то есть в скобках остаётся результат деления того, что было, на то, что выносим). Прежде всего нужно правильно определить множитель , который надо вынести за скобку.

Общим множителем может быть и многочлен в скобках:

При выполнении задания «разложите на множители» надо быть особенно внимательным со знаками при вынесении общего множителя за скобки. Чтобы поменять знак у каждого слагаемого в скобке (b — a) , вынесем за скобку общий множитель -1 , при этом каждое слагаемое в скобке разделится на -1: (b — a) = — (a — b) .

В том случае если выражение в скобках возводится в квадрат (или в любую чётную степень), то числа внутри скобок можно менять местами совершенно свободно, так как вынесенные за скобки минусы при умножении всё равно превратятся в плюс: (b — a) 2 = (a — b) 2 , (b — a) 4 = (a — b) 4 и так далее…

3. Способ группировки

Иногда общий множитель имеется не у всех слагаемых в выражении, а только у некоторых. Тогда можно попробовать сгруппировать слагаемые в скобки так, чтобы из каждой можно было какой-то множитель вынести. Способ группировки - это двойное вынесение общих множителей за скобки.

4. Использование сразу нескольких способов

Иногда нужно применить не один, а несколько способов разложения многочлена на множители сразу.

Это конспект по теме «Разложение на множители» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью . Если более точно, то это рациональная функция одной переменной (т.е. переменной $x$).

Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Пример №1

Указать, какие из приведённых ниже дробей являются рациональными. Если дробь является рациональной, то выяснить, правильная она или нет.

  1. $\frac{3x^2+5\sin x-4}{2x+5}$;
  2. $\frac{5x^2+3x-8}{11x^9+25x^2-4}$;
  3. $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$;
  4. $\frac{3}{(5x^6+4x+19)^4}$.

1) Данная дробь не является рациональной, поскольку содержит $\sin x$. Рациональная дробь этого не допускает.

2) Мы имеем отношение двух многочленов: $5x^2+3x-8$ и $11x^9+25x^2-4$. Следовательно, согласно определению, выражение $\frac{5x^2+3x-8}{11x^9+25x^2-4}$ есть рациональная дробь. Так как степень многочлена в числителе равна $2$, а степень многочлена в знаменателе равна $9$, то данная дробь является правильной (ибо $2 < 9$).

3) И в числителе, и в знаменателе данной дроби расположены многочлены (разложенные на множители). Нам совершенно неважно, в какой форме представлены многочлены числителя и знаменателя: разложены они на множители или нет. Так как мы имеем отношение двух многочленов, то согласно определению выражение $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ есть рациональная дробь.

Дабы ответить на вопрос о том, является ли данная дробь правильной, следует определить степени многочленов в числителе и знаменателе. Начнём с числителя, т.е. с выражения $(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)$. Для определения степени этого многочлена можно, конечно, раскрыть скобки. Однако разумно поступить гораздо проще, ибо нас интересует лишь наибольшая степень переменной $x$. Выберем из каждой скобки переменную $x$ в наибольшей степени. Из скобки $(2x^3+8x+4)$ возьмём $x^3$, из скобки $(8x^4+5x^3+x+9)^9$ возьмём $(x^4)^9=x^{4\cdot9}=x^{36}$, а из скобки $(5x^7+x^6+9x^5+3)$ выберем $x^7$. Тогда после раскрытия скобок наибольшая степень переменной $x$ будет такой:

$$ x^3\cdot x^{36}\cdot x^7=x^{3+36+7}=x^{46}. $$

Степень многочлена, расположенного в числителе, равна $46$. Теперь обратимся к знаменателю, т.е. к выражению $(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)$. Степень этого многочлена определяется так же, как и для числителя, т.е.

$$ x\cdot (x^2)^{15}\cdot x^{10}=x^{1+30+10}=x^{41}. $$

В знаменателе расположен многочлен 41-й степени. Так как степень многочлена в числителе (т.е. 46) не меньше степени многочлена в знаменателе (т.е. 41), то рациональная дробь $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ является неправильной.

4) В числителе дроби $\frac{3}{(5x^6+4x+19)^4}$ стоит число $3$, т.е. многочлен нулевой степени. Формально числитель можно записать так: $3x^0=3\cdot1=3$. В знаменателе имеем многочлен, степень которого равна $6\cdot 4=24$. Отношение двух многочленов есть рациональная дробь. Так как $0 < 24$, то данная дробь является правильной.

Ответ : 1) дробь не является рациональной; 2) рациональная дробь (правильная); 3) рациональная дробь (неправильная); 4) рациональная дробь (правильная).

Теперь перейдём к понятию элементарных дробей (их ещё именуют простейшими рациональными дробями). Существуют четыре типа элементарных рациональных дробей:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4,\ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Задача состоит в следующем: заданную правильную рациональную дробь представить в виде суммы элементарных рациональных дробей. Решению этой задачи и посвящён материал, изложенный на данной странице. Для начала нужно убедиться, что выполнено следующее условие: многочлен в знаменателе правильной рациональной дроби разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$).Грубо говоря, это требование означает необходимость максимального разложения многочлена в знаменателе, т.е. чтобы дальнейшее разложение было невозможно. Только если это условие выполнено, то можно применять такую схему:

  1. Каждой скобке вида $(x-a)$, расположенной в знаменателе, соответствует дробь $\frac{A}{x-a}$.
  2. Каждой скобке вида $(x-a)^n$ ($n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{A_1}{x-a}+\frac{A_2}{(x-a)^2}+\frac{A_3}{(x-a)^3}+\ldots+\frac{A_n}{(x-a)^n}$.
  3. Каждой скобке вида $(x^2+px+q)$ ($p^2-4q < 0$), расположенной в знаменателе, соответствует дробь $\frac{Cx+D}{x^2+px+q}$.
  4. Каждой скобке вида $(x^2+px+q)^n$ ($p^2-4q < 0$; $n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{C_1x+D_1}{x^2+px+q}+\frac{C_2x+D_2}{(x^2+px+q)^2}+\frac{C_3x+D_3}{(x^2+px+q)^3}+\ldots+\frac{C_nx+D_n}{(x^2+px+q)^n}$.

Если же дробь неправильная, то перед применением вышеизложенной схемы следует разбить её на сумму целой части (многочлен) и правильной рациональной дроби. Как именно это делается, разберём далее (см. пример №2 пункт 3). Пару слов насчёт буквенных обозначений в числителях (т.е. $A$, $A_1$, $C_2$ и тому подобные). Буквы можно использовать любые - на свой вкус. Важно лишь, чтобы эти буквы были различными во всех элементарных дробях. Чтобы найти значения этих параметров применяют метод неопределённых коэффициентов или метод подстановки частных значений (см. примеры №3, №4 и №5).

Пример №2

Разложить заданные рациональные дроби на элементарные (без нахождения параметров):

  1. $\frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}$;
  2. $\frac{x^2+10}{(x-2)^3(x^3-8)(3x+5)(3x^2-x-10)}$;
  3. $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$.

1) Имеем рациональную дробь. В числителе этой дроби расположен многочлен 4-й степени, а в знаменателе многочлен, степень которого равна $17$ (как определить эту степень детально пояснено в пункте №3 примера №1). Так как степень многочлена в числителе меньше степени многочлена в знаменателе, то данная дробь является правильной. Обратимся к наменателю этой дроби. Начнём со скобок $(x-5)$ и $(x+2)^4$, которые полностью подпадают под вид $(x-a)^n$. Кроме того, имеются ещё и скобки $(x^2+3x+10)$ и $(x^2+11)^5$. Выражение $(x^2+3x+10)$ имеет вид $(x^2+px+q)^n$, где $p=3$; $q=10$, $n=1$. Так как $p^2-4q=9-40=-31 < 0$, то данную скобку больше нельзя разложить на множители. Обратимся ко второй скобке, т.е. $(x^2+11)^5$. Это тоже скобка вида $(x^2+px+q)^n$, но на сей раз $p=0$, $q=11$, $n=5$. Так как $p^2-4q=0-121=-121 < 0$, то данную скобку больше нельзя разложить на множители. Итак, мы имеем следующий вывод: многочлен в знаменателе разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$). Теперь можно переходить и к элементарным дробям. Мы будем применять правила , изложенные выше. Согласно правилу скобке $(x-5)$ будет соответствовать дробь $\frac{A}{x-5}$. Это можно записать так:

$$ \frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}=\frac{A}{x-5}+\ldots $$

Полученный результат можно записать так:

$$ 3x^5-5x^4+10x^3-16x^2-7x+22=(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22. $$

Тогда дробь $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$ представима в иной форме:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=\frac{(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22}{x^3-2x^2+4x-8}=\\ =\frac{(x^3-2x^2+4x-8)(3x^2+x)}{x^3-2x^2+4x-8}+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=\\ =3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}. $$

Дробь $\frac{4x^2+x+22}{x^3-2x^2+4x-8}$ является правильной рациональной дробью, ибо степень многочлена в числителе (т.е. 2) меньше степени многочлена в знаменателе (т.е. 3). Теперь обратимся к знаменателю данной дроби. В знаменателе расположен многочлен, который нужно разложить на множители. Иногда для разложения на множители полезна схема Горнера , но в нашем случае проще обойтись стандартным "школьным" методом группировки слагаемых:

$$ x^3-2x^2+4x-8=x^2\cdot(x-2)+4\cdot(x-2)=(x-2)\cdot(x^2+4);\\ 3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{4x^2+x+22}{(x-2)\cdot(x^2+4)} $$

Применяя те же методы, что и в предыдущих пунктах, получим:

$$ \frac{4x^2+x+22}{(x-2)\cdot(x^2+4)}=\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Итак, окончательно имеем:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Продолжение этой темы будет рассмотрено во второй части.

Данный сервис предназначен для разложения дроби вида:

На сумму простейших дробей. Данный сервис будет полезен для решения интегралов . см. пример .

Инструкция . Введите числитель и знаменатель дроби. Нажмите кнопку Решить.

При оформлении в качестве переменной использовать x t z u p λ
Примечание: Например, x 2 записывается как x^2 , (x-2) 3 пишем как (x-2)^3 . Между сомножителями ставим знак умножить (*) .

Правила ввода функции

Это поле предназначено для ввода числителя выражения
Общую переменную x необходимо предварительно вынести за скобки. Например, x 3 + x = x(x 2 + 1) или x 3 - 5x 2 + 6x = x(x 2 - 5x + 6) = x(x-3)(x-2).

Правила ввода функции

Это поле предназначено для ввода знаменателя выражения Например, x 2 записывается как x^2 , (x-2) 3 пишем как (x-2)^3 . Между сомножителями ставим знак умножить (*) .
Общую переменную x необходимо предварительно вынести за скобки. Например, x 3 + x = x(x 2 + 1) или x 3 - 5x 2 + 6x = x(x 2 - 5x + 6) = x(x-3)(x-2).

Алгоритм метода неопределенных коэффициентов

  1. Разложение знаменателя на множители.
  2. Разложение дроби в виде суммы простейших дробей с неопределенными коэффициентами.
  3. Группировка числителя с одинаковыми степенями x .
  4. Получение системы линейных алгебраических уравнений с неопределенными коэффициентами в качестве неизвестных.
  5. Решение СЛАУ: методом Крамера , методом Гаусса , методом обратной матрицы или методом исключения неизвестных.

Пример . Используем метод разложения на простейшие. Разложим функцию на простейшие слагаемые:


Приравняем числители и учтем, что коэффициенты при одинаковых степенях х , стоящие слева и справа должны совпадать
2x-1 = A(x+2) 2 (x-4) + Bx(x+2) 2 (x-4) + Cx(x-4) + Dx(x+2) 2
A + B = 0
-12A -8B -4C + 4D = 2
-16A = -1
0A -2B + C + 4D = 0
Решая ее, находим:
A = 1 / 16 ;B = - 1 / 9 ;C = - 5 / 12 ;D = 7 / 144 ;

Приведены наиболее эффективные методы разложения правильных рациональных дробей, составленных из многочленов, на простейшие. Рассмотрены характерные примеры разложения дробей.

Пусть у нас имеется правильная рациональная дробь многочленов от переменной x :
,
где Р m (x) и Q n (x) - многочлены степеней m и n , соответственно, m < n . Мы считаем, что нам известно разложение многочлена Q n (x) на множители:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
См. подробнее: Методы разложения многочленов на множители >>>
Примеры разложения многочленов на множители >>>

Общий вид разложения рациональной дроби на простейшие

Общий вид разложения рациональной дроби на простейшие следующий:
.
Здесь A i , B i , E i , ... - действительные числа (неопределенные коэффициенты), которые нужно определить.

Например,
.

Еще один пример:
.

Методы разложения рациональной дроби на простейшие

Сначала мы записываем разложение с неопределенными коэффициентами в общем виде. . Затем освобождаемся от знаменателей дробей, умножая уравнение на знаменатель исходной дроби Q n . В результате получаем уравнение, содержащее и слева и справа многочлены от переменной x . Это уравнение должно выполняться для всех значений x . Далее существует три основных метода определения неопределенных коэффициентов.

1) Можно присвоить переменной x определенные значения. Задавая несколько таких значений, мы получим систему уравнений, из которой можно определить неизвестные коэффициенты A i , B i , ... .
2) Поскольку полученное уравнение и с лева и справа содержит многочлены, то можно приравнять коэффициенты при одинаковых степенях переменной x . Из полученной системы можно определить неопределенные коэффициенты.
3) Можно продифференцировать уравнение и присвоить переменной x определенные значения.

На практике, удобно комбинировать эти методы. Разберем их применение на конкретных примерах.

Пример

Разложить правильную рациональную дробь на простейшие.

Решение

1. Устанавливаем общий вид разложения.
(1.1) ,
где A, B, C, D, E - коэффициенты, которые нужно определить.

2. Избавимся от знаменателей дробей. Для этого умножим уравнение на знаменатель исходной дроби (x-1) 3 (x-2)(x-3) . В результате получаем уравнение:
(1.2)
.

3. Подставим в (1.2) x = 1 . Тогда x - 1 = 0 . Остается
.
Отсюда .
Подставим в (1.2) x = 2 . Тогда x - 2 = 0 . Остается
.
Отсюда .
Подставим x = 3 . Тогда x - 3 = 0 . Остается
.
Отсюда .

4. Осталось определить два коэффициента: B и C . Это можно сделать тремя способами.
1) Подставить в формулу (1.2) два определенных значения переменной x . В результате получим систему из двух уравнений, из которой можно определить коэффициенты B и C .
2) Открыть скобки и приравнять коэффициенты при одинаковых степенях x .
3) Продифференцировать уравнение (1.2) и присвоить переменной x определенное значение.

В нашем случае, удобно применить третий способ. Возьмем производную от левой и правой частей уравнения (1.2) и подставим x = 1 . При этом замечаем, что члены, содержащие множители (x-1) 2 и (x-1) 3 дают нуль, поскольку, например,
, при x = 1 .
В произведениях вида (x-1) g(x) , дифференцировать нужно только первый множитель, поскольку
.
При x = 1 второй член обращается в нуль.

Дифференцируем (1.2) по x и подставляем x = 1 :
;
;
;
3 = -3 A + 2 B ; 2 B = 3 + 3 A = 6 ; B = 3 .

Итак, мы нашли B = 3 . Остается найти коэффициент C . Поскольку при первом дифференцировании мы отбросили некоторые члены, то дифференцировать второй раз уже нельзя. Поэтому применим второй способ. Поскольку нам нужно получить одно уравнение, то нам не нужно находить все члены разложения уравнения (1.2) по степеням x . Мы выбираем самый легкий член разложения - x 4 .

Выпишем еще раз уравнение (1.2) :
(1.2)
.
Раскрываем скобки и оставляем только члены вида x 4 .
.
Отсюда 0 = C + D + E , C = - D - E = 6 - 3/2 = 9/2 .

Сделаем проверку. Для этого определим C первым способом. Подставим в (1.2) x = 0 :
0 = 6 A - 6 B+ 6 C + 3 D + 2 E ;
;
. Все правильно.

Ответ

Определение коэффициента при старшей степени 1/(x-a)

В предыдущем примере мы сразу определили коэффициенты у дробей , , , присваивая, в уравнении (1.2) , переменной x значения x = 1 , x = 2 и x = 3 . В более общем случае, всегда можно сразу определить коэффициент при старшей степени дроби вида .

То есть если исходная дробь имеет вид:
,
то коэффициент при равен . Таким образом, разложение по степеням начинается с члена .

Поэтому в предыдущем примере мы сразу могли искать разложение в виде:


.

В некоторых простых случаях, можно сразу определить коэффициенты разложения. Например,


.

Пример с комплексными корнями знаменателя

Теперь разберем пример, в котором знаменатель имеет комплексные корни.

Пусть требуется разложить дробь на простейшие:
.

Решение

1. Устанавливаем общий вид разложения:
.
Здесь A, B, C, D, E - неопределенные коэффициенты (действительные числа), которые нужно определить.

2. Освобождаемся от знаменателей дробей. Для этого умножаем уравнение на знаменатель исходной дроби :
(2.1) .

3. Заметим, что уравнение x 2 + 1 = 0 имеет комплексный корень x = i , где i - комплексная единица, i 2 = -1 . Подставим в (2.1) , x = i . Тогда члены, содержащие множитель x 2 + 1 дают 0 . В результате получаем:
;
.
Сравнивая левую и правую части, получаем систему уравнений:
-A + B = -1 , A + B = -1 .
Складываем уравнения:
2 B = -2 , B = -1 , A = -B -1 = 1 - 1 = 0 .
Итак, мы нашли два коэффициента: А = 0 , B = -1 .

4. Заметим, что x + 1 = 0 при x = -1 . Подставим в (2.1) , x = -1 :
;
2 = 4 E , E = 1/2 .

5. Далее удобно подставить в (2.1) два значения переменной x и получить два уравнения, из которых можно определить C и D . Подставим в (2.1) x = 0 :
0 = B + D + E , D = -B - E = 1 - 1/2 = 1/2 .

6. Подставим в (2.1) x = 1 :
0 = 2(A + B) + 4(C + D) + 4 E ;
2(C + D) = -A - B - 2 E = 0 ;
C = -D = -1/2 .

На данном уроке будут рассмотрены различные способы разложения знаменателя на множители при сложении и вычитании алгебраических дробей. Фактически, мы вспомним те методы, которые уже были изучены ранее. Это и вынесение общего множителя за скобки, и группировка слагаемых, и применение формул сокращённого умножения, а также выделение полного квадрата. Все эти методы применяются при сложении и вычитании алгебраических дробей с разными знаменателями. В рамках урока мы вспомним все вышеперечисленные правила, а также разберём примеры на применение этих правил.

Напомним, что алгебраической дробью называется выражение , где - многочлены. А многочлены можно и нужно уметь раскладывать на множители. Предположим, нам необходимо сложить или вычесть две алгебраические дроби: .

Каков алгоритм наших действий?

1. Сократить или упростить каждую из дробей.

2. Найти наименьший общий знаменатель двух дробей.

Эти действия требуют разложения на множители многочленов .

Рассмотрим несколько примеров на сокращение (упрощение) дробей.

Пример 1. Упростить: .

Решение:

Первое, что необходимо попытаться сделать при сокращении, - вынести общий множитель за скобки.

В нашем случае и в числителе, и в знаменателе есть множители, которые можно вынести за скобки.

.

Затем сократим общие множители числителя и знаменателя. Получим:

При этом учтём, что знаменатель дроби не может равняться . То есть: .

Ответ: .

Пример 2. Упростить: .

Решение:

По схеме решения предыдущего примера попытаемся вынести за скобки общий множитель. В числителе это сделать нельзя, а в знаменателе можно вынести за скобку .

Если не получается вынести общий множитель, нужно попробовать воспользоваться формулами сокращённого умножения. Действительно, в числителе стоит полный квадрат разности. Получаем:

.

Мы видим похожие скобки в числителе и знаменателе.

Однако они отличаются знаком.

Для этого воспользуемся равенством: . Отсюда получаем: . Получаем:

Ответ: .

Рассмотрим теперь пример, в котором необходимо упростить разность двух дробей.

Пример 3. Упростить: .

Решение:

Поскольку в знаменателе первой дроби стоит разность кубов, воспользуемся формулой сокращённой умножения. Получаем:

Ответ: .

Давайте вспомним: что же такое многочлен? - это сумма одночленов. А одночлен - это произведение степеней переменных и чисел.

Теперь перечислим и разберём примеры разложения многочленов на множители.

Способ 1. Вынесение общего множителя за скобки.

Пример 4. Разложить на множители: .

Пример 5. Разложить на множители: .

В последнем примере общий множитель - двучлен.

Способ 2. Группировка.

Пример 6. Разложить на множители: .

Решение:

Вынести общий множитель за скобки в этом примере не удаётся. В этом случае необходимо попробовать сгруппировать слагаемые, в которых есть общие множители.

В этом примере удобно сгруппировать одночлены, содержащие и . Получаем: . Мы видим, что выражения в скобках практически одинаковы с точностью до знака. Получаем: .

Ответ: .

Способ 3. Формулы сокращенного умножения.

Перечислим основные формулы сокращённого умножения:

1. - разность квадратов;

2. - квадрат суммы (разности);

3. - разность кубов (выражение во второй скобке называется неполным квадратом суммы);

Сумма кубов (выражение во второй скобке называется неполным квадратом разности).

Надо не только запомнить эти формулы, но и уметь находить и применять их в реальных задачах.

Пример 7. Разложить на множители: .

Пример 8. Разложить на множители: .

Решение:

Здесь напрашивается формула квадрата разности. Однако возникает вопрос: как применить эту формулу. Проще всего выделить квадраты, а затем уже найти удвоенное произведение. В данном примере: . То есть, в роли . Получаем: .

Ответ: .

Не стоит забывать, что в чистом виде данные методы применяются редко. Чаще используются комбинированные методы.

Способ 4. Выделение полного квадрата.

Рассмотрим применение данного метода на конкретном примере.

Пример 9. Разложить на множители: .

Решение:

Выделение полного квадрата обычно происходит по первым двум слагаемым. Действительно, квадрат первого - - у нас уже есть. Значит, второе слагаемое должно представлять собой удвоенное произведение первого выражения на второе. То есть: . Значит, если в роли из формулы квадрата разности выступает , то в роли должна выступать . Для применения этой формулы нам не хватает . Если чего-то не хватает, то можно добавить это выражение и вычесть, чтобы не менять значение выражения. Получаем.

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...