Распределение бернулли математическое ожидание и дисперсия. Искомая вероятность по формуле Бернулли равна

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Схема испытаний Бернулли. Формула Бернулли

Пусть производится несколько испытаний. Причем, вероятность появления события $A$ в каждом испытании не зависит от исходов других испытаний. Такие испытания называются независимыми относительно события А. В разных независимых испытаниях событие А, может иметь либо различные вероятности, либо одну и туже. Мы будем рассматривать лишь такие независимые испытания, в которых событие $A$ имеет одну и ту же вероятность.

Под сложным событием будем понимать совмещение простых событий. Пусть производится n-испытаний. В каждом испытании событие $A$ может появиться или не появиться. Будем считать, что в каждом испытании вероятность появления события $A$ одна и та же и равна $p$. Тогда вероятность $\overline A $ { или не наступления А } равна $P({ \overline A })=q=1-p$.

Пусть требуется вычислить вероятность того, что в n -испытаниях событие $A$ наступит k - раз и $n-k$ раз - не наступит. Такую вероятность будем обозначать $P_n (k)$. Причем, последовательность наступления события $A$ не важна. Например: $({ AAA\overline A , AA\overline A A, A\overline A AA, \overline A AAA })$

$P_5 (3)-$ в пяти испытаниях событие $A$ появилось 3 раза и 2 - не появилось. Такую вероятность можно найти по формуле Бернулли.

Вывод формулы Бернулли

По теореме умножения вероятностей независимых событий, вероятность того, что событие $A$ наступит $k$ раз и $n-k$ раз не наступит, будет равна $p^k\cdot q^ { n-k } $. И таких сложных событий может быть столько, сколько можно составить $C_n^k $. Так как, сложные события несовместны, то по теореме о сумме вероятностей несовместных событий, нам надо сложить вероятности всех сложных событий, а их ровно $C_n^k $. Тогда вероятность появления события $A$ ровно k раз в n испытаниях, есть $P_n ({ A,\,k })=P_n (k)=C_n^k \cdot p^k\cdot q^ { n-k } $ формула Бернулли .

Пример. Игральная кость подбрасывается 4 раза. Найти вероятность того, что единица появится в половине случаев.

Решение. $A=$ { появление единицы }

$ P(A)=p=\frac { 1 } { 6 } \, \,P({ \overline A })=q=1-\frac { 1 } { 6 } =\frac { 5 } { 6 } $ $ P_4 (2)=C_4^2 \cdot p^2\cdot q^ { 4-2 } =\frac { 4! } { 2!\cdot 2! } \cdot 6^2\cdot ({ \frac { 5 } { 6 } })^2=0,115 $

Легко видеть, что при больших значениях n достаточно трудно подсчитать вероятность из-за громадных чисел. Оказывается эту вероятность можно посчитать не только с помощью формулы Бернулли.

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

Формула Бернулли - формула в теории вероятностей , позволяющая находить вероятность появления события A {\displaystyle A} при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли , который вывел эту формулу.

Энциклопедичный YouTube

    1 / 3

    ✪ Теория вероятностей. 22. Формула Бернулли. Решение задач

    ✪ Формула Бернулли

    ✪ 20 Повторение испытаний Формула Бернулли

    Субтитры

Формулировка

Теорема. Если вероятность p {\displaystyle p} наступления события A {\displaystyle A} в каждом испытании постоянна, то вероятность P k , n {\displaystyle P_{k,n}} того, что событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, равна: P k , n = C n k ⋅ p k ⋅ q n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}} , где q = 1 − p {\displaystyle q=1-p} .

Доказательство

Пусть проводится n {\displaystyle n} независимых испытаний, причём известно, что в результате каждого испытания событие A {\displaystyle A} наступает с вероятностью P (A) = p {\displaystyle P\left(A\right)=p} и, следовательно, не наступает с вероятностью P (A ¯) = 1 − p = q {\displaystyle P\left({\bar {A}}\right)=1-p=q} . Пусть, так же, в ходе испытаний вероятности p {\displaystyle p} и q {\displaystyle q} остаются неизменными. Какова вероятность того, что в результате n {\displaystyle n} независимых испытаний, событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз?

Оказывается можно точно подсчитать число "удачных" комбинаций исходов испытаний, для которых событие A {\displaystyle A} наступает k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, - в точности это количество сочетаний из  n {\displaystyle n}  по  k {\displaystyle k} :

C n (k) = n ! k ! (n − k) ! {\displaystyle C_{n}(k)={\frac {n!}{k!\left(n-k\right)!}}} .

В то же время, так как все испытания независимы и их исходы несовместимы (событие A {\displaystyle A} либо наступает, либо нет), то вероятность получения "удачной" комбинации в точности равна: .

Окончательно, для того чтобы найти вероятность того, что в n {\displaystyle n} независимых испытаниях событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз, нужно сложить вероятности получения всех "удачных" комбинаций. Вероятности получения всех "удачных" комбинаций одинаковы и равны p k ⋅ q n − k {\displaystyle p^{k}\cdot q^{n-k}} , количество "удачных" комбинаций равно C n (k) {\displaystyle C_{n}(k)} , поэтому окончательно получаем:

P k , n = C n k ⋅ p k ⋅ q n − k = C n k ⋅ p k ⋅ (1 − p) n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}=C_{n}^{k}\cdot p^{k}\cdot (1-p)^{n-k}} .

Последнее выражение есть не что иное, как Формула Бернулли. Полезно также заметить, что в силу полноты группы событий, будет справедливо:

∑ k = 0 n (P k , n) = 1 {\displaystyle \sum _{k=0}^{n}(P_{k,n})=1} .

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....